JPH05288875A - Magnetic field generating device for magnetohydrodynamic power generation - Google Patents

Magnetic field generating device for magnetohydrodynamic power generation

Info

Publication number
JPH05288875A
JPH05288875A JP4091338A JP9133892A JPH05288875A JP H05288875 A JPH05288875 A JP H05288875A JP 4091338 A JP4091338 A JP 4091338A JP 9133892 A JP9133892 A JP 9133892A JP H05288875 A JPH05288875 A JP H05288875A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
power generation
yoke
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091338A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kuriyama
義彦 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4091338A priority Critical patent/JPH05288875A/en
Publication of JPH05288875A publication Critical patent/JPH05288875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To obtain a magnetic field generating device for magnetohydrodynamic power generation with a high generation efficiency by making uniform magnetic flux density distribution of a conductive fluid within a channel. CONSTITUTION:The title device allows at least a pair of permanent magnets 5 and 7 to be provided on the inner-periphery surface of a yoke which is formed so that two sets of parallel sides exist on a cross section so that different poles oppose each other while sandwiching the channel of a conductive fluid. Then, a first permanent magnet 5 generating a main magnetic field is provided through a spacing each while sandwiching a plane including a center axis of a channel 4 of the conductive fluid. A second permanent magnet 7 generating a sub magnetic field is provided on the inner-periphery surface of a yoke 20 which crosses the yoke 1 where the first permanent magnet 5 is provided through a spacing each while sandwiching a plane crossing the plane and at the same time a magnetic pole at the side of the channel 4 of the second permanent magnet 7 is formed at the same pole as the magnetic pole of the first permanent magnet 5. Also, division plates 6 and 8 consisting of a non-magnetic material are provide at the spacing between the permanent magnets.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主として高温,高速の
プラズマ(主に灯油,重油,石炭などの燃焼ガス),溶
融金属(液体と気体の混相流)等の導電性流体が磁場を
横切って運動するときに生じる起電力を利用して,直接
電力を得ようとする電磁流体発電(Magneto-hydrodynam
ic Power Generation,以下MHD発電と記す)に使用さ
れる磁場発生装置に関するものである。
INDUSTRIAL APPLICABILITY In the present invention, a conductive fluid such as a high-temperature, high-speed plasma (mainly combustion gas such as kerosene, heavy oil, and coal), a molten metal (multiphase flow of liquid and gas) and the like crosses the magnetic field. Magnetohydrodynamic power generation (Magneto-hydrodynam), which tries to obtain electric power directly by using electromotive force generated when moving
ic Power Generation, hereinafter referred to as MHD power generation).

【0002】[0002]

【従来の技術】従来,例えば横断面を矩形に形成した発
電通路を使用し,2枚の対向する平板電極と絶縁壁とで
構成された流路に磁場Bを印加し,導電性流体を速度v
で流すと,フレミングの右手の法則により,vとBとに
直交する方向に単位長さ当たりv×Bなるローレンツ起
電力が発生するから,前記平板電極間に電位差が発生す
る。これがMHD発電の原理であるが,このようにMH
D発電は,流体の具有するエネルギーを直接電気エネル
ギーに変換することから,燃料電池や熱電子発電などと
同様に直接発電手段の一つと考えられている。
2. Description of the Related Art Conventionally, for example, a power generation passage having a rectangular cross section is used, and a magnetic field B is applied to a flow path composed of two plate electrodes facing each other and an insulating wall to accelerate a conductive fluid. v
When the current is flown at, a Lorentz electromotive force of v × B per unit length is generated in the direction orthogonal to v and B according to Fleming's right-hand rule, so that a potential difference is generated between the plate electrodes. This is the principle of MHD power generation.
The D power generation is considered to be one of the direct power generation means like the fuel cell and thermionic power generation because it directly converts the energy contained in the fluid into electric energy.

【0003】図2は従来のMHD発電用に使用される磁
場発生装置の例を示す要部側面図である。図2におい
て,1はヨーク,2はサイドヨークであり,軟鉄板のよ
うな軟磁性材料によって形成すると共に,各々平行に対
向させて配設し,全体の横断面形状が正方形若しくは矩
形となるように構成する。3は永久磁石であり,横断面
を矩形となるように形成すると共に,高さ方向(厚さ方
向)に着磁し,導電性流体の流路4を挟んで異極が対向
するように,前記ヨーク1の内周面に固着する。
FIG. 2 is a side view of essential parts showing an example of a conventional magnetic field generator used for MHD power generation. In FIG. 2, reference numeral 1 is a yoke, and 2 is a side yoke, which are made of a soft magnetic material such as a soft iron plate, and are arranged so as to face each other in parallel so that the overall cross-sectional shape is a square or a rectangle. To configure. Reference numeral 3 denotes a permanent magnet, which is formed to have a rectangular cross section and is magnetized in the height direction (thickness direction) so that the different poles face each other across the flow path 4 of the conductive fluid. It is fixed to the inner peripheral surface of the yoke 1.

【0004】上記の構成により,導電性流体を紙面と直
交する方向に流せば,永久磁石3による磁場の作用によ
って前記のようなMHD発電を行うことができるのであ
る。
With the above structure, if the conductive fluid is made to flow in the direction orthogonal to the paper surface, the above-mentioned MHD power generation can be performed by the action of the magnetic field of the permanent magnet 3.

【0005】[0005]

【発明が解決しようとする課題】MHD発電において得
られる起電力は,前述のように導電性流体の速度vと,
磁場Bすなわち磁束密度に比例する。従って導電性流体
の速度vが一定であれば,上記起電力の大きさは永久磁
石3による流路4内の磁束密度に依存することとなる。
しかしながら永久磁石3による磁束密度は,流路4内に
おいて均一ではなく,流路4の軸線から上下方向に位置
が隔たる程低くなるのが通常である。
The electromotive force obtained in MHD power generation is, as described above, the velocity v of the conductive fluid,
It is proportional to the magnetic field B, that is, the magnetic flux density. Therefore, if the velocity v of the conductive fluid is constant, the magnitude of the electromotive force depends on the magnetic flux density of the permanent magnet 3 in the flow path 4.
However, the magnetic flux density due to the permanent magnets 3 is not uniform in the flow path 4, and normally becomes lower as the position is vertically separated from the axis of the flow path 4.

【0006】図3は図2における流路4内の軸線から上
下方向の位置と水平方向の磁束密度との関係を示す図で
ある。この場合,流路の直径は65mmである。図3の
曲線bによって示されるように,軸線上においては35
00G弱であるのに対し,流路4(図2参照)の周辺に
おいては1500Gまで低下することが認められる。従
って流路4内の上下方向の位置によって得られる起電力
の大きさに差があり,換言すれば,図2に示す磁場発生
装置においては流路4内の磁束密度分布が不均一である
ため,MHDの発電効率が低いという問題点がある。一
方上記流路4内の上下方向の磁束密度分布を均一化する
ために,永久磁石3の幅寸法(図2における上下方向の
寸法)を大にすることも考えられるが,このように永久
磁石3の幅寸法を大にすることは,ヨーク1およびサイ
ドヨーク2の厚さ寸法その他も大にする必要があり,装
置全体を大型化することになると共に,永久磁石3の磁
気エネルギー積の利用効率を低下させるという問題点が
ある。
FIG. 3 is a diagram showing the relationship between the vertical position and the horizontal magnetic flux density from the axis in the flow path 4 in FIG. In this case, the diameter of the channel is 65 mm. As indicated by curve b in FIG.
Although it is slightly less than 00G, it is recognized that it decreases to 1500G around the flow path 4 (see FIG. 2). Therefore, there is a difference in the magnitude of the electromotive force obtained depending on the position in the flow path 4 in the vertical direction. In other words, in the magnetic field generator shown in FIG. 2, the magnetic flux density distribution in the flow path 4 is non-uniform. , MHD has a problem that power generation efficiency is low. On the other hand, in order to make the vertical magnetic flux density distribution in the flow path 4 uniform, it is conceivable to increase the width dimension of the permanent magnet 3 (vertical dimension in FIG. 2). It is necessary to increase the thickness of the yoke 1 and the side yoke 2 and the like to increase the width dimension of the magnet 3, which leads to an increase in the size of the entire apparatus and the utilization of the magnetic energy product of the permanent magnet 3. There is a problem of reducing efficiency.

【0007】本発明は上記従来技術に存在する問題点を
解決し,導電性流体の流路内における磁束密度分布を均
一化し,発電効率の高い電磁流体発電用磁場発生装置を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems existing in the above-mentioned prior art and to provide a magnetic field generator for magnetohydrodynamic power generation which has a uniform magnetic flux density distribution in the flow path of a conductive fluid and has high power generation efficiency. And

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に,本発明においては,横断面に平行辺が2組存在する
ように形成したヨークの内周面に,導電性流体の流路を
挟んで異極が対向するように少なくとも1対の永久磁石
を設けてなる電磁流体発電用磁場発生装置において,主
磁場を発生する第1の永久磁石を導電性流体の流路の中
心軸を含む平面を挟んで各々間隙を介して設け,前記第
1の永久磁石を設けたヨークと直交するヨークの内周面
に,副磁場を発生する第2の永久磁石を前記平面と直交
する平面を挟んで各々間隙を介して設けると共に,第2
の永久磁石の前記流路側の磁極を隣接する第1の永久磁
石の磁極と同極に形成する,という技術的手段を採用し
た。
In order to achieve the above object, in the present invention, a flow path for a conductive fluid is formed on the inner peripheral surface of a yoke formed so that two sets of parallel sides exist in a cross section. In a magnetic field generator for magnetohydrodynamic power generation, wherein at least one pair of permanent magnets is provided so that the different poles face each other with the first pole magnet generating a main magnetic field including a central axis of a flow path of a conductive fluid. A second permanent magnet that generates a sub magnetic field is provided on the inner peripheral surface of the yoke that is orthogonal to the yoke on which the first permanent magnet is provided and that is provided on both sides of the plane and that is orthogonal to the plane. And the second through
The technical means of forming the magnetic pole of the permanent magnet on the side of the flow path to be the same as the magnetic pole of the adjacent first permanent magnet.

【0009】本発明において,永久磁石間の間隙に非磁
性材料からなる分割板を設けることができる。
In the present invention, a dividing plate made of a non-magnetic material can be provided in the gap between the permanent magnets.

【0010】[0010]

【作用】上記の構成により,流路内の磁束密度分布が均
一化され,発電効率を高めることができる。
With the above structure, the magnetic flux density distribution in the flow path is made uniform and the power generation efficiency can be improved.

【0011】[0011]

【実施例】図1は本発明の実施例を示す要部側面図であ
り,同一部分は前記図2と同一の参照符号で示す。図1
においてヨーク1およびサイドヨーク2は,例えばSS
400により,厚さ10mmとし,幅寸法を各々110
mmおよび140mmに形成し,ボルト(図示せず)に
よって横断面が矩形となるように一体に接合する。なお
導電性流体の流路4は図2におけると同様に直径65m
mに形成する。
1 is a side view of an essential part of an embodiment of the present invention, in which the same parts are designated by the same reference numerals as in FIG. Figure 1
The yoke 1 and the side yoke 2 are, for example, SS
400, the thickness is 10 mm and the width is 110 mm.
mm and 140 mm, and joined together by bolts (not shown) so that the cross section becomes rectangular. Note that the flow path 4 for the conductive fluid has a diameter of 65 m as in FIG.
m.

【0012】次に5は主磁場を発生する第1の永久磁石
であり,希土類・鉄・ボロン系永久磁石(日立金属製
HS37BH)により,幅寸法を21mm,高さ寸法を
29mmに形成すると共に,高さ方向に着磁し,流路4
を挟んで異極が対向するようにヨーク1の内周面に設け
る。6は分割板であり,例えばアルミニウムにより幅寸
法8mm,高さ寸法29mmに形成し,第1の永久磁石
5,5間に設ける。すなわち分割板6をヨーク1にボル
ト(図示せず)止めし,第1の永久磁石5,5を例えば
エポキシ系接着剤を介して,前記分割板6を挟着するよ
うにヨーク1に固着する。
Next, 5 is a first permanent magnet for generating a main magnetic field, which is a rare earth / iron / boron permanent magnet (made by Hitachi Metals).
HS37BH) has a width of 21 mm and a height of 29 mm and is magnetized in the height direction to form the flow path 4
It is provided on the inner peripheral surface of the yoke 1 so that the different poles face each other with the pole sandwiched therebetween. Reference numeral 6 denotes a dividing plate, which is made of, for example, aluminum and has a width dimension of 8 mm and a height dimension of 29 mm, and is provided between the first permanent magnets 5 and 5. That is, the split plate 6 is fixed to the yoke 1 by bolts (not shown), and the first permanent magnets 5 and 5 are fixed to the yoke 1 so as to sandwich the split plate 6 via, for example, an epoxy adhesive. ..

【0013】7は副磁場を発生する第2の永久磁石であ
り,希土類・鉄・ボロン系永久磁石(日立金属製 HS
37BH)により,幅寸法を10mm,高さ寸法を12
mmに形成すると共に,高さ方向に着磁し,流路4を挟
んで各々同極が対向するようにサイドヨーク2の内周面
に設ける。なお永久磁石5,7は上記のものと異なる最
大磁気エネルギー積のものを使用してもよい。8は分割
板であり,例えばアルミニウムにより幅寸法20mm,
高さ寸法12mmに形成し,第2の永久磁石7,7間に
設ける。また第2の永久磁石7の流路4側の磁極は,隣
接する前記第1の永久磁石5の磁極と同極に形成する。
なおサイドヨーク2に対する第2の永久磁石7および分
割板8の固着手段は,前記ヨーク1に対する第1の永久
磁石5および分割板6の固着手段と同様である。
Reference numeral 7 is a second permanent magnet that generates a sub-magnetic field, and is a rare earth / iron / boron permanent magnet (HS manufactured by Hitachi Metals).
37BH), width dimension 10mm, height dimension 12
It is formed on the inner peripheral surface of the side yoke 2 so that the same poles face each other across the flow path 4 while being formed in the height direction. The permanent magnets 5 and 7 may have a maximum magnetic energy product different from that described above. Numeral 8 is a dividing plate, which is made of aluminum, for example, and has a width of 20 mm,
It is formed with a height of 12 mm and is provided between the second permanent magnets 7, 7. The magnetic pole of the second permanent magnet 7 on the flow path 4 side is formed to be the same as the magnetic pole of the adjacent first permanent magnet 5.
The means for fixing the second permanent magnet 7 and the division plate 8 to the side yoke 2 is the same as the means for fixing the first permanent magnet 5 and the division plate 6 to the yoke 1.

【0014】上記の構成により,流路4内の軸線からの
上下方向の位置における水平方向の磁束密度を測定した
結果について説明する。図3において曲線aにて示すも
のが,前記図1に示す構成のものに対応している。図3
から明らかなように,本発明のものは,流路4(図1参
照)の軸線からその外周部位に至るまで,磁束密度が3
300G前後の値を示し,極めて均一な分布になってい
ることがわかる。
The result of measuring the magnetic flux density in the horizontal direction at the position in the vertical direction from the axis in the flow path 4 with the above configuration will be described. The curve a in FIG. 3 corresponds to the structure shown in FIG. Figure 3
As is clear from the above, according to the present invention, the magnetic flux density is 3 from the axis of the flow path 4 (see FIG. 1) to the outer peripheral portion.
Values around 300 G are shown, indicating that the distribution is extremely uniform.

【0015】これは前記図1に示すように,主磁場を発
生する第1の永久磁石5,5を分割板6の両側に設けた
ことにより,磁束が流路4の比較的広い範囲に分布され
ることと,副磁場を発生する第2の永久磁石7,7を設
けたことにより,磁束が比較的直線性を持つようになっ
たことに起因するものと認められる。すなわち前記図2
に示す従来のものにおいては,永久磁石3,3間の磁束
は,流路4の上下外周に近い部位程,円弧状若しくは曲
線状に外方に膨出するため,水平方向の磁束密度が低下
する。これに対して本発明のものは,副磁場を発生する
第2の永久磁石7,7を設け,かつそれらの磁極を,隣
接する第1の永久磁石5,5の磁極と同極に形成したこ
とにより,流路4の上下外周近傍における磁束の外方へ
の膨出を防止し得ることができ,磁束の直線性を助長す
ることができるものと認められる。
As shown in FIG. 1, by providing the first permanent magnets 5 and 5 for generating the main magnetic field on both sides of the dividing plate 6, the magnetic flux is distributed in a relatively wide range of the flow path 4. It is recognized that the magnetic flux becomes relatively linear by providing the second permanent magnets 7 and 7 that generate the auxiliary magnetic field. That is, FIG.
In the conventional one shown in Fig. 3, the magnetic flux between the permanent magnets 3 is bulged outward in a circular arc or curved shape in a portion closer to the upper and lower outer circumferences of the flow path 4, so that the magnetic flux density in the horizontal direction decreases. To do. On the other hand, in the case of the present invention, the second permanent magnets 7, 7 for generating the auxiliary magnetic field are provided, and their magnetic poles are formed to be the same as the magnetic poles of the adjacent first permanent magnets 5, 5. Therefore, it is recognized that the magnetic flux can be prevented from bulging outward in the vicinity of the upper and lower outer peripheries of the flow path 4, and the linearity of the magnetic flux can be promoted.

【0016】[0016]

【発明の効果】本発明は以上記述するような構成および
作用であるから,導電性流体の流路内における磁束密度
を,流路の軸線の位置から外周の位置に亘って,均一か
つ高レベルに維持することができ,発電効率を大幅に向
上させることができるという効果がある。
EFFECTS OF THE INVENTION Since the present invention has the structure and operation as described above, the magnetic flux density in the flow path of the conductive fluid is uniform and has a high level from the position of the axis of the flow path to the position of the outer circumference. Therefore, the power generation efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す要部側面図である。FIG. 1 is a side view of an essential part showing an embodiment of the present invention.

【図2】従来のMHD発電用に使用される磁場発生装置
の例を示す要部側面図である。
FIG. 2 is a side view of essential parts showing an example of a conventional magnetic field generator used for MHD power generation.

【図3】図1および図2における流路4内の軸線から上
下方向の位置と水平方向の磁束密度との関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the position in the vertical direction from the axis of the flow path 4 in FIGS. 1 and 2 and the magnetic flux density in the horizontal direction.

【符号の説明】[Explanation of symbols]

4 流路 5 第1の永久磁石 7 第2の永久磁石 4 flow path 5 first permanent magnet 7 second permanent magnet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 横断面に平行辺が2組存在するように形
成したヨークの内周面に,導電性流体の流路を挟んで異
極が対向するように少なくとも1対の永久磁石を設けて
なる電磁流体発電用磁場発生装置において,主磁場を発
生する第1の永久磁石を導電性流体の流路の中心軸を含
む平面を挟んで各々間隙を介して設け,前記第1の永久
磁石を設けたヨークと直交するヨークの内周面に,副磁
場を発生する第2の永久磁石を前記平面と直交する平面
を挟んで各々間隙を介して設けると共に,第2の永久磁
石の前記流路側の磁極を隣接する第1の永久磁石の磁極
と同極に形成したことを特徴とする電磁流体発電用磁場
発生装置。
1. At least one pair of permanent magnets are provided on an inner peripheral surface of a yoke formed to have two parallel sides in a cross section so that different poles face each other with a flow path for a conductive fluid interposed therebetween. In the magnetic field generator for magnetohydrodynamic power generation, the first permanent magnet that generates a main magnetic field is provided with a gap between each of the planes including the central axis of the flow path of the conductive fluid. The second permanent magnet for generating the sub-magnetic field is provided on the inner peripheral surface of the yoke orthogonal to the above-mentioned yoke with a gap between each of the planes orthogonal to the plane, and the flow of the second permanent magnet is A magnetic field generator for magnetohydrodynamic power generation, wherein the magnetic pole on the road side is formed to be the same as the magnetic pole of the adjacent first permanent magnet.
【請求項2】 永久磁石間の間隙に非磁性材料からなる
分割板を設けたことを特徴とする請求項1記載の電磁流
体発電用磁場発生装置。
2. The magnetic field generator for magnetohydrodynamic power generation according to claim 1, wherein a dividing plate made of a non-magnetic material is provided in the gap between the permanent magnets.
JP4091338A 1992-04-13 1992-04-13 Magnetic field generating device for magnetohydrodynamic power generation Pending JPH05288875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091338A JPH05288875A (en) 1992-04-13 1992-04-13 Magnetic field generating device for magnetohydrodynamic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091338A JPH05288875A (en) 1992-04-13 1992-04-13 Magnetic field generating device for magnetohydrodynamic power generation

Publications (1)

Publication Number Publication Date
JPH05288875A true JPH05288875A (en) 1993-11-05

Family

ID=14023644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091338A Pending JPH05288875A (en) 1992-04-13 1992-04-13 Magnetic field generating device for magnetohydrodynamic power generation

Country Status (1)

Country Link
JP (1) JPH05288875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271530A (en) * 1995-03-30 1996-10-18 S R L:Kk Dispensation system and method for specimen
JP2014050140A (en) * 2012-08-29 2014-03-17 Kri Inc Magnetic fluid drive and heat transport device and force generator using the same
JP2014134335A (en) * 2013-01-09 2014-07-24 Kri Inc Magnetic fluid drive device, heat transport device using the same, and power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271530A (en) * 1995-03-30 1996-10-18 S R L:Kk Dispensation system and method for specimen
JP2014050140A (en) * 2012-08-29 2014-03-17 Kri Inc Magnetic fluid drive and heat transport device and force generator using the same
JP2014134335A (en) * 2013-01-09 2014-07-24 Kri Inc Magnetic fluid drive device, heat transport device using the same, and power generation device

Similar Documents

Publication Publication Date Title
EP0228154B1 (en) Magnetic field generating device for nmr-ct
RU2190291C2 (en) Multiphase cross-flux electrical machine
JPWO2008093410A1 (en) Wire rope flaw detector
US4527017A (en) Magnet system for an electroacoustic transducer
JPH05288875A (en) Magnetic field generating device for magnetohydrodynamic power generation
Platt Permanent magnet synchronous motor with axial flux geometry
JPWO2012165385A1 (en) Magnetic field generator for magnetron sputtering with racetrack shape
US4218629A (en) MHD Power generator
JP3380822B2 (en) Magnetic field generator for magnetohydrodynamic power generation
US4417168A (en) Permanent magnet rotor for a dynamo electric machine
JP5347596B2 (en) Canned linear motor armature and canned linear motor
CN202602513U (en) Dual-water-cooled flat-type linear synchronous motor with permanent magnets of unequal widths
KR19990077533A (en) Hybrid wiggler
WO2023245918A1 (en) Permanent magnet motor
US3827298A (en) Electromagnetic flow meter
Basak et al. A DC linear motor with a square armature
JP3979452B2 (en) Damper device
JPS57159025A (en) Method and device for dry etching
GB1039137A (en) Particle accelerator
JP3029703B2 (en) Magnetic damper device
CN110601485B (en) Self-starting permanent magnet motor
JP2699251B2 (en) Magnetic field generator
CN211908610U (en) Plane induction coaxial multi-excitation-group multi-stator-group generator
JP2865951B2 (en) Electromagnet device
JP2567013Y2 (en) Magnetic circuit for linear motor