JP6113439B2 - MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME - Google Patents

MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME Download PDF

Info

Publication number
JP6113439B2
JP6113439B2 JP2012188786A JP2012188786A JP6113439B2 JP 6113439 B2 JP6113439 B2 JP 6113439B2 JP 2012188786 A JP2012188786 A JP 2012188786A JP 2012188786 A JP2012188786 A JP 2012188786A JP 6113439 B2 JP6113439 B2 JP 6113439B2
Authority
JP
Japan
Prior art keywords
magnetic
flow path
magnetic field
magnetic fluid
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188786A
Other languages
Japanese (ja)
Other versions
JP2014050140A (en
Inventor
藤井 泰久
泰久 藤井
啓司 武田
啓司 武田
山口 博司
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Doshisha
Original Assignee
Kansai Research Institute KRI Inc
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc, Doshisha filed Critical Kansai Research Institute KRI Inc
Priority to JP2012188786A priority Critical patent/JP6113439B2/en
Publication of JP2014050140A publication Critical patent/JP2014050140A/en
Application granted granted Critical
Publication of JP6113439B2 publication Critical patent/JP6113439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、加熱された磁性流体を移動させてその熱エネルギーまたは運動エネルギーを利用するシステムで使用されている磁性流体駆動装置に関するものである。 The present invention relates to a magnetic fluid driving device used in a system that moves a heated magnetic fluid and uses its thermal energy or kinetic energy.

従来の磁性流体駆動装置として、磁場印加部に電磁石を使用するものがある。図1(a)の流路右方向の磁場を正、左方向の磁場を負とすると、上記の電磁石は、図1(b)のような流路方向で、磁性流体駆動のために最も理想的な、全領域に渡って極性反転しない略台形型の磁場分布Hを生じる。磁性流体に磁場Hを印加すると磁化Mを持った流体としてふるまう。磁性流体の構成成分である酸化鉄微粒子は室温において超常磁性的振る舞いをする。超常磁性体の磁化は磁場に対してランジュバン関数に従うが、低磁場領域においては、磁化が磁場に比例すると近似できる。また、酸化鉄微粒子のキュリー温度は477K(204℃)であるために、温度上昇に伴いキュリー温度に向かって磁化が低下する感温特性がある。以上より、局所的な磁性流体の磁化は、下記式で表現できる。 Some conventional magnetic fluid driving devices use an electromagnet for the magnetic field application unit. If the magnetic field in the right direction of the flow path in Fig. 1 (a) is positive and the magnetic field in the left direction is negative, the above electromagnet is the most ideal for magnetic fluid drive in the flow direction as shown in Fig. 1 (b). Thus, a substantially trapezoidal magnetic field distribution H that does not reverse the polarity over the entire region is generated. When a magnetic field H is applied to a magnetic fluid, it behaves as a fluid with magnetization M. Iron oxide fine particles, which are constituents of magnetic fluid, behave superparamagnetically at room temperature. Although the magnetization of a superparamagnetic material follows a Langevin function with respect to a magnetic field, it can be approximated that the magnetization is proportional to the magnetic field in a low magnetic field region. Further, since the Curie temperature of the iron oxide fine particles is 477 K (204 ° C.), there is a temperature sensitive characteristic that the magnetization decreases toward the Curie temperature as the temperature rises. From the above, the local magnetization of the magnetic fluid can be expressed by the following equation.

ここで、μ0:真空透磁率、χ:磁化率、α:空隙率、T:加熱部における磁性流体の温度、T0:非加熱部における磁性流体の温度、Tc:磁性微粒子のキュリー温度である。磁場H下の磁性流体には、磁化Mと磁場勾配∇Hに比例する磁気体積力F=M・∇Hが働く。加熱前の段階では、図1(c)の(i)の曲線のように磁気体積力Fは電磁石中心を境界として符号反転する。このとき、トータルの駆動力は(i)の曲線とxで囲まれた体積に比例するが、正負の磁気体積力F1とF2がつりあって磁性流体は流れない。 Here, μ0: vacuum permeability, χ: magnetic susceptibility, α: porosity, T: temperature of the magnetic fluid in the heating part, T0: temperature of the magnetic fluid in the non-heating part, Tc: Curie temperature of the magnetic fine particles. A magnetic volume force F = M · HH proportional to the magnetization M and the magnetic field gradient ∇H acts on the magnetic fluid under the magnetic field H. In the stage before heating, the magnetic body force F reverses the sign with the electromagnet center as the boundary as shown by the curve (i) in FIG. At this time, the total driving force is proportional to the volume enclosed by the curve (i) and x, but the magnetic fluid does not flow because the positive and negative magnetic body forces F1 and F2 are balanced.

加熱部は磁場印加部の一端に設置されている。ここで磁性流体が低沸点溶媒の沸点TL未満の温度まで加熱されると、温度Tの増大に伴い加熱部の磁化Mは非加熱部の磁化M0に対して減少するため、図1(c)の(ii)の曲線のように、加熱部の磁気体積力F2は、非加熱部の磁気体積力F1に比べて小さくなるので、トータルの駆動力は正方向となる。これにより磁性流体は正方向に自発的に駆動を始める。さらに磁性流体が低沸点溶媒の沸点TL以上、磁性流体の母液の沸点TH未満まで加熱されると、低沸点溶媒の沸騰により気泡が発生すると同時に、被冷却体は潜熱を奪われる。このとき、低沸点溶媒の沸点未満の場合に比べて、温度Tと空隙率αが増加するため、加熱部の磁化Mはさらに減少し、F1とF2の差が増大するため、トータルの正方向の駆動力も増大する。 The heating unit is installed at one end of the magnetic field application unit. Here, when the magnetic fluid is heated to a temperature below the boiling point TL of the low boiling point solvent, the magnetization M of the heating part decreases with respect to the magnetization M0 of the non-heating part as the temperature T increases. As shown in the curve (ii), the magnetic volume force F2 of the heating part is smaller than the magnetic volume force F1 of the non-heating part, so that the total driving force is in the positive direction. As a result, the magnetic fluid starts to drive spontaneously in the positive direction. Further, when the magnetic fluid is heated to a boiling point TL or higher of the low boiling point solvent and lower than the boiling point TH of the mother fluid of the magnetic fluid, bubbles are generated due to the boiling of the low boiling point solvent, and at the same time, the cooled object is deprived of latent heat. At this time, the temperature T and the porosity α increase compared to the case where the boiling point of the low-boiling solvent is lower than the boiling point, so the magnetization M of the heating part further decreases and the difference between F1 and F2 increases, so that the total positive direction The driving force increases.

特許文献1は、磁性流体にはその母液よりも沸騰点が小さい低沸点溶媒を少なくとも1種混合した作動流体を用いた、磁性流体駆動装置に関するものである。
特許文献2は、磁界が磁性流体の流れの方向と同一の磁場を磁場印加部に用いた磁性流体駆動装置に関するものである。
Patent Document 1 relates to a magnetic fluid driving device using a working fluid in which at least one low boiling point solvent having a boiling point smaller than that of a mother liquid is mixed as a magnetic fluid.
Patent Document 2 relates to a magnetic fluid driving device using a magnetic field having the same magnetic field as the magnetic fluid flow direction in a magnetic field application unit.

特開2003−240467号公報Japanese Patent Laid-Open No. 2003-240467 特開昭64−12852号公報Japanese Patent Laid-Open No. 64-12852

従来の電磁石を用いた磁場印加部は、電磁石に印加する外部電源が必要であること、磁場コイルを使用することなどにより小型化が難しかった。また、磁場印加部に永久磁石を用いる方式も一部開示されてはいるが、永久磁石を磁場印加部に用いると流路方向の磁場が生成するものの、一定間隔で極性が反転し、正負の磁場の大きさが同じ大きさであるために、結果的に磁気体積力は相殺され、加熱を行ってもほとんど駆動できないのが実情であった。 A conventional magnetic field application unit using an electromagnet requires an external power source to be applied to the electromagnet, and it is difficult to reduce the size by using a magnetic field coil. In addition, although a method of using a permanent magnet for the magnetic field application unit has been disclosed in part, if a permanent magnet is used for the magnetic field application unit, a magnetic field in the flow path direction is generated, but the polarity is reversed at regular intervals, and positive and negative Since the magnitudes of the magnetic fields are the same, as a result, the magnetic volume force is canceled out, and it is actually impossible to drive even if heating is performed.

本発明は、この様な問題点に着目したものであり、その目的は、磁性流体駆動装置の小型化と磁性流体駆動を高効率化することにある。 The present invention pays attention to such problems, and an object thereof is to reduce the size of the magnetic fluid driving device and to increase the efficiency of the magnetic fluid driving.

小型で高効率な磁性流体駆動装置が可能になれば、例えば、モバイル機器等に使用されている、CPU、LSIなどの電子機器、電子デバイスなどを除熱するための電源の必要のない小型熱輸送装置として、機器に組み込むことが可能になる。
本発明は、磁場印加部に大きな磁気体積力が生み出される構成の永久磁石磁気回路を使用することにより、モバイル機器等に搭載できる小型で高効率な磁性流体駆動装置を提供するものである。
If a compact and highly efficient magnetic fluid drive device becomes possible, for example, small heat that does not require a power source to remove heat from electronic devices such as CPUs and LSIs and electronic devices used in mobile devices, etc. As a transport device, it can be incorporated into equipment.
The present invention provides a small and highly efficient magnetic fluid driving device that can be mounted on a mobile device or the like by using a permanent magnet magnetic circuit configured to generate a large magnetic volume force in a magnetic field application unit.

上記のような目的を達成するために、本発明は以下の技術的手段から構成される。
〔1〕 磁性流体が封入された循環流路と、循環流路中に加熱部と磁場印加部とを備えた磁性流体駆動装置において、磁場印加部の磁場の印加は永久磁石を用い、流路並行方向の磁場分布は極大値と極小値をもち、磁場の反転成分の極小値の絶対値が極大値未満であることを特徴とする磁性流体駆動装置。
〔2〕 循環流路に封入される磁性流体が、磁性微粒子を分散させる母液に、母液よりも低沸点の溶媒を少なくとも1種混合した磁性流体であることを特徴とする前記〔1〕に記載の磁性流体駆動装置。
〔3〕 磁場印加部は、流路方向と垂直な磁化容易軸を持つ一対の永久磁石を流路方向に沿って互いに異なる磁極面を流路に向けるように並列配置(異極並列配置)した構成したことを特徴とする前記〔1〕又は前記〔2〕に記載の磁性流体駆動装置。
〔4〕 前記一対の永久磁石を異極並列配置して構成された磁気回路を、流路方向の垂直面において等角間隔で、流路中心に向いた各々の永久磁石の磁極が同極になるように複数対配置したことを特徴とする前記〔1〕から〔3〕のいずれかに記載の磁性流体駆動装置。
〔5〕 流路外周に互いに異なる磁極方向に内外単極着磁した一対の異方性ラジアルリング永久磁石を流路方向に沿って配置したことを特徴とする前記〔1〕から〔4〕のいずれかに記載の磁性流体駆動装置。
〔6〕 前記一対の永久磁石の流路とは反対側の磁極面をヨークで結合したことを特徴とする前記〔1〕から〔5〕のいずれかに記載の磁性流体駆動装置。
〔7〕 前記一対の永久磁石の1つの永久磁石の流路方向の幅(W)と前記一対の永久磁石の流路方向の間隔(dx)が、W>dxであることを特徴とする前記〔1〕から〔6〕のいずれかに記載の磁性流体駆動装置。
〔8〕 前記〔1〕から〔7〕のいずれか記載の磁性流体駆動装置を用いたことを特徴とする熱輸送装置。
〔9〕 前記〔1〕から〔7〕のいずれか記載の磁性流体駆動装置を用いたことを特徴とする動力発生装置。
In order to achieve the above object, the present invention comprises the following technical means.
[1] In a magnetic fluid driving device including a circulation flow path in which a magnetic fluid is sealed, and a heating section and a magnetic field application section in the circulation flow path, a magnetic field is applied to the magnetic field application section by using a permanent magnet. A magnetic fluid driving device characterized in that a magnetic field distribution in a parallel direction has a maximum value and a minimum value, and an absolute value of a minimum value of a reversal component of a magnetic field is less than a maximum value.
[2] The magnetic fluid sealed in the circulation channel is a magnetic fluid in which at least one solvent having a boiling point lower than that of the mother liquid is mixed with the mother liquid in which the magnetic fine particles are dispersed. Magnetic fluid drive device.
[3] The magnetic field application unit has a pair of permanent magnets having easy magnetization axes perpendicular to the flow path direction arranged in parallel so that different magnetic pole faces are directed to the flow path along the flow path direction (different pole parallel arrangement). The magnetic fluid driving apparatus according to [1] or [2], wherein the magnetic fluid driving apparatus is configured.
[4] In the magnetic circuit configured by arranging the pair of permanent magnets in parallel with different poles, the magnetic poles of the permanent magnets facing the center of the flow path have the same polarity at equiangular intervals on the vertical plane in the flow path direction. The magnetic fluid driving device according to any one of [1] to [3], wherein a plurality of pairs are arranged in such a manner.
[5] The above-mentioned [1] to [4], wherein a pair of anisotropic radial ring permanent magnets magnetized inside and outside in a different magnetic pole direction are arranged along the flow path direction on the outer periphery of the flow path The magnetic fluid drive device according to any one of the above.
[6] The magnetic fluid driving device according to any one of [1] to [5], wherein a magnetic pole surface opposite to the flow path of the pair of permanent magnets is coupled by a yoke.
[7] The width (W) in the flow direction of one permanent magnet of the pair of permanent magnets and the interval (dx) in the flow direction of the pair of permanent magnets satisfy W> dx. The magnetic fluid driving device according to any one of [1] to [6].
[8] A heat transport device using the magnetic fluid driving device according to any one of [1] to [7].
[9] A power generation device using the magnetic fluid driving device according to any one of [1] to [7].

従来の装置は、磁場印加装置として電磁石を使用するため、外部電源や高磁場発生用磁石コイルが必要であるため、装置の小型化が困難である点が課題であった。本発明の装置は、磁場印加装置として永久磁石による磁気回路の採用により、外部電源なしで被冷却体の熱のみにより駆動可能となり、モバイル機器に搭載できるまでの小型化が可能となる。更に、本発明の装置は、駆動源として重力は必須でなく磁気体積力のみを利用するため、設置方向を問わないことから、モバイル機器への搭載に向いている。また、宇宙空間のような無重力環境でも駆動可能である。 Since the conventional apparatus uses an electromagnet as a magnetic field application apparatus, an external power source and a magnet coil for generating a high magnetic field are necessary, and it is difficult to reduce the size of the apparatus. By adopting a magnetic circuit using a permanent magnet as a magnetic field application device, the device of the present invention can be driven only by the heat of the object to be cooled without an external power supply, and can be miniaturized until it can be mounted on a mobile device. Furthermore, since the apparatus of the present invention does not require gravity as a driving source and uses only magnetic volume force, it is suitable for mounting on a mobile device because it does not matter the installation direction. It can also be driven in a zero gravity environment such as outer space.

従来の磁性流体駆動装置の基本原理を示す図である。It is a figure which shows the basic principle of the conventional magnetic fluid drive device. 本発明による磁性流体駆動装置の1例の原理を示す断面図である。It is sectional drawing which shows the principle of one example of the magnetic fluid drive device by this invention. 本発明による磁性流体駆動装置の1例の原理を示す断面図である。It is sectional drawing which shows the principle of one example of the magnetic fluid drive device by this invention. 本発明による磁性流体駆動装置において改良された原理を示す断面図である。It is sectional drawing which shows the principle improved in the magnetic fluid drive device by this invention. 本発明による磁性流体駆動装置において改良された原理を示す断面図である。It is sectional drawing which shows the principle improved in the magnetic fluid drive device by this invention. 本発明による熱輸送装置の1例の模式図である。It is a schematic diagram of one example of the heat transport apparatus by this invention. 本発明による熱輸送装置の1例の模式図である。It is a schematic diagram of one example of the heat transport apparatus by this invention. 本発明による磁性流体駆動装置の実施例を示す図である。It is a figure which shows the Example of the magnetic fluid drive device by this invention. 比較例としての電磁石コイルを示す図である。It is a figure which shows the electromagnet coil as a comparative example.

本発明は、磁性流体が封入された循環流路と磁場印加部とを備えた磁性流体駆動装置において、磁場印加部の磁場の印加は永久磁石を用い、流路平行方向の磁場分布は極大値と極小値をもち、磁場の反転成分の極小値の絶対値が極大値未満であることを特徴とする磁性流体駆動装置である。 The present invention relates to a magnetic fluid driving apparatus including a circulation flow path in which a magnetic fluid is sealed and a magnetic field application unit, and the magnetic field application of the magnetic field application unit uses a permanent magnet, and the magnetic field distribution in the parallel direction of the flow path is a maximum value. The magnetic fluid driving device is characterized in that the absolute value of the minimum value of the magnetic field inversion component is less than the maximum value.

本発明の磁性流体駆動装置は、電源装置を必要としない永久磁石による磁性流体駆動装置であるため、装置の小型化が可能である。磁性流体駆動には、電磁石のように流路方向に全領域に渡って反転しない略台形型の磁場分布が理想的であるが、永久磁石を用いてこの磁場分布を実現することは困難である。そこで、大きな磁気体積力が生み出され、できるだけ台形に近い磁場分布になる様に磁気回路構成を検討した結果、印加部の流路平行方向の磁場分布は、図2(b)、図3(b)のように磁場の反転成分の極小値の絶対値が極大値未満とすることが好ましいと判明した。また、より好ましくは、磁場の反転成分の極小値の絶対値が極大値の1/2以下である。 Since the magnetic fluid drive device of the present invention is a magnetic fluid drive device using permanent magnets that does not require a power supply device, the device can be miniaturized. For magnetic fluid drive, an ideal trapezoidal magnetic field distribution that does not invert over the entire region in the flow path direction like an electromagnet is ideal, but it is difficult to achieve this magnetic field distribution using a permanent magnet. . Therefore, as a result of examining the magnetic circuit configuration so that a large magnetic volume force is generated and the magnetic field distribution is as close to a trapezoid as possible, the magnetic field distribution in the flow path parallel direction of the application unit is as shown in FIGS. 2 (b) and 3 (b). It was found that the absolute value of the minimum value of the magnetic field reversal component is preferably less than the maximum value as shown in FIG. More preferably, the absolute value of the minimum value of the reversal component of the magnetic field is 1/2 or less of the maximum value.

本発明の磁性流体駆動装置において、循環流路に封入される磁性流体は、磁性微粒子を分散させる母液に、母液よりも低沸点の溶媒を少なくとも1種混合したことを特徴とする。 In the magnetic fluid driving apparatus of the present invention, the magnetic fluid sealed in the circulation channel is characterized in that at least one solvent having a boiling point lower than that of the mother liquor is mixed with the mother liquor in which the magnetic fine particles are dispersed.

磁性流体の磁性微粒子としては、酸化鉄系微粒子、スピネルフェライト(MFe2O4: M=Fe、Mn、Ni、MnxZn1-x)や、γ-ヘマタイト(γ-Fe2O3)等を用いる。より好ましくは、マンガン亜鉛フェライト(MnxZn1-xFe2O4)であり、常温域で磁化が比較的大きく、磁化の温度依存性が高く現れ、組成を制御することで、キュリー温度の調整もできるという特徴から、感温性磁性流体の構成要素として適している。磁性流体の母液としては、水、炭化水素系オイル(ケロシン、アルキルナフタレン等)、フッ素系オイル(パープルオロポリエーテル等)を用いる。 Magnetic fine particles of magnetic fluid include iron oxide fine particles, spinel ferrite (MFe 2 O 4 : M = Fe, Mn, Ni, Mn x Zn 1-x ), γ-hematite (γ-Fe 2 O 3 ), etc. Is used. More preferably, it is manganese zinc ferrite (Mn x Zn 1-x Fe 2 O 4 ), the magnetization is relatively large in the normal temperature range, the temperature dependence of the magnetization appears high, and the Curie temperature is controlled by controlling the composition. Because it can be adjusted, it is suitable as a component of a temperature-sensitive magnetic fluid. As the mother fluid of the magnetic fluid, water, hydrocarbon oil (such as kerosene or alkylnaphthalene), or fluorine oil (such as purple olopolyether) is used.

低沸点溶媒は、磁性流体の母液よりも低沸点である溶媒が使用される。低沸点溶媒の種類については、特に限定されるものでなく、母液との相性等を考慮して適宜選択され、その混合比については、熱磁気的諸性質を考慮して適宜決定される。 As the low boiling point solvent, a solvent having a lower boiling point than that of the mother fluid of the magnetic fluid is used. The kind of the low boiling point solvent is not particularly limited, and is appropriately selected in consideration of compatibility with the mother liquor, and the mixing ratio thereof is appropriately determined in consideration of various thermomagnetic properties.

循環流路中の加熱部を加熱することにより、磁性流体中の低沸点溶媒の沸騰により気泡が発生し、その気泡発生部の磁気体積力の低減効果による正方向への磁気体積力が増加し、流体駆動力が増す。また、気泡発生による非圧縮性である液体の排除効果によっても流体駆動力が増し、沸騰の起こらない状態のいわゆる単相流の場合と比較して、効率良く磁性流体を駆動させることが可能になる。加熱部は、ヒーターなどの発熱体によって加熱させても良いし、廃熱などを利用して加熱させても良い。 By heating the heating part in the circulation channel, bubbles are generated by the boiling of the low boiling point solvent in the magnetic fluid, and the magnetic volume force in the positive direction increases due to the effect of reducing the magnetic volume force of the bubble generation part. The fluid driving force increases. In addition, the fluid driving force increases due to the effect of eliminating incompressible liquid due to the generation of bubbles, enabling the magnetic fluid to be driven more efficiently than in the case of so-called single-phase flow where boiling does not occur. Become. The heating unit may be heated by a heating element such as a heater, or may be heated using waste heat or the like.

循環流路の加熱部が加熱され、磁性流体が駆動していくうちに、磁性流体中の気泡が凝集されるとともに、凝集潜熱が外部に取り出されていることが好ましい。このようにすると、温度差による熱エネルギーいわゆる顕熱だけでなく、潜熱を利用することができ、高性能・高効率な熱輸送サイクルを構成することが可能となる。 While the heating part of the circulation flow path is heated and the magnetic fluid is driven, it is preferable that bubbles in the magnetic fluid are aggregated and the latent heat of aggregation is taken out to the outside. If it does in this way, not only thermal energy by temperature difference, so-called sensible heat, but also latent heat can be used, and a high-performance and highly efficient heat transport cycle can be configured.

流路断面内径直径は、好ましくは5mm以下で、流路のレイノルズ数は、好ましくは1000以下である。流路断面内径直径が5mm以下であれば、装置の小型化を可能にし、レイノルズ数1000以下での層流であれば、流路内の流れの乱れが少なく高効率に駆動させることが可能になり、流路内の淀みも少なく、熱により生成した気泡も滞留しにくくなる。また、加熱部に加える熱量も少なくて済み、例えば少量の廃熱などでも高効率での流体駆動が可能になる。 The channel cross-sectional inner diameter is preferably 5 mm or less, and the Reynolds number of the channel is preferably 1000 or less. If the flow path cross-sectional inner diameter is 5 mm or less, the device can be miniaturized, and if it is a laminar flow with a Reynolds number of 1000 or less, the flow in the flow path is less disturbed and can be driven with high efficiency. Thus, there is little stagnation in the flow path, and bubbles generated by heat are less likely to stay. In addition, the amount of heat applied to the heating unit is small, and for example, fluid driving with high efficiency is possible even with a small amount of waste heat.

レイノルズ数は、Re=ρvL/μで表さる。ただし、v:流速、L:流路断面直径、ρ:磁性流体密度、μ:磁性流体粘度である。例えば、流速30mm/s、流路直径1.58mm、磁性流体密度1130kg/m3、粘度0.00125kg/m・sの時にはRe=43である。レイノルズ数は好ましくは1000以下であるが、より好ましくは500以下である。 The Reynolds number is represented by Re = ρvL / μ. Where v: flow velocity, L: flow path cross-sectional diameter, ρ: magnetic fluid density, and μ: magnetic fluid viscosity. For example, Re = 43 when the flow rate is 30 mm / s, the channel diameter is 1.58 mm, the magnetic fluid density is 1130 kg / m 3 , and the viscosity is 0.00125 kg / m · s. The Reynolds number is preferably 1000 or less, more preferably 500 or less.

本発明の磁場分布を持つ磁性流体駆動装置は、磁性流体の循環流路方向と垂直な磁化容易軸を持つ2個の永久磁石を流路に向かった磁極面が互いに異なる磁極面になるように一対として流路に向けて配設して、すなわち永久磁石を異極並列配置して、磁場印加部としたことを特徴とする。 The magnetic fluid drive device having a magnetic field distribution according to the present invention is such that two permanent magnets having an easy magnetization axis perpendicular to the direction of the circulation flow path of the magnetic fluid are such that the magnetic pole faces facing the flow paths are different from each other. The magnetic field application unit is characterized by being arranged as a pair toward the flow path, that is, by arranging permanent magnets in parallel with different polarities.

永久磁石としては、ネオジム磁石、サマリウムコバルト磁石、フェライト磁石等が利用可能であるが、最も磁力が大きく高磁場を発生することができるネオジム磁石が好ましい。
また、永久磁石の形状は、どのようなものであっても良いが、通常は、角柱、円柱、楕円柱のものが用いられる。柱状物の高さも断面の長さとの関係で、高さが長いものであっても、短いものであっても良い。その中でも、断面長方形の高さが長方形の長辺よりも長い柱状物を用いるのが好ましい。
As the permanent magnet, a neodymium magnet, a samarium cobalt magnet, a ferrite magnet, or the like can be used, but a neodymium magnet having the largest magnetic force and capable of generating a high magnetic field is preferable.
The shape of the permanent magnet may be any shape, but usually a prism, cylinder, or elliptic cylinder is used. The height of the columnar object may be long or short depending on the length of the cross section. Among them, it is preferable to use a columnar object having a rectangular cross section whose length is longer than the long side of the rectangle.

前記の磁性流体駆動装置は、磁場印加部を図2(a)及び図3(a)のように、流路方向と垂直な磁化容易軸を持つ一対の永久磁石を流路方向に沿って互いに異なる磁極面を流路に向けた構成、すなわち異極並列配置構成である。このような磁場印加部の構成にすることにより、流路平行方向で、図2(b)及び図3(b)のような、磁場の反転成分の極小値の絶対値が極大値未満である磁場分布を生じさせることが可能となる。 In the magnetic fluid driving device, as shown in FIGS. 2 (a) and 3 (a), the magnetic field application unit includes a pair of permanent magnets having an easy magnetization axis perpendicular to the channel direction along the channel direction. This is a configuration in which different magnetic pole faces are directed to the flow path, that is, a different polarity parallel arrangement configuration. By adopting such a configuration of the magnetic field application unit, the absolute value of the minimum value of the magnetic field inversion component is less than the maximum value, as shown in FIGS. 2 (b) and 3 (b), in the flow path parallel direction. It is possible to generate a magnetic field distribution.

本発明においては永久磁石の配置間隔によって、図2(b)の磁場分布のように磁場強度の極大点が1個になる場合と図3(b)のように磁場強度の極大点が2点となる場合があるが、どちらの場合であっても従来の永久磁石を用いた装置よりも効率よく磁性流体を循環することができる。しかし、図2(b)と図3(b)の磁場分布では、図2(b)の磁場分布で磁性流体を循環するほうがより効果が大きい。
以下、より好ましい図2(b)の磁場分布の本発明について詳細に説明し、併せて図3(b)の磁場分布の本発明についても説明する。
In the present invention, depending on the arrangement interval of the permanent magnets, the magnetic field intensity maximum point becomes one point as in the magnetic field distribution of FIG. 2 (b) and the magnetic field intensity maximum point as shown in FIG. 3 (b). In either case, the magnetic fluid can be circulated more efficiently than the conventional apparatus using permanent magnets. However, in the magnetic field distribution of FIGS. 2 (b) and 3 (b), it is more effective to circulate the magnetic fluid in the magnetic field distribution of FIG. 2 (b).
Hereinafter, the present invention with a more preferable magnetic field distribution in FIG. 2 (b) will be described in detail, and the present invention with the magnetic field distribution in FIG. 3 (b) will also be described.

加熱前の段階では、図2(c)の(i)の曲線のように、磁気体積力Fの符号は、磁場Hの符号および磁場勾配∇Hの符号が変わるたびに反転するので、F1〜F6がつりあって磁性流体は動かない。加熱部において磁性流体が低沸点溶媒の沸点TL未満の温度まで加熱されると、温度Tの増大に伴い、加熱部の磁化Mは非加熱部の磁化M0に対して減少するため、図2(c)の(ii)の曲線のように、加熱部の磁気体積力F4、F5、F6は、加熱部とは他端側の非加熱部の磁気体積力F1、F2、F3に比べて小さくなる。加熱部の磁気体積力のうちF2は負の向きであるが、F1と同程度の大きさであることから相殺され、実質的には正方向のF3の磁気体積力が支配的となる。これにより磁性流体は正方向に自発的に駆動を始める。さらに図2(c)の(iii)の曲線のように、磁性流体が低沸点溶媒の沸点TL以上、磁性流体の母液の沸点TH未満まで加熱されると温度Tが増大し、低沸点溶媒の沸騰により気泡が発生すると空隙率αが増大するため、加熱部の磁化Mはさらに減少し、トータルの正方向の駆動力も増大する。 In the stage before heating, the sign of the magnetic body force F is reversed whenever the sign of the magnetic field H and the sign of the magnetic field gradient ∇H are changed, as in the curve of (i) in FIG. F6 is balanced and the magnetic fluid does not move. When the magnetic fluid is heated to a temperature lower than the boiling point TL of the low-boiling solvent in the heating part, the magnetization M of the heating part decreases with respect to the magnetization M0 of the non-heating part as the temperature T increases. As in the curve of (ii) of c), the magnetic volume forces F4, F5, F6 of the heating part are smaller than the magnetic volume forces F1, F2, F3 of the non-heating part on the other end side from the heating part. . Of the magnetic bulk force of the heating part, F2 has a negative direction, but is canceled because it has the same magnitude as F1, and the magnetic bulk force of F3 in the positive direction is substantially dominant. As a result, the magnetic fluid starts to drive spontaneously in the positive direction. Furthermore, as shown in the curve of (iii) of FIG. 2 (c), when the ferrofluid is heated to a boiling point TL or higher of the low boiling solvent and lower than the boiling point TH of the mother fluid of the magnetic fluid, the temperature T increases, When bubbles are generated by boiling, the porosity α increases, so the magnetization M of the heating part further decreases and the total positive driving force also increases.

上記の駆動を高効率、つまり実用を視野に入れた流速1500μl/min以上を実現するために、後述の実施例の図8(a)の磁場強度分布のように、流路方向の磁場分布の極大点が1個になり、かつ、その極大値が磁場の極性反転成分の極小値の絶対値の2倍以上となるように磁気回路設計を行うことが好ましい。 In order to achieve the above drive with high efficiency, that is, with a practical flow rate of 1500 μl / min or more, as shown in FIG. It is preferable to design the magnetic circuit so that there is one maximum point and the maximum value is at least twice the absolute value of the minimum value of the polarity reversal component of the magnetic field.

極大点1個の磁場分布が2個の磁場分布よりも好ましい理由を記述する。まず、加熱部において磁性流体が低沸点溶媒の沸点TL未満の温度まで加熱されるとき、図3(c)に示すような極大点2個の場合は、図2(c)に示すような極大点1個の場合に比べて、非加熱部における磁気体積力は正方向成分が減少し、負方向成分が増加するため、トータルの正方向の駆動力が減少する。次に、磁性流体が低沸点溶媒の沸点TL以上、磁性流体の母液の沸点TH未満まで加熱されるとき、磁気体積力が互いに離れる方向を向いた境界において、生成した気泡が磁気排斥力により流路内にトラップされて駆動力を阻害する現象がみられる。極大点1個の場合は、図2(c)のように、磁気体積力が互いに離れる方向を向いている境界がF4とF5の間に1か所存在する。この付近に生じた気泡は、非磁性のため磁気体積力とは反対方向の磁気排斥力が働くために、F4とF5の境界にトラップされ、流速を抑制する。ただし、極大点1個を持つ磁場分布の場合、加熱によりF4とF5が小さくなっているため、その影響は小さく、流速の抑制効果は小さい。しかし、極大点2個を持つ磁場分布の場合、図3(c)のように、F4とF5の境界とF6とF7の境界の2か所に気泡トラップ領域が生じ、F4とF5は加熱による磁気体積力の低下がないため、極大点2個の磁場分布の場合よりも気泡トラップ力が増大し、流速も抑制される。 The reason why a magnetic field distribution with one maximum point is preferable to two magnetic field distributions will be described. First, when the magnetic fluid is heated to a temperature lower than the boiling point TL of the low boiling point solvent in the heating section, in the case of two maximum points as shown in FIG. 3 (c), the maximum as shown in FIG. 2 (c). Compared with the case of one point, the magnetic volume force in the non-heated part has a decrease in the positive direction component and an increase in the negative direction component, so that the total driving force in the positive direction decreases. Next, when the magnetic fluid is heated to the boiling point TL of the low-boiling solvent or less than the boiling point TH of the mother fluid of the magnetic fluid, the generated bubbles flow due to the magnetic exclusion force at the boundary where the magnetic body forces are directed away from each other. There is a phenomenon in which the driving force is obstructed by being trapped in the road. In the case of one maximum point, as shown in FIG. 2 (c), there is one boundary between F4 and F5 where the magnetic body forces are directed away from each other. Bubbles generated in the vicinity are trapped at the boundary between F4 and F5 because the magnetic displacement force in the direction opposite to the magnetic volume force works because of non-magnetism, and suppresses the flow velocity. However, in the case of a magnetic field distribution having one local maximum point, F4 and F5 are reduced by heating, so the influence is small and the effect of suppressing the flow velocity is small. However, in the case of a magnetic field distribution with two local maxima, as shown in Fig. 3 (c), bubble trapping regions are generated at two locations, the boundary between F4 and F5 and the boundary between F6 and F7, and F4 and F5 are heated. Since there is no decrease in magnetic volume force, the bubble trapping force is increased and the flow velocity is suppressed compared to the case of a magnetic field distribution with two local maximum points.

本発明の磁性流体駆動装置によると、一対の永久磁石を異極並列配置して構成された磁気回路を、流路方向の垂直面において等角間隔で、流路中心に向いた各々の永久磁石の磁極が同極になるように複数対配置したことを特徴とする。 According to the magnetic fluid driving device of the present invention, a magnetic circuit configured by arranging a pair of permanent magnets in parallel with different poles is arranged with each permanent magnet facing the center of the flow path at equiangular intervals on the vertical plane in the flow path direction. A plurality of pairs of magnetic poles are arranged so as to have the same magnetic pole.

前記〔4〕の発明の磁性流体駆動装置は、図4のように磁場印加部において、磁気回路を流路に対して同極対向配置することにより、磁性流体駆動効率を更に向上させることが可能である。磁気回路単独配置の場合は、流路に垂直で、永久磁石の磁極から流路中心に向かう方向成分に大きな磁場勾配を生じている。この磁場勾配は流路垂直方向の磁気体積力を生じるため、磁性流体駆動の妨げとなる。これに対して、2個の磁気回路を同極対向配置することにより、流路垂直方向の磁場強度は相殺されて零磁場となり、流路垂直方向の磁気体積力は消失して、磁性流体駆動の妨げがなくなる。また、2個の磁気回路を同極対向配置することにより、単独配置の場合よりも流路平行方向の磁場強度が2倍となり、磁性流体駆動効率が向上する。本発明においては、2個以上の磁気回路を、流路方向の垂直面において等角間隔で、流路中心に向いた各々の永久磁石の磁極が同極になるように複数対配置(奇数・偶数を問わない)させるとさらに良く、この場合には、更なる磁性流体駆動効率を向上させることが可能となる。 In the magnetic fluid driving device of the invention of [4], the magnetic fluid driving efficiency can be further improved by arranging the magnetic circuit in the magnetic field application section opposite to the flow path as shown in FIG. It is. In the case of a single magnetic circuit arrangement, a large magnetic field gradient is generated in a direction component that is perpendicular to the flow path and extends from the magnetic pole of the permanent magnet toward the flow path center. This magnetic field gradient generates a magnetic volume force in the direction perpendicular to the flow path, which hinders magnetic fluid drive. On the other hand, by arranging two magnetic circuits opposite to each other with the same polarity, the magnetic field strength in the vertical direction of the flow path cancels out to become a zero magnetic field, and the magnetic volume force in the vertical direction of the flow path disappears, and the magnetic fluid drive No hindrance. In addition, by arranging two magnetic circuits to face each other with the same polarity, the magnetic field strength in the flow path parallel direction is doubled compared to the case of single arrangement, and the magnetic fluid driving efficiency is improved. In the present invention, two or more magnetic circuits are arranged in pairs such that the magnetic poles of the permanent magnets facing the center of the flow path have the same polarity at equiangular intervals on the vertical plane in the flow path direction (odd number, (Even if it is an even number), it is even better. In this case, the magnetic fluid driving efficiency can be further improved.

また、本発明においては流路外周に互いに異なる磁極方向に内外単極着磁した一対の異方性ラジアルリング永久磁石を流路方向に沿って配置することも可能である。 In the present invention, it is also possible to arrange a pair of anisotropic radial ring permanent magnets that are magnetized inside and outside in different magnetic pole directions along the flow path direction along the flow path direction.

異方性ラジアルリング永久磁石を流路方向に沿って配置した本発明の磁性流体駆動装置は、図5のように、磁場印加部は、流路外周に互いに異なる磁極方向に内外単極着磁した異方性ラジアルリング永久磁石を流路方向に沿って2個配置させる。好ましくは、ラジアルリング磁石の内径に対して同等かそれ以上の肉厚の磁石を選択する。このことにより、強い磁場強度を保持し高効率の磁性流体駆動と磁気回路の小型化を可能にする。 As shown in FIG. 5, the magnetic fluid drive device according to the present invention in which the anisotropic radial ring permanent magnets are arranged along the flow path direction is such that the magnetic field application unit has inner and outer unipolar magnetizations in different magnetic pole directions on the outer periphery of the flow path. Two anisotropic radial ring permanent magnets are arranged along the flow path direction. Preferably, a magnet having a thickness equal to or greater than the inner diameter of the radial ring magnet is selected. As a result, it is possible to maintain a strong magnetic field strength and to efficiently drive a magnetic fluid and to reduce the size of the magnetic circuit.

更に、本発明の磁性流体駆動装置は、一対の永久磁石の流路とは反対側の磁極面をヨークで結合することが好ましい。
永久磁石をヨークで結合した磁性流体駆動装置は、一対の永久磁石の流路とは反対側の磁極面をヨークで結合したことにより、磁場の閉ループを形成し、流路に対してより強い磁場強度を与えることになり、高効率の磁性流体駆動を実現できる。ヨーク材としては、通常用いられる材料である機械構造用炭素鋼(S10C、S15C等)、一般構造用圧延鋼材(SS400等)等が利用可能である。
Furthermore, in the magnetic fluid driving device of the present invention, it is preferable that the magnetic pole surfaces on the opposite side to the flow paths of the pair of permanent magnets are coupled by a yoke.
A magnetic fluid drive device in which a permanent magnet is connected by a yoke forms a closed loop of the magnetic field by connecting the magnetic pole face opposite to the flow path of the pair of permanent magnets by the yoke, and a stronger magnetic field with respect to the flow path. Strength will be given and a highly efficient magnetic fluid drive will be realizable. As the yoke material, carbon steel for mechanical structure (S10C, S15C, etc.), rolled steel for general structure (SS400, etc.), etc., which are usually used, can be used.

好ましい磁性流体駆動装置の形態として、一対の永久磁石の1つの永久磁石の流路方向の幅(W)と前記一対の永久磁石の流路方向の間隔(dx)が、W>dxであることを特徴とする。 As a preferred form of the magnetic fluid driving device, the width (W) in the flow direction of one permanent magnet of the pair of permanent magnets and the distance (dx) in the flow direction of the pair of permanent magnets are W> dx. It is characterized by.

前記のWとdxの関係がW>dxである磁性流体駆動装置によれば、流路方向の磁場分布の極大点が1個になり、かつ、その極大値が磁場の極性反転成分の極小値の絶対値の2倍以上になるように磁気回路設計を行うことができる。また、永久磁石の磁化容易軸方向の厚みLは、駆動に十分な磁場強度の極大値を得るために、磁石端から流路中心までの距離をdzとするとL>2dz、永久磁石の奥行方向の長さDは、流路径方向に一様な磁場を発生するために、流路内径をφとするとD>φ、そしてヨーク厚みは素材が磁気飽和しない程度の厚みを確保することが好ましい(上記のW、dx、L及びdzについては、図3(a)の図中に表示を参照)。 According to the magnetic fluid driving device in which the relationship between W and dx is W> dx, there is one maximum point of the magnetic field distribution in the flow path direction, and the maximum value is the minimum value of the polarity reversal component of the magnetic field. Magnetic circuit design can be performed so that the absolute value of the magnetic field becomes twice or more. In addition, the thickness L in the easy axis direction of the permanent magnet is L> 2dz, where Dz is the distance from the magnet end to the center of the flow path, in order to obtain the maximum value of the magnetic field strength sufficient for driving, the depth direction of the permanent magnet In order to generate a uniform magnetic field in the radial direction of the flow path, the length D of D> φ when the flow path inner diameter is φ, and the yoke thickness is preferably secured to a thickness that does not cause magnetic saturation of the material ( (For the above W, dx, L, and dz, see the display in FIG. 3A).

本発明の磁性流体駆動装置は、熱輸送装置として用いることができる。 The magnetic fluid driving device of the present invention can be used as a heat transport device.

本発明の磁性流体駆動装置を用いた熱輸送装置によれば、磁性流体の移動・循環によって熱を輸送するヒートパイプ又はヒートポンプであって、単独で熱輸送サイクルを構成してあっても良いし、流路付き受熱体として熱輸送サイクルの一部を構成してあっても良い。この場合、磁性流体は、ヒートパイプの加熱部-冷却部-加熱部の循環を繰り返し、熱エネルギーを輸送する。 According to the heat transport device using the magnetic fluid driving device of the present invention, it is a heat pipe or a heat pump that transports heat by moving and circulating the magnetic fluid, and may constitute a heat transport cycle independently. A part of the heat transport cycle may be configured as a heat receiving body with a flow path. In this case, the magnetic fluid repeats the circulation of the heating part-cooling part-heating part of the heat pipe and transports heat energy.

熱輸送装置の例1として、図6(a)に示す通り磁性流体循環流路を複数個並列化させて、磁場印加部と発熱部を設けたヒートパイプにおいて、隣接する流路の振動流が実質的に同位相になる様にいわゆるドリームパイプを構成する。流路直径を細径化し比表面積が拡大した流路を並列化することにより、電子・電気デバイス装置筐体内に収めることが可能になり、高効率な熱輸送が可能になる。 As an example 1 of the heat transport device, in a heat pipe in which a plurality of magnetic fluid circulation channels are arranged in parallel as shown in FIG. A so-called dream pipe is configured so as to have substantially the same phase. By parallelizing the flow path whose diameter is reduced and the specific surface area is increased, it can be accommodated in the electronic / electric device device housing, and highly efficient heat transport is possible.

熱輸送装置の例2として、図6(b)に示す通り、磁性流体循環流路を複数個並列化させて、磁場印加部と発熱部を設けたヒートパイプにおいて、隣接する流路の振動流が実質的に逆位相になる様にいわゆるコスモスパイプを構成する。流路直径を細径化し比表面積が拡大した流路を並列化することにより、電子・電気デバイス装置筐体内に収めることが可能になり、さらに高効率な熱輸送が可能になる。 As an example 2 of the heat transport device, as shown in FIG. 6B, in a heat pipe in which a plurality of magnetic fluid circulation channels are arranged in parallel and a magnetic field applying unit and a heat generating unit are provided, the vibration flow of adjacent channels is The so-called cosmos pipe is constructed so that the phase is substantially in reverse phase. By parallelizing the flow paths whose diameters are reduced and the specific surface area is increased, it is possible to store the flow paths in an electronic / electric device device housing, and to achieve more efficient heat transport.

本発明の磁性流体駆動装置は、動力発生装置として用いることができる。 The magnetic fluid driving device of the present invention can be used as a power generation device.

本発明の磁性流体駆動装置を用いた動力発生装置によれば、磁性流体の移動による運動エネルギーを動力源として利用する例として、移動する磁性流体によって駆動されるポンプが循環流路途中に設ける構成とする。この様な構成とすることで、電動モーターを使用せずにポンプを駆動することができる。例えば、廃熱を利用して、電源フリーでポンプを駆動することが可能となる。さらに、流路途中に回転体を設けて、これを駆動軸として使用し回転体に所定の発電機を結合することにより、装置を回転させることにより発電が可能となる。 According to the power generation device using the magnetic fluid driving device of the present invention, as an example of using kinetic energy generated by the movement of the magnetic fluid as a power source, a pump driven by the moving magnetic fluid is provided in the middle of the circulation flow path. And With such a configuration, the pump can be driven without using an electric motor. For example, it becomes possible to drive the pump free of power using waste heat. Furthermore, a rotating body is provided in the middle of the flow path, and this is used as a drive shaft, and a predetermined generator is coupled to the rotating body, whereby power can be generated by rotating the apparatus.

この発明の実施の形態を、以下図面を参照して説明する。
(実施例)
Embodiments of the present invention will be described below with reference to the drawings.
(Example)

図7(a)に示す構成の小型磁性流体駆動装置を試作し、供試流体である非共沸混合磁性流体の駆動試験を行った。磁場印加部としては、図7(b)に示す、流路中心方向に磁化容易軸を持ち、着磁方向が互いに反対である10×10×10mmのネオジム磁石2個と10×10×22mmのヨーク材SS400から成る磁気回路を2個同極対向配置させたものを使用した。図7(b)に示す同極配置させた2個の磁気回路の距離を調節することにより、図8(a)に示すように流路方向の磁場極大値Hx,max=415、328、239kA/mを印加した。対向磁石間距離=7mm(流路中心と磁極面との距離dz=3.5mm)の時、流路方向の磁場極大値Hx,max=415kA/mを持ち、この値は極性反転磁場の極小値の2.4倍であった。流路として、内径1.54mmのテフロン(登録商標)チューブ、加熱管として、内径1.60mm、長さ60.0mmのニクロム管を使用し、全流路長さは、1170mmである。図7(c)に示すように、加熱部は、直流電源に接続された上記ニクロム管から構成され、上記磁気回路との相対位置を任意に変更することが可能である。直流電源よりニクロム管へ入力される電流量を調節することにより、その熱流束qを7.2および31.7kW/m2に調節した。供試流体は、ケロシンベース感温性磁性流体とケロシンより低沸点のヘキサンを混合した非共沸混合磁性流体である。ケロシンベース感温性磁性流体は、分散粒子としてマンガン亜鉛フェライト(MnxZn1-xFe2O4)、母液としてケロシンから構成され、フェライト濃度は50wt%である。非共沸混合磁性流体の配合比率は、ケロシンベース感温性磁性流体が80wt%、ヘキサンが20wt%である。上記の小型磁性流体駆動装置を用いて、磁場印加強度、熱流束、加熱管と磁気回路との相対位置を変化させた場合の非共沸混合磁性流体の駆動試験を行った。以下にその試験結果について記述する。 A small-sized magnetic fluid driving device having the configuration shown in FIG. 7 (a) was prototyped, and a driving test of a non-azeotropic mixed magnetic fluid as a test fluid was performed. As the magnetic field application unit, two 10 × 10 × 10 mm neodymium magnets having an easy magnetization axis in the flow path center direction and opposite magnetization directions as shown in FIG. 7B and a 10 × 10 × 22 mm Two magnetic circuits made of yoke material SS400 with the same polarity facing each other were used. By adjusting the distance between two magnetic circuits arranged in the same polarity as shown in FIG. 7B, the magnetic field maximum value H x, max = 415, 328 in the flow path direction as shown in FIG. 239 kA / m was applied. When the distance between the opposing magnets = 7 mm (distance between the center of the flow path and the magnetic pole surface dz = 3.5 mm), there is a magnetic field maximum value H x, max = 415 kA / m in the flow direction, which is the minimum of the polarity reversal magnetic field It was 2.4 times the value. A Teflon (registered trademark) tube having an inner diameter of 1.54 mm is used as the flow path, a nichrome tube having an inner diameter of 1.60 mm and a length of 60.0 mm is used as the heating pipe, and the total flow path length is 1170 mm. As shown in FIG. 7 (c), the heating unit is composed of the nichrome tube connected to a DC power source, and the relative position with respect to the magnetic circuit can be arbitrarily changed. The heat flux q was adjusted to 7.2 and 31.7 kW / m 2 by adjusting the amount of current input to the Nichrome tube from the DC power supply. The test fluid is a non-azeotropic mixed magnetic fluid in which a kerosene-based thermosensitive magnetic fluid and hexane having a lower boiling point than kerosene are mixed. The kerosene-based thermosensitive magnetic fluid is composed of manganese zinc ferrite (Mn x Zn 1-x Fe 2 O 4 ) as dispersed particles and kerosene as a mother liquor, and the ferrite concentration is 50 wt%. The blending ratio of the non-azeotropic mixed magnetic fluid is 80 wt% for the kerosene-based thermosensitive magnetic fluid and 20 wt% for hexane. Using the above-described small magnetic fluid driving device, a driving test of a non-azeotropic mixed magnetic fluid was performed when the magnetic field application intensity, the heat flux, and the relative position between the heating tube and the magnetic circuit were changed. The test results are described below.

図8(b)に、本小型磁性流体駆動装置の検出流量の時系列試験結果を示す。実験条件は、熱流束q=7.2kW/m2(単相流)、磁場極大値Hx,max=415kA/m、加熱管と磁気回路の相対位置c=11mmである。加熱開始時間(t=0s)から流量が急速に増加し、定常状態になることがわかる。これにより、本小型磁性流体駆動装置が、小径流路において、永久磁石による磁気回路と熱入力のみで供試流体を駆動させ、熱を効率よく輸送している。
図8(c)に、加熱管と磁気回路の相対位置を任意に変化させた場合の駆動試験結果を示す。試験条件は、熱流束q=7.2kW/m2、磁場極大値Hx,max=415kA/mである。加熱管と磁気回路の相対位置c=0mmを境界として、その相対位置に応じて、流速の大きさと向きを能動的に制御可能である。
FIG. 8 (b) shows the time-series test results of the detected flow rate of the small magnetic fluid driving device. The experimental conditions are heat flux q = 7.2 kW / m 2 (single phase flow), magnetic field maximum value H x, max = 415 kA / m, and relative position c = 11 mm between the heating tube and the magnetic circuit. From the heating start time (t = 0s), it can be seen that the flow rate increases rapidly and reaches a steady state. As a result, the small magnetic fluid driving device drives the sample fluid only by the magnetic circuit and the heat input by the permanent magnet in the small diameter flow path, and efficiently transports the heat.
FIG. 8 (c) shows a drive test result when the relative position of the heating tube and the magnetic circuit is arbitrarily changed. The test conditions are heat flux q = 7.2 kW / m 2 , magnetic field maximum value H x, max = 415 kA / m. With the relative position c = 0 mm between the heating tube and the magnetic circuit as a boundary, the magnitude and direction of the flow velocity can be actively controlled according to the relative position.

図8(d)に、熱流束を任意に変化させた場合の駆動試験結果を示す。試験条件は、熱流束q=7.2kW/m2(単相流)および31.7kW/m2(沸騰二相流)、磁場極大値Hx,max=415kA/mである。試験結果より、熱流束の増加に伴い検出流量が増加していることがわかる。これにより、本小型磁性流体駆動装置が入力される熱流束に応じて自己的に流量を制御している。また、試験条件q=31.7kW/m2において、加熱部において低沸点溶液が沸騰し、気液二相流となり、最大流速1500μl/minを得た。これより、供給流体の高効率な駆動と潜熱効果が付加された高効率な熱輸送が実現できる。 FIG. 8 (d) shows the drive test results when the heat flux is arbitrarily changed. The test conditions are heat flux q = 7.2 kW / m 2 (single phase flow) and 31.7 kW / m 2 (boiling two phase flow), and magnetic field maximum value H x, max = 415 kA / m. From the test results, it can be seen that the detected flow rate increases as the heat flux increases. Thus, the flow rate is controlled by the small magnetic fluid driving device according to the heat flux input. In addition, under the test condition q = 31.7 kW / m 2 , the low boiling point solution boiled in the heating part to become a gas-liquid two-phase flow, and a maximum flow rate of 1500 μl / min was obtained. As a result, high-efficiency heat transport with high-efficiency driving of the supply fluid and latent heat effect can be realized.

図8(e)、(f)に、磁場極大値を任意に変化させた場合の駆動試験結果を示す。試験条件は、熱流束q=7.2(単相流、図8(e))および31.7kW/m2(沸騰二相流、図8(f))、磁場極大値Hx,max=239、328および415kA/mである。試験結果より、単相流(q=7.2kW/m2)および沸騰二相流(q=31.7kW/m2)ともに、磁場極大値の増加に伴い、検出流量が増加していることがわかる。これより、外部磁場により流速を能動的に制御可能であることがいえる。また、熱流束が大きく、かつ沸騰気液二相流において磁場極大値の増加に伴う検出流量の増加率が大きいことがわかる。これより、高熱流束を伴う発熱体(LSIやCPUなど)への冷却への適応が可能である。 FIGS. 8E and 8F show the drive test results when the magnetic field maximum value is arbitrarily changed. The test conditions, the heat flux q = 7.2 (single-phase flow, FIG. 8 (e)) and 31.7kW / m 2 (boiling two-phase flow, FIG. 8 (f)), the magnetic field maximum value H x, max = 239,328 And 415 kA / m. From the test results, it can be seen that the detected flow rate increases as the maximum value of the magnetic field increases for both single-phase flow (q = 7.2kW / m 2 ) and boiling two-phase flow (q = 31.7kW / m 2 ). . From this, it can be said that the flow velocity can be actively controlled by the external magnetic field. In addition, it can be seen that the heat flux is large and the rate of increase in the detected flow rate with the increase in the magnetic field maximum value in the boiling gas-liquid two-phase flow is large. This makes it possible to adapt to cooling of heating elements (LSI, CPU, etc.) with high heat flux.

(比較例)
比較例として、上記実施例で永久磁石から成る磁場発生装置による磁場極大値Hx,max=415kA/mを実現するのに必要な電磁石コイルのサイズを概算する。図9に示す有限長多層巻ソレノイドコイルの中心磁場は、H=nIl/(b-a)ln[{(l2+b2)0.5+b}/{(l2+b2)0.5+a}]で表される。ここで、a:コイル内径[m]、b:コイル外径[m]、l:コイル長さ[m]、n:巻線密度[回/m2]、I:電流[A]である。コイル内径aは、上記実施例の磁場発生装置の磁気回路ギャップ7mmに固定する。マグネットワイヤーの導体直径をdとして、近似的に絶縁被覆厚みを無視して図9の巻線様式でコイルを形成すると、巻線密度はn=(b-a)/(2d2)[回/m]となる。また、一般的な許容電流密度5A/mm2を用いると電流はI=5×106×p(d/2)2[A]となる。このとき、上記実施例の磁気回路と同じサイズとなるように、コイル外径b=47mm、l=22mmとするとH=51kA/mである。H=415kA/mを実現するためには、例えば、b=270mm、l=200mmが必要である。更に、電磁石の場合、電流電源が必要なため、本発明のような小型化は不可能である。
(Comparative example)
As a comparative example, the size of the electromagnet coil necessary for realizing the magnetic field maximum value H x, max = 415 kA / m by the magnetic field generator composed of permanent magnets in the above embodiment is estimated. The central magnetic field of the finite-length multilayer wound solenoid coil shown in FIG. 9 is H = nIl / (ba) ln [{(l 2 + b 2 ) 0.5 + b} / {(l 2 + b 2 ) 0.5 + a}] It is represented by Here, a: coil inner diameter [m], b: coil outer diameter [m], l: coil length [m], n: winding density [times / m 2 ], I: current [A]. The coil inner diameter a is fixed to the magnetic circuit gap 7 mm of the magnetic field generator of the above embodiment. When a coil is formed in the winding mode of FIG. 9 with the conductor diameter of the magnet wire being d and approximately ignoring the insulation coating thickness, the winding density is n = (ba) / (2d 2 ) [times / m]. It becomes. Further, when a general allowable current density of 5 A / mm 2 is used, the current becomes I = 5 × 10 6 × p (d / 2) 2 [A]. At this time, H = 51 kA / m when the coil outer diameter b = 47 mm and l = 22 mm so as to be the same size as the magnetic circuit of the above embodiment. In order to realize H = 415 kA / m, for example, b = 270 mm and l = 200 mm are required. Furthermore, in the case of an electromagnet, since a current power source is required, it is impossible to reduce the size as in the present invention.

本発明の磁性流体駆動装置は、熱輸送装置、エネルギー変換装置、動力変換装置として用いることができる。 The magnetic fluid driving device of the present invention can be used as a heat transport device, an energy conversion device, and a power conversion device.

Claims (7)

磁性流体が封入された循環流路と、循環流路中に加熱部と磁場印加部とを備えた磁性流体駆動装置において、
磁場印加部の磁場の印加は永久磁石を用い、流路方向と垂直な磁化容易軸を持つ一対の永久磁石を流路方向に沿って互いに異なる磁極面を流路に向けるように並列配置(異極並列配置)し、前記一対の永久磁石の1つの永久磁石の流路方向の幅(W)と前記一対の永久磁石の流路方向の間隔(dx)が、W>dxであり、流路平行方向の磁場分布は極大値と極小値をもち、磁場の極性反転成分の極小値の絶対値が極大値未満であることを特徴とする磁性流体駆動装置。
In a magnetic fluid drive device comprising a circulation channel enclosing a magnetic fluid, and a heating unit and a magnetic field application unit in the circulation channel,
A magnetic field is applied by the magnetic field application unit using a permanent magnet, and a pair of permanent magnets having an easy axis perpendicular to the flow path direction are arranged in parallel so that different magnetic pole faces are directed to the flow path along the flow path direction. The width (W) in the flow direction of one permanent magnet of the pair of permanent magnets and the distance (dx) in the flow direction of the pair of permanent magnets are W> dx. A magnetic fluid driving device characterized in that a magnetic field distribution in a parallel direction has a maximum value and a minimum value, and an absolute value of a minimum value of a polarity reversal component of a magnetic field is less than a maximum value.
循環流路に封入される磁性流体が、磁性微粒子を分散させる母液に、母液よりも低沸点の溶媒を少なくとも1種混合した磁性流体であることを特徴とする請求項1に記載の磁性流体駆動装置。   2. The ferrofluid drive according to claim 1, wherein the ferrofluid sealed in the circulation channel is a ferrofluid in which at least one solvent having a boiling point lower than that of the mother liquor is mixed with a mother liquor in which magnetic fine particles are dispersed. apparatus. 前記一対の永久磁石を異極並列配置して構成された磁気回路を、流路方向の垂直面において等角間隔で、流路中心に向いた各々の永久磁石の磁極が同極になるように複数対配置したことを特徴とする請求項1又は請求項2に記載の磁性流体駆動装置。 A magnetic circuit configured by arranging the pair of permanent magnets in parallel with different poles is arranged so that the magnetic poles of the permanent magnets facing the center of the flow path have the same polarity at equiangular intervals on the vertical plane in the flow path direction. The magnetic fluid drive device according to claim 1 or 2, wherein a plurality of pairs are arranged. 流路外周に互いに異なる磁極方向に内外単極着磁した一対の異方性ラジアルリング永久磁石を流路方向に沿って配置したことを特徴とする請求項1からのいずれか記載の磁性流体駆動装置。 Magnetic according to any one of claims 1 to 3, characterized in that a pair of anisotropic radial ring permanent magnet inside and outside unipolar magnetized in different magnetic poles direction to the flow path, circumferentially disposed along the flow path direction Fluid drive device. 前記一対の永久磁石の流路とは反対側の磁極面をヨークで結合したことを特徴とする請求項1からのいずれかに記載の磁性流体駆動装置。 The pair of magnetic fluid driving device according to any one of claims 1 to 4, characterized in that attached to the pole face on the opposite side yoke and the flow path of the permanent magnet. 請求項1からのいずれか記載の磁性流体駆動装置を用いたことを特徴とする熱輸送装置。 Heat transport apparatus characterized by using a magnetic fluid drive device according to any one of claims 1 to 5. 請求項1からのいずれか記載の磁性流体駆動装置を用いたことを特徴とする動力発生装置。 Power generation apparatus characterized by using a magnetic fluid drive device according to any one of claims 1 to 5.
JP2012188786A 2012-08-29 2012-08-29 MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME Active JP6113439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188786A JP6113439B2 (en) 2012-08-29 2012-08-29 MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188786A JP6113439B2 (en) 2012-08-29 2012-08-29 MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2014050140A JP2014050140A (en) 2014-03-17
JP6113439B2 true JP6113439B2 (en) 2017-04-12

Family

ID=50609321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188786A Active JP6113439B2 (en) 2012-08-29 2012-08-29 MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP6113439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811296B1 (en) * 2015-09-30 2017-12-27 경북대학교 산학협력단 high efficient and continuous electric generation cycle device employing ferrofluid
JP6678544B2 (en) * 2016-09-06 2020-04-08 株式会社イチネンケミカルズ Temperature-sensitive magnetic fluid and magnetic-fluid drive using the temperature-sensitive magnetic fluid
JP6517768B2 (en) * 2016-10-07 2019-05-22 トヨタ自動車株式会社 Magnetic fluid driving device and magnetic fluid driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288875A (en) * 1992-04-13 1993-11-05 Hitachi Metals Ltd Magnetic field generating device for magnetohydrodynamic power generation
JP2002221225A (en) * 2001-01-26 2002-08-09 Hidetoshi Hiroyoshi Bearing
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device
JP2010110191A (en) * 2008-10-31 2010-05-13 Yokogawa Electric Corp Heat pump

Also Published As

Publication number Publication date
JP2014050140A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP6172945B2 (en) MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME
JP6474217B2 (en) Magnetic fluid power generator
EP1832828A1 (en) Magnetic convection heat circulation pump
JP6113439B2 (en) MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME
US5209646A (en) Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Khan et al. Magnetic composite hydrodynamic pump with laser-induced graphene electrodes
US20160330867A1 (en) Electromagnetic heat transfer circuit
Sansom et al. Synthesis and characterization of Mn0. 5Zn0. 5Fe2O4 and Fe3O4 nanoparticle ferrofluids for thermo-electric conversion
JP6678544B2 (en) Temperature-sensitive magnetic fluid and magnetic-fluid drive using the temperature-sensitive magnetic fluid
US3300663A (en) Power transfer circuits
US3257949A (en) Electro-magnetic pump
JP6517768B2 (en) Magnetic fluid driving device and magnetic fluid driving method
JP7029754B2 (en) Coolant and cooling device
JP2013253156A (en) Heat transport fluid and heat transport device
JP2010110191A (en) Heat pump
KR101308585B1 (en) Apparatus for transformation of thermal energy into electrical energy using ferrite particle flow and method therefor
KR101908115B1 (en) Electromagnetic pump
JP2022088691A (en) Magnetic fluid drive device and heat transport system
RU2624113C2 (en) Magnetorheologic coolant and method of its application
US3163785A (en) Power transfer circuit
JP7362454B2 (en) equipment, heat transport equipment, and electronic equipment
US20110127857A1 (en) Magnetic motor with embedded honeycombed mounted gate means
Garg et al. Performance study of magnetic cooling system using kerosene based ferrofluid under magnetic field effect
JP2004297843A (en) Linear motor
JP2021127858A (en) Heat transport device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6113439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250