KR20050017632A - Heat Pipe using Nano Fluid as working fluid - Google Patents

Heat Pipe using Nano Fluid as working fluid

Info

Publication number
KR20050017632A
KR20050017632A KR1020030054900A KR20030054900A KR20050017632A KR 20050017632 A KR20050017632 A KR 20050017632A KR 1020030054900 A KR1020030054900 A KR 1020030054900A KR 20030054900 A KR20030054900 A KR 20030054900A KR 20050017632 A KR20050017632 A KR 20050017632A
Authority
KR
South Korea
Prior art keywords
heat
pipe
fluid
working fluid
nanofluid
Prior art date
Application number
KR1020030054900A
Other languages
Korean (ko)
Inventor
이세용
이충구
이세균
이계복
이석호
Original Assignee
이세용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이세용 filed Critical 이세용
Priority to KR1020030054900A priority Critical patent/KR20050017632A/en
Publication of KR20050017632A publication Critical patent/KR20050017632A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals

Abstract

PURPOSE: A heat pipe using nanofluid is provided to cool electronic appliances such as semiconductors or computers, and to improve heat exchange efficiency by injecting actuating fluid including metal nanoparticles to the enclosed pipe and by transferring heat efficiently. CONSTITUTION: A wick(5) is installed along the inner wall of an enclosed thermal conductive metal pipe(3) to induce capillary tube pressure, and actuating fluid is charged in the enclosed pipe to transfer heat from a heat exchange material by convection of actuating fluid and capillary tube pressure. A heat pipe is composed of an evaporating unit(10) absorbing heat from the heat exchange material and transferring heat from the heat exchange material to the actuating fluid in the enclosed pipe, an insulation unit(20) transmitting gas in evaporating to the upper part of the enclosed pipe, and a condensing unit(30) radiating heat from the actuating fluid to the upper part of the enclosed pipe by condensing and liquefying gas and circulating the liquefied actuating fluid to the evaporating unit along the wick with the pressure difference of capillary tube. The actuating fluid is formed of nanofluid(1) including metal nanoparticles to increase the heat capacity of fluid and the heat transfer area.

Description

나노유체를 이용한 히트파이프{Heat Pipe using Nano Fluid as working fluid}Heat Pipe Using Nano Fluid as working fluid

본 발명은 나노유체(Nano Fluid)를 이용한 히트파이프에 관한 것으로, 특히 종래의 히트파이프의 원리에 그 작동유체로서 나노금속입자가 함유된 나노유체를 주입하여서 된 밀폐관의 구조를 이룸으로써 열전달 성능을 현저히 향상시킬 수 있고, 이러한 나노유체에 의한 히트파이프를 전자제품 등의 냉각 또는 열교환장치로서 적용할 수 있게 한 나노유체를 이용한 히트파이프에 관한 것이다.The present invention relates to a heat pipe using nano fluid, and in particular, the heat transfer performance by forming a closed tube structure by injecting a nano fluid containing nano metal particles as the working fluid to the principle of the conventional heat pipe. The present invention relates to a heat pipe using a nanofluid, which can remarkably improve and to be able to apply such a heat pipe with nanofluid as a cooling or heat exchanger such as an electronic product.

일반적으로, 히트파이프(Heat Pipe)는 자기증발, 온도차 등의 열적(熱的) 불균형으로 인하여 형성되는 유체의 밀도차 및 모세관 압력에 의해 유체 유동이 이루어지는 열전달 장치를 말한다. 상기 히트파이프는 내부에 물(증류수) 또는 알콜 등의 작동유체를 넣고 진공상태로 밀봉 처리한 관으로서, 응축부와, 증발부 및 이들을 연결하는 단열부로 구분되며, 상기 증발부 쪽으로 열이 공급되면 상기 작동유체가 기체로 증발하여 단열부를 통해 응축부 쪽으로 이동하게 되고 그 지점에서 액체로 응축되면서 열을 방출한 후 모세관 현상에 의해 다시 증발부로 순환하며 열을 전달하게 된다.In general, a heat pipe refers to a heat transfer device in which fluid flow occurs due to capillary pressure and density difference of a fluid formed due to thermal imbalance such as evaporation and temperature difference. The heat pipe is a tube sealed with a working fluid such as water (distilled water) or alcohol and sealed in a vacuum state. The heat pipe is divided into a condensation part, an evaporation part, and a heat insulating part connecting them, and when heat is supplied toward the evaporation part. The working fluid is evaporated to a gas is moved to the condensation unit through the heat insulating part and condenses into liquid at that point to release heat and then circulate back to the evaporator by capillary action to transfer heat.

또한, 상기 히트파이프의 내벽에는 작동유체에 대한 모세관 압력을 촉진시킬 수 있도록 윅(Wick)이 설치되어 있다. 상기 윅은 밀폐관내의 작동유체를 응축부로부터 증발부로 원활히 이동시키기 위한 모세관 현상을 유발하기 위한 수단으로 작용하므로 그 재질의 선정과 구조 설계는 히트파이프의 성능을 좌우하는 매우 중요한 요소라 할 수 있다.In addition, the inner wall of the heat pipe is provided with a wick (Wick) to promote the capillary pressure on the working fluid. The wick acts as a means for inducing a capillary phenomenon for smoothly moving the working fluid in the condensation part from the condensation part to the evaporation part. Therefore, the material selection and the structural design are very important factors that influence the performance of the heat pipe. .

일반적으로, 상기 윅은 그 열이송인자를 크게 하려면 전체적으로 투과성(Permeability)이 좋아서 증발부의 열이 전해지는 어느 부위에서든 유체가 균일하게 분포되도록 하여야 하는데, 이를 만족시키기 위해서는 모세관의 반경이 작을수록 유리하다. 그러나, 상기 윅의 직경이 너무 작으면 유동저항을 초래하게 되므로 적정한 두께를 실험적인 방법으로 찾아내야 한다. 상기 윅은 구리재질의 세선을 직조하여 망체의 형상으로 제작한 것 등이 알려져 있다.In general, the wick should have a good permeability in order to increase its heat transfer factor so that the fluid is uniformly distributed in any part where heat is transferred to the evaporator. To satisfy this, the smaller the radius of the capillary is advantageous. . However, if the diameter of the wick is too small, a flow resistance will be caused, and therefore an appropriate thickness must be found by an experimental method. The wick is known to be produced in the shape of a mesh by woven fine copper wire.

상기한 바와 같은 상기 히트파이프는 펌프 등의 기계요소에 의한 별도의 동력공급이 없이도 자연대류에 의해 작동되는 것이며, 현재 이것은 열교환기, 전자제품의 냉각장치(온도상승으로 인해 제품성능이 저하되는 히트페이드(Heat Fade) 현상을 저감시켜주기 위한 냉각용 방열기(Heat Sink)) 또는 의료장비 등에 다양하게 적용되어 있고, 그 응용범위가 계속 확산되는 추세에 있다.As described above, the heat pipe is operated by natural convection even without a separate power supply by a mechanical element such as a pump, and at present, this is a heat exchanger or a cooling device for electronic products (heat that degrades product performance due to temperature rise. It is applied to various types of cooling sinks or medical equipments to reduce the fade (heat fade) phenomenon, and its application range is continuously spreading.

그러나, 이러한 종래의 히트파이프는 그 작동유체로서 물(증류수) 등을 사용하므로 이를 전자제품의 냉각장치 등으로 적용하는 경우에 기대할만한 열전달 성능(열전도율)을 발휘할 수 없는 문제점이 있었다.However, since the conventional heat pipe uses water (distilled water) or the like as its working fluid, there is a problem in that it cannot exhibit the heat transfer performance (heat conductivity) that is expected when it is applied as a cooling device for electronic products.

또한, 현재의 기술 수준에서 히트파이프의 열전달 성능을 향상시키기 위해서는, 다양한 작동유체를 사용하거나, 많은 시행착오를 겪는 실험적인 방법을 통해 상기 윅의 설계가 이루어져야 함은 물론이고, 증발부와 응축부의 열전달 면적을 크게 증대시키는 구조상의 최적화 설계가 이루어져야 하므로 이에 따른 제작상의 어려움이 있었다.In addition, in order to improve the heat transfer performance of the heat pipe at the current state of the art, the design of the wick must be made by using various working fluids or by an experimental method that undergoes a lot of trial and error. The structural optimization design to greatly increase the heat transfer area has to be made, there was a difficulty in manufacturing accordingly.

본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 안출된 것으로, 그 목적은, 관내에 열전도성이 높은 극 초 미세 크기의 금속재 나노입자를 함유한 나노유체가 작동유체로서 주입된 구조를 이룸으로써 관 구조 등의 최적화 설계를 고려하지 않고도 열전달 성능을 현저히 향상시킬 수 있고, 이를 전자제품 등의 냉각 또는 열교환장치로 다양하게 적용할 수 있도록 된 나노유체를 이용한 히트파이프를 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its object is to achieve a structure in which a nanofluid containing nanoparticles of very fine metal size having high thermal conductivity in a tube is injected as a working fluid. It is possible to significantly improve heat transfer performance without considering an optimized design such as a pipe structure, and to provide a heat pipe using nanofluids that can be variously applied to a cooling or heat exchanger such as an electronic product.

상기의 목적을 달성하기 위한 본 발명에 따른 나노유체를 이용한 히트파이프는, 진공상태로 밀봉된 열전도성이 우수한 금속재 밀폐관의 내벽을 따라 모세관 압력을 유발시킬 수 있는 윅(Wick)이 설치되고 그 밀폐관내에 소정의 작동유체가 충전되어 상기 작동유체의 열대류 및 모세관 압력 작용에 의해 임의의 열교환 대상물로부터 발생된 열을 외부로 전열시켜주는 열전달 구조를 형성하되, 상기 밀폐관상의 하측 외부에 배치되는 열교환 대상물로부터 흡열 반응하는 접촉부위로서 상기 열교환 대상물로부터 밀폐관내의 작동유체로 전열시켜주는 증발부와, 상기 증발부로부터의 증발 과정에 의해 생성된 기체를 밀폐관내 상부로 전달하기 위한 경로를 형성하는 단열부와, 상기 밀폐관상의 상측 외부로 발열 반응하는 접촉부위로서 상기 단열부를 통해 상부로 전달된 기체를 응축 과정에 의해 액화하여 밀폐관내의 작동유체로부터 밀폐관 외부로 전열시킴과 아울러 액화된 작동유체가 모세관 압력차에 의해 상기 윅을 따라 상기 증발부로 순환되도록 하는 응축부를 구성하는 히트파이프에 있어서, 상기 작동유체로서, 열전달 면적과 유체의 열용량을 증가시킬 수 있도록 나노단위 크기의 극히 미세한 금속재 입자를 소정량 함유한 소정의 충전유체로 이루어진 나노유체가 적용된 것을 특징으로 한다.Heat pipe using a nanofluid according to the present invention for achieving the above object, the wick (Wick) is installed that can induce capillary pressure along the inner wall of the metal sealed tube excellent in thermal conductivity sealed in a vacuum state A predetermined working fluid is filled in the hermetic pipe to form a heat transfer structure for transferring heat generated from any heat exchange object to the outside by the action of tropical flow and capillary pressure of the working fluid to the outside. An evaporation unit for transferring heat from the heat exchange object to the working fluid in the hermetic tube from the heat exchange object, and a path for transferring gas generated by the evaporation process from the evaporation unit to the upper part of the hermetic tube. A heat insulating portion and a contact portion that exothermicly reacts to the outside of the upper portion of the hermetic pipe. The heat constituting the condensation unit to liquefy the gas delivered to the negative portion by the condensation process to heat the fluid from the working fluid in the closed tube to the outside of the closed tube, and to circulate the liquefied working fluid to the evaporator along the wick by capillary pressure difference. In the pipe, the working fluid, characterized in that the nanofluid consisting of a predetermined filling fluid containing a predetermined amount of extremely fine metal particles of nano-unit size to increase the heat transfer area and the heat capacity of the fluid.

여기서, 상기 나노입자는 열전도성이 우수한 금, 은, 구리 중 선택된 어느 하나의 금속으로 이루어진 것이 바람직하다.Here, the nanoparticles are preferably made of any one metal selected from gold, silver, and copper having excellent thermal conductivity.

또한, 상기 나노입자의 크기는 100nm 이하인 것이 바람직하다.In addition, the size of the nanoparticles is preferably 100nm or less.

이하, 본 발명의 바람직한 실시예에 따른 나노유체를 이용한 히트파이프를 첨부 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, a heat pipe using a nanofluid according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 나노유체를 이용한 히트파이프를 개념적으로 나타낸 것이다.1 conceptually illustrates a heat pipe using a nanofluid according to the present invention.

본 발명에 따른 나노유체를 이용한 히트파이프는, 상기 도면에 도시된 바와 같이, 열전도성이 좋은 금속재의 밀폐관(3)의 내벽을 따라 모세관 압력을 유발시킬 수 있는 윅(5)이 설치되고, 그 밀폐관(3) 내에 열전달 매체로서의 나노유체(1)를 충전하여 진공상태로 밀봉 처리한 구조를 이룬다. 상기 도면상에는 상기 밀폐관(3)의 형상이 수직막대형의 구조로 되어 있으나, 이에 국한되는 것은 아니다.In the heat pipe using the nanofluid according to the present invention, as shown in the drawing, a wick 5 capable of inducing capillary pressure along the inner wall of the closed tube 3 of a metal material having good thermal conductivity is installed. The sealed tube 3 is filled with a nanofluid 1 as a heat transfer medium to form a sealed structure in a vacuum state. On the drawing, the shape of the closed tube 3 has a vertical rod-like structure, but is not limited thereto.

상기 밀폐관(3)은 열전달 반응의 과정에 따라 증발부(10)와, 응축부(30)와, 상기 증발부(10)와 응축부(30)를 연결하는 단열부(20)로 구분된다.The closed tube 3 is divided into an evaporator 10, a condenser 30, and a heat insulating part 20 connecting the evaporator 10 and the condenser 30 according to a heat transfer reaction. .

상기 증발부(10)는, 상기 밀폐관(3)상의 하측 외부에 배치되는 열교환 대상물(4)로부터 흡열 반응하는 접촉부위로서, 상기 열교환 대상물(4)로부터 밀폐관(3)내의 나노유체(1)로 전열시켜주는 부분에 해당한다.The evaporation unit 10 is a contact portion for endothermic reaction from the heat exchange object 4 disposed on the bottom outside of the sealed tube 3, and the nanofluid 1 in the sealed tube 3 from the heat exchange object 4. Corresponds to the part that heats up with).

상기 단열부(20)는, 상기 증발부(10)와 응축부(30)를 연통시켜 상기 증발부(10)로부터의 증발 과정에 의해 생성된 기체를 밀폐관(3)내 상부의 응축부(30)로 전달하기 위하여 나노유체(1)가 열대류(Heat Convection)될 수 있는 경로를 형성하는 부분에 해당한다. 이때, 상기 증발부(10)로부터 응축부(30)로 열대류되는 과정에서는 상기 나노유체(1)가 기체(증기)(2)로 상변화된다.The heat insulating part 20 communicates the evaporator 10 and the condenser 30 so that the gas generated by the evaporation process from the evaporator 10 is condensed in the upper portion of the closed tube 3 ( 30) corresponds to the part forming the path through which the nanofluid 1 can be heat convection. At this time, in the process of tropical flow from the evaporator 10 to the condensation unit 30, the nanofluid 1 is phase-changed into a gas (vapor) (2).

상기 응축부(30)는, 상기 밀폐관(3)상의 상측 외부로 발열 반응하는 접촉부위로서, 상기 단열부(20)를 통해 상부로 전달된 기체를 응축 과정에 의해 액화하여 밀폐관(3)내의 나노유체(1)로부터 밀폐관(3) 외부로 전열시킴과 아울러 액화된 나노유체(1)가 모세관 압력차에 의해 상기 윅(5)을 따라 상기 증발부(10)쪽으로 흘러내려 순환하며 열전달 작용을 연속적으로 수행하게 된다. 상기 응축부(30)에 의한 응축 과정에서는 액체로 상변화되므로 상기 증발부(10)에서의 기화 과정과 함께 그 나노유체(1)가 2상의 상태를 유지하며 순환되는 것이다.The condensation unit 30 is a contact portion that exothermicly reacts to the outside of the upper side of the sealing tube 3, and liquefies the gas delivered to the upper portion through the heat insulating part 20 by the condensation process. In addition to the heat transfer from the nanofluid (1) to the outside of the closed tube (3), the liquefied nanofluid (1) flows along the wick (5) toward the evaporator (10) by the capillary pressure difference and circulates and heat transfer The action is carried out continuously. In the condensation process by the condensation unit 30, the phase change to liquid is performed, and the nanofluid 1 is circulated while maintaining the state of the two phases together with the evaporation process in the evaporation unit 10.

한편, 상기 나노유체(1)는, 열전달 면적과 유체의 열용량을 증가시킬 수 있도록 미량의 금속재 나노입자(1b)를 함유한 증류수, 즉, 충전유체(1a)로 이루어진다. 그러나, 상기의 충전유체(1a)로서 반드시 증류수를 사용하여야 하는 것은 아니며, 열전달 성능을 활성화할 수 있는 액체이면 어느 것이든 적용할 수 있음을 밝혀둔다.On the other hand, the nanofluid (1) is made of distilled water, that is, the filling fluid (1a) containing a small amount of metal nanoparticles (1b) to increase the heat transfer area and the heat capacity of the fluid. However, it is not necessary to use distilled water as the filling fluid (1a), it is clear that any liquid can be applied as long as it can activate the heat transfer performance.

그리고, 상기의 나노입자(1b)란, 크기에 따라 물리 화학적 성질이 변화되는 입자를 말한다. 그 일례로서, 금 입자의 경우 크기가 μm order인 경우에는 융점이 1,063℃이지만 입자의 크기가 5nm(5×10-9m)인 경우에는 융점이 300℃로 감소되어 나타난다. 이는 입자의 표면 대 질량의 비율이 증가됨에 따라 단위질량당 표면적 및 그 입자의 표면에너지도 증가하면서 물리 화학적 성질이 변화되기 때문이다. 즉, 입자의 크기가 작아지면 작아질수록 동일체적 기준으로 표면적이 대폭 증가하여 기존의 재료가 갖는 성질과는 전혀 다른 특성들이 나타난다.In addition, said nanoparticle 1b means the particle whose physicochemical property changes with size. For example, in the case of gold particles, the melting point is 1,063 ° C. when the size is μm, but the melting point is reduced to 300 ° C. when the particle size is 5 nm (5 × 10 −9 m). This is because as the ratio of the surface to mass of the particles increases, the surface chemical per unit mass and the surface energy of the particles also increase, changing the physicochemical properties. In other words, the smaller the particle size, the larger the surface area on the same volume basis, resulting in completely different properties from those of the conventional materials.

본 발명에서는, 특히 여러 가지 금속중 전도성이 좋은 것으로서 그 입자크기가 1∼100nm 정도를 유지하는 금(Au), 은(Ag) 또는 구리(Cu) 등의 금속재 나노입자(1b)를 적용하였다.In the present invention, metal nanoparticles (1b) such as gold (Au), silver (Ag), copper (Cu), and the like, which have particularly good conductivity among various metals and have a particle size of about 1 to 100 nm, are applied.

이러한 상기의 나노입자(1b)를 이용하여 본 발명의 나노유체(1)를 생성한다. 즉, 본 발명의 히트파이프에 주입되는 작동유체로서의 상기 나노유체(1)는, 전통적 열전달 유체인 물(증류수)에 상기 나노입자(1b)를 미량 혼합하여 제조한다.The nanofluid 1 of the present invention is produced using the nanoparticles 1b. That is, the nanofluid 1 as a working fluid injected into the heat pipe of the present invention is prepared by mixing a small amount of the nanoparticles 1b with water (distilled water), which is a conventional heat transfer fluid.

상기 나노유체(1)는, 이에 혼합된 나노입자(1b)에 의해 열전달 면적과 유체의 열용량(Heat Capacity)를 증가시켜 유체의 유효전도성을 향상시키게 되고, 상기 나노입자(1b)와 충전유체(1a)간 유동면적에서의 상호작용 및 융합을 강화시킬 뿐만 아니라, 상기 충전유체(1a)의 혼합 및 난류 유동성을 강화시키며, 상기 나노입자(1b)의 확산에 의해 상기 충전유체(1a)의 역 온도구배를 감소시킬 수 있게 되는 등의 특성을 갖는다.The nanofluid (1), by increasing the heat transfer area and the heat capacity (Heat Capacity) of the fluid by the nanoparticles (1b) mixed therein to improve the effective conductivity of the fluid, the nanoparticles (1b) and the filling fluid ( Not only enhances the interaction and fusion in the flow area between 1a), but also enhances mixing and turbulent flowability of the filling fluid 1a, and inverses of the filling fluid 1a by diffusion of the nanoparticles 1b. It is possible to reduce the temperature gradient and the like.

이와 같은 나노유체(1)의 특성들은 본 발명과 종래의 히트파이프에 대한 성능비교 실험결과를 통해 명확히 입증된다. 즉, 상기 성능비교 실험결과에 의하면, 상기 나노유체(1)의 열전도율은 기존 작동유체의 경우에 비해 약 3배정도 크게 나타나 열전달 성능을 현저히 향상시킨다는 것을 알 수 있었다.These characteristics of the nanofluid (1) is clearly demonstrated through the performance comparison test results for the present invention and the conventional heat pipe. That is, according to the performance comparison test results, it was found that the thermal conductivity of the nanofluid 1 was about three times larger than that of the conventional working fluid, thereby significantly improving the heat transfer performance.

참고적으로, 관내를 흐르는 유체에 대한 열전도율과 열전달계수 간의 상관관계를 일반적 이론식에 의거하여 설명하면 다음과 같다.For reference, the correlation between the heat conductivity and the heat transfer coefficient for the fluid flowing in the pipe will be described based on the general theory.

관내의 난류 열전달계수(h)는,Turbulent heat transfer coefficient (h) in the pipe,

----------------------- [1] ----------------------- [One]

로 표시된다. 여기서, V는 유속, k는 유체의 열전도율을 나타낸다.Is displayed. Where V is the flow rate and k is the thermal conductivity of the fluid.

상기의 식[1]에 의하면, 열전달계수(h)는 유속(V)이나 유체의 열전도율(k)에 따라 변화할 수 있는 것임을 알 수 있다. 특히, 유속(V)을 일정하게 유지하여 동일하다고 가정하면, 열전도율(k)의 변화에 따라 열전달계수(h)가 비례적으로 변화하게 된다는 것을 알 수 있다. 나노유체(1)를 작동유체로 사용하는 본 발명의 경우에 있어서는, 열전도율이 10배 증가하면 (대류)열전달계수는 처음보다 약 4.6배 증가하는 것으로 알려져 있다.According to the above formula [1], it can be seen that the heat transfer coefficient h can be changed depending on the flow rate V and the thermal conductivity k of the fluid. In particular, it can be seen that the heat transfer coefficient h is proportionally changed in accordance with the change in the thermal conductivity k, assuming that the flow rate V is kept constant. In the case of the present invention using the nanofluid 1 as the working fluid, it is known that the (convective) heat transfer coefficient increases by about 4.6 times when the thermal conductivity is increased by 10 times.

이에 비하여, 기존의 일반 작동유체를 사용한 히트파이프에 있어서의 밀폐관(3)내 속도효과는, 밀폐관(3)내의 난류압력강하 관계식에 훼닝(Fanning)의 마찰인자를 도입하였을 때 다음과 같은 펌프동력(Pumping Power)에 의한 식으로 표시할 수 있다.On the other hand, the velocity effect in the sealed tube 3 in the heat pipe using the conventional general working fluid is obtained by introducing a fanning friction factor into the turbulent pressure drop relation in the sealed tube 3 as follows. It can be expressed by the expression of pumping power.

----------------------- [2] ----------------------- [2]

여기서, ho는 초기 열전달계수, Po는 초기 펌프동력, P는 변화된 펌프동력을 각각 나타낸다. 상기의 식[2]에 의하면, 일반 작동유체를 사용한 히트파이프에 있어서는 펌프동력(P)을 10배 증가시켰을 때 그 열전달계수(h)가 1.9배 증가하게 되는 것을 알 수 있다.Where h o is the initial heat transfer coefficient, P o is the initial pump power, and P is the changed pump power. According to Equation [2], in the heat pipe using a general working fluid, the heat transfer coefficient h increases 1.9 times when the pump power P is increased 10 times.

즉, 상기의 식[1] 및 식[2]에 의한 산출결과에 의하면, 종래의 히트파이프에서는 열전달 능력을 2배 증가시키려면 펌프동력(P)을 10배 증가시켜야 하지만, 나노유체(1)를 사용한 본 발명의 수직막대형 히트파이프에서는 열전도율(k)을 대략 3배 정도 증가시키는 것만으로도 동일한 효과를 발휘할 수 있게 되는 것이다.That is, according to the calculation results according to the above formulas [1] and [2], in order to increase the heat transfer capacity by 2 times in the conventional heat pipe, the pump power (P) must be increased by 10 times, but the nanofluid (1) In the vertical bar type heat pipe of the present invention, the same effect can be obtained by merely increasing the thermal conductivity k by about three times.

따라서, 본 발명에서와 같이 나노유체를 이용한 히트파이프는, 종래의 장치에 비해 그 열전달 성능을 향상시키는데 크게 기여할 수 있다.Therefore, the heat pipe using nanofluid as in the present invention can greatly contribute to improving the heat transfer performance compared to the conventional device.

이상에서 살펴본 바와 같이 본 발명의 나노유체를 이용한 히트파이프는, 밀폐관내에 열전도성이 높은 극 초 미세 크기의 금속재 나노입자를 함유한 나노유체가 작동유체로서 주입된 구조를 이룸으로써 관 구조 등의 최적화 설계를 고려하지 않고도 상기 나노유체에 의한 열대류 작용에 의해 장치의 열전달 성능을 현저히 향상시킬 수 있고, 이를 반도체나 컴퓨터 장치와 같은 각종 전자제품 등의 냉각 또는 열교환장치로 적용할 경우 장치의 성능 향상을 도모할 수 있으므로 매우 유용한 가치가 있다.As described above, the heat pipe using the nanofluid of the present invention forms a structure in which a nanofluid containing nanoparticles of ultra-fine metals having high thermal conductivity in a hermetic tube is injected as a working fluid. It is possible to remarkably improve the heat transfer performance of the device by the tropical flow action by the nanofluid without considering the optimized design, and the performance of the device when it is applied to cooling or heat exchanger of various electronic products such as semiconductors or computer devices It is very useful because it can be improved.

본 발명은 첨부된 도면에 도시된 하나의 실시예를 기준하여 설명되어 있으나 이는 예시적인 것이라 할 수 있고, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예들을 생각해 낼 수 있으므로 이러한 균등한 실시예들 또한 본 발명의 특허청구범위 내에 포함되는 것으로 보아야 함은 극히 당연한 것이다. 따라서 본 발명의 진정한 보호범위는 첨부된 청구범위에 의해서만 결정되어야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, which may be regarded as illustrative, and those skilled in the art will come up with various modifications and equivalent embodiments therefrom. As such, it should be considered that such equivalent embodiments are also included within the claims of the present invention. Therefore, the true scope of protection of the present invention should be determined only by the appended claims.

도 1은 본 발명에 따른 나노유체를 적용한 히트파이프의 구조를 도시한 개념도이다.1 is a conceptual diagram showing the structure of a heat pipe to which a nanofluid according to the present invention is applied.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

1 ; 나노유체 1a ; 충전유체One ; Nanofluid 1a; Filling fluid

1b ; 나노입자 2 ; 기체(증기)1b; Nanoparticles 2; Gas (Steam)

3 ; 밀폐관 4 ; 열교환 대상물3; Closed tube 4; Heat exchange object

5 ; 윅(Wick) 10 ; 증발부(열흡수부)5; Wick 10; Evaporator (Heat Absorption)

20 ; 단열부 30 ; 응축부(열방출부)20; Thermal insulation 30; Condensation unit (heat dissipation unit)

Claims (3)

진공상태로 밀봉된 열전도성이 우수한 금속재 밀폐관의 내벽을 따라 모세관 압력을 유발시킬 수 있는 윅(Wick)이 설치되고 그 밀폐관내에 소정의 작동유체가 충전되어 상기 작동유체의 열대류 및 모세관 압력 작용에 의해 임의의 열교환 대상물로부터 발생된 열을 외부로 전열시켜주는 열전달 구조를 형성하되, 상기 밀폐관상의 하측 외부에 배치되는 열교환 대상물로부터 흡열 반응하는 접촉부위로서 상기 열교환 대상물로부터 밀폐관내의 작동유체로 전열시켜주는 증발부와, 상기 증발부로부터의 증발 과정에 의해 생성된 기체를 밀폐관내 상부로 전달하기 위한 경로를 형성하는 단열부와, 상기 밀폐관상의 상측 외부로 발열 반응하는 접촉부위로서 상기 단열부를 통해 상부로 전달된 기체를 응축 과정에 의해 액화하여 밀폐관내의 작동유체로부터 밀폐관 외부로 전열시킴과 아울러 액화된 작동유체가 모세관 압력차에 의해 상기 윅을 따라 상기 증발부로 순환되도록 하는 응축부를 구성하는 히트파이프에 있어서,A wick which is capable of inducing capillary pressure is installed along the inner wall of the metal sealed tube having excellent thermal conductivity and sealed in a vacuum state, and a predetermined working fluid is filled in the sealed tube to prevent tropical and capillary pressure of the working fluid. A heat transfer structure that heats heat generated from an arbitrary heat exchange object by an action to the outside, and is a contact portion that endothermic reacts from a heat exchange object disposed on the bottom outside of the sealed tube, and the working fluid in the sealed tube from the heat exchange object. An evaporation unit that heats the furnace, a heat insulation unit that forms a path for transferring a gas generated by the evaporation process from the evaporation unit to an upper portion of the sealed tube, and a contact portion that exothermicly reacts to the outside of the upper side of the sealed tube. The gas delivered to the upper part through the heat insulating part is liquefied by the condensation process, and is pushed from the working fluid in the closed tube. In the heat pipe constituting the condensation unit for the heat transfer to the outside of the closed pipe and liquefied working fluid is circulated to the evaporation unit along the wick by the capillary pressure difference, 상기 작동유체는 열전달 면적과 유체의 열용량을 증가시킬 수 있도록 나노단위 크기의 극히 미세한 금속재 입자를 소정량 함유한 소정의 충전유체로 이루어진 나노유체인 것을 특징으로 하는 나노유체를 이용한 히트파이프.The working fluid is a heat pipe using a nanofluid, characterized in that the nanofluid consisting of a predetermined fill fluid containing a predetermined amount of extremely fine metal particles having a nano unit size so as to increase a heat transfer area and a heat capacity of the fluid. 제 1 항에 있어서,The method of claim 1, 상기 나노입자는 열전도성이 우수한 금, 은, 구리 중 선택된 어느 하나의 금속으로 이루어진 것을 특징으로 하는 나노유체를 이용한 히트파이프.The nanoparticles are heat pipes using nanofluids, characterized in that made of any one metal selected from gold, silver, and copper having excellent thermal conductivity. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 나노입자는 그 크기가 100nm 이하인 것을 특징으로 하는 나노유체를 이용한 히트파이프.The nanoparticles are heat pipes using nanofluids, the size of which is 100 nm or less.
KR1020030054900A 2003-08-08 2003-08-08 Heat Pipe using Nano Fluid as working fluid KR20050017632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030054900A KR20050017632A (en) 2003-08-08 2003-08-08 Heat Pipe using Nano Fluid as working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030054900A KR20050017632A (en) 2003-08-08 2003-08-08 Heat Pipe using Nano Fluid as working fluid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20-2003-0025600U Division KR200331847Y1 (en) 2003-08-08 2003-08-08 Heat Pipe using Nano Fluid as working fluid

Publications (1)

Publication Number Publication Date
KR20050017632A true KR20050017632A (en) 2005-02-22

Family

ID=37227289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030054900A KR20050017632A (en) 2003-08-08 2003-08-08 Heat Pipe using Nano Fluid as working fluid

Country Status (1)

Country Link
KR (1) KR20050017632A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135567B1 (en) * 2010-10-29 2012-04-17 충남대학교산학협력단 Heat dissipation mechanism for portable device
KR101539965B1 (en) * 2015-05-18 2015-07-29 국방과학연구소 Apparatus for manufacturing of nanofluid and manufacturing method for nanofluid usign the same
KR102179343B1 (en) 2020-05-11 2020-11-16 정춘식 Heatpipe high efficiency cooling system
KR102183239B1 (en) 2020-05-08 2020-11-25 한국기계연구원 Tgp unit, tgp unit intergreted heat sink and method of manufacturing tgp unit
KR102205094B1 (en) 2020-05-11 2021-01-19 정춘식 High-efficiency heatpipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135567B1 (en) * 2010-10-29 2012-04-17 충남대학교산학협력단 Heat dissipation mechanism for portable device
KR101539965B1 (en) * 2015-05-18 2015-07-29 국방과학연구소 Apparatus for manufacturing of nanofluid and manufacturing method for nanofluid usign the same
KR102183239B1 (en) 2020-05-08 2020-11-25 한국기계연구원 Tgp unit, tgp unit intergreted heat sink and method of manufacturing tgp unit
KR102179343B1 (en) 2020-05-11 2020-11-16 정춘식 Heatpipe high efficiency cooling system
KR102205094B1 (en) 2020-05-11 2021-01-19 정춘식 High-efficiency heatpipe

Similar Documents

Publication Publication Date Title
Hung et al. Evaluation of the thermal performance of a heat pipe using alumina nanofluids
Liu et al. Application of aqueous nanofluids in a horizontal mesh heat pipe
Ghanbarpour et al. Thermal performance of inclined screen mesh heat pipes using silver nanofluids
Tharayil et al. Thermal performance of miniature loop heat pipe with graphene–water nanofluid
Liu et al. A new frontier of nanofluid research–application of nanofluids in heat pipes
Nimmagadda et al. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+ Ag/Water)
Aly et al. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio
Kiseev et al. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid
Chen et al. Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon
Vijayakumar et al. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids
Su et al. Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid
Chen et al. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids
US20070068655A1 (en) Heat transfer device
Manimaran et al. Factors affecting the thermal performance of heat pipe–a review
Diao et al. Effects of nanofluids and nanocoatings on the thermal performance of an evaporator with rectangular microchannels
Heris et al. The effect of magnetic field and nanofluid on thermal performance of two-phase closed thermosyphon (TPCT)
Rashidi et al. Applications of nanofluids in thermal energy transport
KR20050017632A (en) Heat Pipe using Nano Fluid as working fluid
Bhuwakietkumjohn et al. Heat transfer behaviour of silver particles containing oleic acid surfactant: application in a two phase closed rectangular cross sectional thermosyphon (RTPTC)
ChNookaraju et al. Thermal analysis of gravity effected sintered wick heat pipe
KR200331847Y1 (en) Heat Pipe using Nano Fluid as working fluid
Harun et al. Experimental study of loop heat pipe performance with nanofluids
KR20050017738A (en) Two-phase vertical bar Thermosyphon using Nano Fluid as working fluid
Veerasamy et al. Performance of heat pipe with nanorefrigerant in electronic cooling applications
KR20050017631A (en) Two-phase Loop Thermosyphon using Nano Fluid as working fluid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application