JPWO2006049147A1 - 三次元形状推定システム及び画像生成システム - Google Patents

三次元形状推定システム及び画像生成システム Download PDF

Info

Publication number
JPWO2006049147A1
JPWO2006049147A1 JP2006542385A JP2006542385A JPWO2006049147A1 JP WO2006049147 A1 JPWO2006049147 A1 JP WO2006049147A1 JP 2006542385 A JP2006542385 A JP 2006542385A JP 2006542385 A JP2006542385 A JP 2006542385A JP WO2006049147 A1 JPWO2006049147 A1 JP WO2006049147A1
Authority
JP
Japan
Prior art keywords
shape
dimensional
relative
shape function
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006542385A
Other languages
English (en)
Other versions
JP4284664B2 (ja
Inventor
丸亀 敦
敦 丸亀
仁 今岡
仁 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2006049147A1 publication Critical patent/JPWO2006049147A1/ja
Application granted granted Critical
Publication of JP4284664B2 publication Critical patent/JP4284664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/507Depth or shape recovery from shading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Abstract

三次元形状推定システムは、記憶装置と、相対形状分析装置と、特徴点位置探索装置と、絶対形状分析装置とを備える。記憶装置は、複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを格納する。相対形状分析装置は、ある物体の二次元画像及び上記第1学習データに基づいてその物体の「照明基底」を算出し、その物体の三次元形状を表現する「形状関数」の偏微分形である「相対形状関数」をその照明基底から算出し、その相対形状関数を示す相対形状データを出力する。特徴点位置探索装置は、二次元画像及び上記相対形状データに基づいて、入力された二次元顔画像から複数の特徴点を抽出し、その複数の特徴点の位置を示す特徴点位置データを出力する。絶対形状分析装置は、相対形状データと特徴点位置データを受け取り、上記第2学習データと複数の特徴点の位置を参照することによって相対形状関数を形状関数に変換し、その形状関数を示す三次元絶対形状データを出力する。

Description

本発明は、ある物体が写っている二次元画像からその物体の三次元形状を推定するシステム、その方法、及びそのプログラムに関する。また、本発明は、ある物体が写っている二次元画像から、照明条件の異なる二次元画像、あるいは照明条件及びその物体の向きが異なる二次元画像を生成するシステム、その方法、及びそのプログラムに関する。
二次元画像から物体の三次元形状を構成・推定する一般的な技術として、例えば、特開平11−242745号公報に開示された技術が知られている。この技術によれば、2台以上のカメラで撮影されたステレオ/多眼画像や、可視光や赤外光で照射された既知パタンが撮影されたパタン照射画像などが用いられる。対象の形状が限定されている場合には、その形状による制約を利用することによって、一つの画像からその対象の三次元形状を推定することも可能である。例えば、建物のように鉛直線と水平線が直角に交差する場合や、平面上に繰り返し模様などの特定パタンが描かれている場合、消失点原理や複比などの幾何学情報を用いることによって、対象の三次元形状を計算できることもある。しかしながら、「顔」の場合、すなわち、形状に平面や球体のような定型的な幾何的な制約がなく、色・輝度にも特定パタンがない対象に関しては、上述の一般的なステレオ/多眼画像やパタン照射画像などが用いられている。
しかしながら、このような方法によれば、複数台のカメラ(ステレオ/多眼カメラ)やパタン光を照射するパタン照射器、赤外光などの光を検出するためのカメラなど、通常のカメラ撮影とは異なる計測専用の装置が必要となる。このことは、コストの増大や、計測ができる環境が制約されるといった問題を引き起こす。更に、撮影時のカメラの位置やパタン照射器の照射位置といった計測時の情報を保存しておく必要がある。このことは、計測環境が制約されることや、あらかじめ計測を目的にした環境で撮影された画像しか用いることができないといった問題を引き起こす。「顔」は、計測を考慮せずに単一の画像として撮像されることが多い。従って、この従来技術では、このような単一の顔画像から顔の三次元形状を推定することは不可能である。
上記に関連して、特開2001−84362号公報に開示された技術によれば、表面反射率が略一定である部分を含む3次元形状を有する物体が、実質的な単一光源下において撮影される。この撮影により得られる画像に基づいて、上記光源の方向と上記物体の3次元形状とが推定される。また、特開平5−266173号公報に開示された顔分類システムは、顔を3次元フレームの2次元表示内に位置させる第1手段と、該表示内の顔を検出する第2手段と、顔の特徴ベクトルを発生させる第3手段と、今検出された顔の特徴ベクトルを先に検出された顔の特徴ベクトルと比較し今検出された顔が先に検出された顔に一致するかを決定する第4手段とを備える。また、国際公開WO−02/007095−A1には、時系列的に取り込まれる入力画像から人物の顔の向きを逐次推定する顔の3次元方向追跡装置が開示されている。
顔は平面や球体のような定型的な幾何学形状を有していないが、目や口といった特徴点の概略的な配置やトポロジカルな形状は同じである。標準的な顔からの特徴点の配置のずれの大小によって、個々の異なる顔形状が生成され得る。更に、撮影された顔画像に関しては、圧倒的に正面を向いた画像が多いので、顔画像においてもトポロジカルな形状の制約はある。このような観点から、複数の人物の三次元顔形状から得られる学習型のモデルを用いることによって、単一の顔画像から三次元顔形状の推定が行われている(T. Vetter et al., "A Morphable Model For The Synthesis of 3D Faces", ACM Conf. SIGGRAPH 99, pp. 187-194, 1999参照)。しかしながら、この方法によれば、顔画像と学習モデルを合わせるために、顔画像中の特徴点を手動で指定する必要があった。
本発明の目的は、ある物体が写っている単一の二次元画像から、その物体の照明基底を推定することができる三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法を提供することにある。
本発明の他の目的は、ある物体が写っている単一の二次元画像から、その物体の特徴点を自動的に見つけることができる三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法を提供することにある。
本発明の更に他の目的は、特別な計測装置を用いることなく、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することができる三次元形状推定システム、三次元形状推定プログラム、及び三次元形状推定方法を提供することにある。
本発明の更に他の目的は、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することができる画像生成システム、画像生成プログラム、及び画像生成方法を提供することにある。
本発明の第1の観点において、三次元形状推定システムが提供される。三次元形状推定システムは、記憶装置と、相対形状分析装置と、特徴点位置探索装置と、絶対形状分析装置とを備える。記憶装置は、複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを格納する。相対形状分析装置は、ある物体の二次元画像及び上記第1学習データに基づいてその物体の「照明基底」を算出し、その物体の三次元形状を表現する「形状関数」の偏微分形である「相対形状関数」をその照明基底から算出し、その相対形状関数を示す相対形状データを出力する。特徴点位置探索装置は、二次元画像及び上記相対形状データに基づいて、入力された二次元顔画像から複数の特徴点を抽出し、その複数の特徴点の位置を示す特徴点位置データを出力する。絶対形状分析装置は、相対形状データと特徴点位置データを受け取り、上記第2学習データと複数の特徴点の位置を参照することによって相対形状関数を形状関数に変換し、その形状関数を示す三次元絶対形状データを出力する。
この三次元形状推定システムにおいて、上記複数の特徴点は、色・輝度に特徴を有する少なくとも1つの第1特徴点と、形状に特徴を有する少なくとも1つの第2特徴点を含む。この時、特徴点位置探索装置は、入力された二次元画像を用いて第1特徴点を抽出する。また、特徴点位置探索装置は、相対形状データが示す相対形状関数を用いて処理中の物体の表面の曲率を算出し、上記第1特徴点の位置及び上記曲率に基づいて第2特徴点を抽出する。
また、この三次元形状推定システムにおいて、二次元画像がxy座標系を用いて表されるとき、形状関数はf(x,y)で表され、相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、照明基底は、B={B,B,B}で表される。ここで、Bα={bi,α}(α=x,y,z;iは各画素の番号)である。この時、相対形状分析装置は、算出された照明基底に基づいて、相対形状関数(f,f)を(f,f)=(bi,x/bi,z,bi,y/bi,z)として算出する。
また、複数の特徴点のうちの1つを原点とするとき、その原点に対する複数の特徴点の各々の位置が相対位置として表される。この時、第2学習データは、複数の物体における相対位置の平均値を複数の特徴点の各々に対して示す情報と、修正形状関数g(x,y)に関する情報と、修正形状関数g(x,y)の偏微分形である修正相対形状関数(g,g)=(∂g/∂x,∂g/∂y)に関する情報とを含む。その修正形状関数g(x,y)は、複数の物体の各々に対して、複数の特徴点のそれぞれの相対位置が上記平均値と一致するように、形状関数f(x,y)を座標変換することによって得られる。
絶対形状分析装置は、特徴点位置データに基づいて、処理中の物体の複数の特徴点の原点に対する相対位置を算出する。そして、絶対形状分析装置は、複数の特徴点のそれぞれの相対位置が第2学習データが示す上記平均値と一致するように、相対形状データが示す相対形状関数(f,f)を座標変換することによって、処理中の物体に関する修正相対形状関数(g,g)を算出する。更に、絶対形状分析装置は、第2学習データが示す修正形状関数g(x,y)及び修正相対形状関数(g,g)に関する情報を参照することによって、処理中の物体に関する修正相対形状関数(g,g)を、処理中の物体に関する修正形状関数g(x,y)に変換する。続いて、絶対形状分析装置は、複数の特徴点の位置が特徴点位置データが示す位置に戻るように、修正形状関数g(x,y)を座標変換することによって、処理中の物体の形状関数f(x,y)を算出する。
以上の三次元形状推定システムにおいて、上記物体は、人間の顔である。
本発明の第2の観点において、画像生成システムが提供される。画像生成システムは、上記三次元形状推定システムと、画像生成装置とを備える。画像生成装置は、三次元形状推定システムの相対形状分析装置から、処理中の物体の照明基底を示す照明基底データを受け取る。そして、画像生成装置は、その照明基底と任意の照明強度に基づいて、入力された二次元画像と異なる照明条件を有する照明変換画像を生成する。
また、画像生成装置は、三次元形状推定システムの絶対形状分析装置から、処理中の物体に関する三次元絶対形状データを受け取る。そして、画像生成装置は、上記照明変換画像と三次元形状を組み合わせることによって、照明条件の異なる新たな三次元形状を作成する。更に、画像生成装置は、その新たな三次元形状を回転させることによって、入力された二次元画像と異なる照明条件及び物体の向きを有する回転変換画像を生成する。
本発明に係る画像生成システムは、記憶装置と、相対形状分析装置と、画像生成装置とを備える。記憶装置は、複数の物体の照明基底を示す第1学習データを格納する。相対形状分析装置は、ある物体の二次元画像及び上記第1学習データに基づいてその物体の照明基底を算出し、算出された照明基底を示す照明基底データを出力する。画像生成装置は、その照明基底と任意の照明強度に基づいて、入力された二次元画像と異なる照明条件を有する照明変換画像を生成する。
本発明の第3の観点において、コンピュータが読み取り可能な記録媒体に記録された三次元形状推定プログラムが提供される。その三次元形状推定プログラムは、コンピュータに次のステップを実行させる:(A)複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを記憶装置に格納するステップ;(B)ある物体の二次元画像及び上記第1学習データに基づいて、その物体の照明基底を算出するステップ;(C)算出された照明基底に基づいて、その物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップ;(D)二次元画像及び相対形状関数に基づいて、入力された二次元顔画像から複数の特徴点を抽出するステップ;及び(E)上記第2学習データと複数の特徴点の位置を参照することによって、算出された相対形状関数を形状関数に変換するステップ。
複数の特徴点は、色・輝度に特徴を有する少なくとも1つの第1特徴点と、形状に特徴を有する少なくとも1つの第2特徴点を含む。この時、上記(D)ステップは、(D1)入力された二次元顔画像を用いて第1特徴点を抽出するステップと、(D2)上記相対形状関数を用いて物体の表面の曲率を算出するステップと、(D3)上記第1特徴点の位置及び上記算出された曲率に基づいて第2特徴点を抽出するステップを含む。
上記二次元画像がxy座標系を用いて表されるとき、形状関数はf(x,y)で表され、相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、照明基底は、B={B,B,B}で表される。ここで、Bα={bi,α}(α=x,y,z;iは各画素の番号)である。この時、上記(C)ステップは、相対形状関数(f,f)を、算出された照明基底に基づいて、(f,f)=(bi,x/bi,z,bi,y/bi,z)として算出するステップを含む。
また、上記(A)ステップは、(A1)複数の物体のそれぞれの三次元形状を読み込むステップ、(A2)その三次元形状に基づいて、複数の物体のそれぞれに対して複数の特徴点の位置を決定するステップ、(A3)複数の特徴点のうち1つを原点として決定するステップ、(A4)複数の特徴点の各々の原点に対する位置を相対位置として算出するステップ、(A5)複数の物体における相対位置の平均値を、複数の特徴点の各々に対して算出するステップ、(A6)複数の特徴点のそれぞれの相対位置が上記平均値と一致するように、形状関数f(x,y)を座標変換することによって修正形状関数g(x,y)を算出するステップ、(A7)その修正形状関数g(x,y)の偏微分形である修正相対形状関数(g,g)=(∂g/∂x,∂g/∂y)を算出するステップ、及び(A8)修正形状関数g(x,y)に関する情報、修正相対形状関数(g,g)に関する情報、及び複数の特徴点の各々に対する上記平均値を示すデータを、第2学習データとして記憶装置に格納するステップを含む。
また、上記(E)ステップは、(E1)処理中の物体の複数の特徴点の各々の上記原点に対する相対位置を算出するステップ、(E2)複数の特徴点のそれぞれの相対位置が第2学習データが示す上記平均値と一致するように、相対形状関数(f,f)を座標変換することにより、処理中の物体に関する修正相対形状関数(g,g)を算出するステップ、(E3)上記第2学習データが示す修正形状関数g(x,y)及び修正相対形状関数(g,g)に関する情報を参照することによって、処理中の物体に関する修正相対形状関数(g,g)を、処理中の物体に関する修正形状関数g(x,y)に変換するステップ、及び(E4)複数の特徴点の位置が入力された二次元画像が示す位置に戻るように、修正形状関数g(x,y)を座標変換することによって、処理中の物体に関する形状関数f(x,y)を算出するステップを含む。
本発明の第4の観点において、画像生成プログラムが提供される。画像生成プログラムは、コンピュータに次のステップを実行させる:(a)複数の物体の照明基底を示す第1学習データを記憶装置に格納するステップ;(b)ある物体の二次元画像及び上記第1学習データに基づいて、その物体の照明基底を算出するステップ;及び(c)照明基底と任意の照明強度に基づいて、入力された二次元画像と異なる照明条件を有する照明変換画像を生成するステップ。
この画像生成プログラムは、更に、コンピュータに次のステップを実行させる:(d)複数の物体の三次元形状を示す第2学習データを記憶装置に格納するステップ;(e)上記算出された照明基底に基づいて、その物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップ;(f)二次元画像及び相対形状関数に基づいて、入力された二次元顔画像から複数の特徴点を抽出するステップ;(g)上記第2学習データと複数の特徴点の位置を参照することによって、上記相対形状関数を形状関数に変換するステップ;(h)上記照明変換画像と上記形状関数に基づいて、照明条件の異なる新たな三次元形状を作成するステップ;(i)その新たな三次元形状を回転させることによって、入力された二次元画像と異なる照明条件及び物体の向きを有する回転変換画像を生成するステップ。
本発明に係る三次元形状推定方法及び画像生成方法は、上記三次元形状推定プログラム及び画像生成プログラムによって実現されるステップと同様のステップを含む。
本発明に係る三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法によれば、ある物体が写っている単一の二次元画像から、その物体の照明基底を推定することが可能となる。
本発明に係る三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法によれば、ある物体が写っている単一の二次元画像から、その物体の特徴点を自動的に見つけることが可能となる。
本発明に係る三次元形状推定システム、三次元形状推定プログラム、及び三次元形状推定方法によれば、特別な計測装置を用いることなく、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することが可能となる。よって、コストが低減される。
本発明に係る画像生成システム、画像生成プログラム、及び画像生成方法によれば、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することが可能となる。
図1は、ある顔の三次元形状を表現する形状関数を説明するための図である。 図2は、ある顔の二次元画像を示す概略図である。 図3は、本発明の第1の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。 図4は、本発明に係る相対形状分析装置の構成を示すブロック図である。 図5は、本発明に係る相対形状分析装置の動作を示すフローチャートである。 図6は、本発明に係る相対形状分析装置の動作を示すフローチャートである。 図7は、本発明に係る特徴点位置探索装置の構成を示すブロック図である。 図8は、本発明に係る特徴点位置探索装置の動作を示すフローチャートである。 図9は、本発明に係る特徴点位置探索装置の動作を説明するための図である。 図10は、本発明に係る絶対形状分析装置の構成を示すブロック図である。 図11は、本発明に係る絶対形状分析装置の動作を示すフローチャートである。 図12は、本発明に係る絶対形状分析装置の動作を説明するための図である。 図13は、本発明に係る絶対形状分析装置の動作を示すフローチャートである。 図14は、本発明の第2の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。 図15は、本発明の第3の実施の形態に係る画像生成システムの構成を示すブロック図である。 図16は、本発明に係る画像生成装置の構成を示すブロック図である。 図17は、本発明に係る画像生成装置の動作を示すフローチャートである。 図18は、本発明の第4の実施の形態に係る画像生成システムの構成を示すブロック図である。
添付図面を参照して、本発明による三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法を説明する。
まず、本発明の実施の形態の説明で用いられる概念を説明する。本発明の実施の形態においては、三次元形状が推定される対象物体として、人間の「顔」が例示される。
図1は、ある顔の三次元形状を表現する「形状関数」を説明するための図である。このような物体の三次元形状は、例えば、レンジファインダによって計測することが可能である。レンジファインダは、物体の形状(相対位置情報)や色情報を取得してコンピュータに取り込む装置である。レンジファインダによって、物体表面の正面座標x,y及び奥行きの座標zが得られる。すなわち、顔の三次元形状は、図1に示されるようにxyz座標系で表され、その三次元形状を表現する「形状関数z」は、次の式で与えられる。
Figure 2006049147
また、この形状関数zの偏微分形は、次の式で与えられる。
Figure 2006049147
この関数群(f,f)は、形状関数zの微分情報を示し、物体表面の曲率といった物体の相対的な形状を表現するためのパラメータとなる。そのため、この関数群(f,f)は、以下、「相対形状関数」と参照される。
また、図2は、ある顔の二次元画像を示す概略図である。この二次元画像は、xy平面上で表現され、図2においては、顔の横方向がx方向、顔の縦方向がy方向に対応している。また、x、y方向の画素数は、それぞれw,hで与えられる。つまり、この二次元画像の総画素数sは、s=w×hで与えられる。
顔の二次元画像は、輝度情報や色情報を含んでいる。この輝度・色情報は、顔の形状の反射によって決まるため、顔の位置、姿勢が同じであれば、複数の照明を宛てて撮影することによって、顔形状を推定することが可能となる。このような考え方の一つに、Peter N. Belhumeur et al., "What Is the Set of Images of an Object Under All Possible Illumination Conditions ?", International Journal of Computer Vision, Vol. No.28, pp. 245-260, 1998、に記載されてる「照明基底(illumination basis)」がある。この照明基底(測地照明基底、GIB:Geodesic Illumination Basis)は、顔表皮各位置における、照明変動の記述子である。
まず、二次元画像のi番目の画素Pにおける、顔表面の拡散反射率(diffuse reflectance)がaで与えられ、法線ベクトルnがn=(ni,x,ni,y,ni,z)で与えられるとする。また、その画素Pでの照明方向を示す照明輝度ベクトルsが、s=(s,s,s)で与えられるとする。この時、その画素Pでの「輝度X」は、次の式で与えられる。
Figure 2006049147
ここで、ベクトルbは、次の式で与えられる。
Figure 2006049147
よって、二次元画像に含まれる全ての画素pに対する輝度Xを示す「輝度ベクトルX」は、次の式で与えられる。
Figure 2006049147
これらの式において、拡散反射率aと法線ベクトルn、すなわちベクトルbは、物体の形状・性質にだけ依存し、照明の強度・方向には依存しない。照明を変えたときに変動するのは、照明強度ベクトルsである。照明を変えたときに作成される二次元画像の輝度ベクトルXの集合Iは、次のように表される。
Figure 2006049147
ここで、Bは、次のように表される
Figure 2006049147
つまり、B={bi,x}=(b0,x,・・・,bs,x)であり、B={bi,y}=(b0,y,・・・,bs,y)であり、B={bi,z}=(b0,z,・・・,bs,z)である。そして、このBが「照明基底」と参照される。つまり、照明基底(反射情報)は、照明変動の記述子であり、照明変動に対する輝度の変化を表すことができる。また、上述のように、画像の輝度は、照明と顔形状によって決まる。従って、この照明基底(反射情報)を、顔形状に関連するパラメータであるということもできる。本発明においては、この「照明基底」という概念が用いられる。
本発明は、図2に示されたある「二次元画像」から、最終的に、図1に示された「三次元形状(形状関数f(x,y))」を精度良く推定することを目的とする。また、本発明は、図2に示されたある「二次元画像」から、照明条件の異なる二次元画像、あるいは、照明条件及び顔の向きが異なる二次元画像を生成することを目的とする。このような技術は、例えば、顔個人認証技術などのセキュリティ分野、美容・整形の分野、アミューズメントの分野等に適用することが可能である。以下に、本発明の構成及び動作が詳細に記述される。
(第1の実施の形態)
図3は、本発明の第1の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。この三次元形状推定システム1は、相対形状分析装置10、特徴点位置探索装置20、及び絶対形状分析装置30を備えている。相対形状分析装置10は、ある顔の二次元画像を示す顔画像データ50を受け取り、輝度情報及び予め蓄積された学習反射情報に基づいて、その顔の相対形状関数(f,f)を推定する。推定された相対形状関数(f,f)を示す相対形状データ51は、特徴点位置探索装置20及び絶対形状分析装置30に出力される。特徴点位置探索装置20は、顔画像データ50及び相対形状データ51を受け取り、両目、鼻などの顔の「特徴点」を自動的に検出する。その「特徴点」の位置を示す特徴点位置データ52は、絶対形状分析装置30に出力される。絶対形状分析装置30は、相対形状関数(f,f)、特徴点の位置及び予め蓄積された学習形状データに基づいて、その顔の形状関数f(x,y)を推定する。推定された形状関数f(x,y)を示す三次元絶対形状データ53は、絶対形状分析装置30から出力される。このように、本実施の形態に係る三次元形状推定システム1によれば、顔画像データ50(図2参照)から、三次元絶対形状データ53(図1参照)が得られる。
以下、各装置の構成・動作が詳細に説明される。
図4は、本発明に係る相対形状分析装置10の構成を示すブロック図である。この相対形状分析装置10は、入力部11、学習データ作成部12、記憶部13、相対形状算出部14、及び出力部15を備えている。記憶部13には、相対形状データ51及び一般化照明基底データ61が格納される。この一般化照明基底データ(第1学習データ)61は、複数の人物の顔(複数の同種の物体)に対する一般化された照明基底を示し、あらかじめ学習により蓄積される。学習データ作成部12は、この一般化照明基底データ61を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。相対形状算出部14は、相対形状データ51を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部13としては、ハードディスクドライブやメモリが例示される。
まず、一般化照明基底データ61の作成が行われる。図5は、その一般化照明基底データ61を作成する際の相対形状分析装置10の動作、すなわち学習データ作成部12の動作を示すフローチャートである。
ステップS101:
まず、複数の人物の顔に対して様々な方向から照明が照射され、撮影が行われる。これにより、テクスチャ付きの複数の三次元形状データ60が得られる。この複数人の顔の三次元形状データ60が、入力部11を介して学習データ作成部12に入力される。
ステップS102:
次に、学習データ作成部12は、上述の式(6)に基づいて、三次元形状データ60から各人の顔の照明基底Bを算出する。
ステップS103:
次に、学習データ作成部12は、主成分分析などの方法によって、複数の人物の顔の照明基底Bを成分A,A,…Aに分解する。これにより、一般的な顔の照明基底(一般化照明基底)Bを、次のように記述することが可能となる。
Figure 2006049147
ここで、β,β,…βは、個人ごとに異なるパラメータである。
ステップS104:
学習データ作成部12は、上記ステップS103で求められた一般化照明基底Bを示す一般化照明基底データ61を、記憶部13に出力し格納する。
次に、ある人物の顔の二次元画像を示す顔画像データ50から、その人物の顔の相対形状関数(f,f)を示す相対形状データ51を推定する方法が示される。この人物の顔の向きは既知であるが、この人物の照明基底Bは未知である。図6は、相対形状分析装置10の相対形状算出部14の動作を示すフローチャートである。
ステップS111:
まず、ある人物の顔の二次元画像を示す顔画像データ50(図2参照)が、入力部11を介して相対形状算出部14に入力される。
ステップS112:
二次元顔画像は、輝度情報と色情報を有している。よって、相対形状算出部14は、顔画像データ50から、上述の式(5)に示される輝度ベクトルX={X}を抽出することができる。
ステップS113:
次に、相対形状算出部14は、記憶部13から一般化照明基底データ61を読み出し、一般化照明基底F(β,β,…β,A,A,…A)を取得する。これら輝度ベクトルX、一般化照明基底F、及び照明強度ベクトルsを用いて、相対形状算出部14は、次式で表される汎関数E1を作成する。
Figure 2006049147
ステップS114:
次に、相対形状算出部14は、この汎関数E1が最小となるパラメータβ,β,…βを求める。計算が非線形になる場合、相対形状算出部14は、山登り法など反復計算法を用いてそれらパラメータを計算する。そして、相対形状算出部14は、求められたパラメータβ,β,…βの場合の照明基底F(β,β,…β,A,A,…A)を、この顔の照明基底Bとする。このように、一般化照明基底データ(第1学習データ)61を用いることによって、ある顔の二次元画像からその顔の照明基底Bが算出される。
ステップS115:
照明基底Bは、上記式(7)で表されることもできる。本発明によれば、相対形状算出部14は、この照明基底Bに基づき、この顔に関する相対形状関数(f,f)を次の式によって算出する。
Figure 2006049147
このように、ある顔の二次元画像からその顔の相対形状関数(f,f)が算出される。式(2)に示されたように、この相対形状関数(f,f)は、形状関数f(x,y)の偏微分を表す。以上の処理は、照明基底に基づく方法のみならず、画像と相対形状である微分情報を結びつけるあらゆるモデルに対して有効である。
ステップS116:
相対形状算出部14は、求められた相対形状関数(f,f)を示す相対形状データ51を、出力部15を介して、特徴点位置探索装置20及び絶対形状分析装置30に出力する。また、相対形状算出部14は、その相対形状データ15を、記憶部13に格納してもよい。
以上に示されたように、本発明に係る相対形状分析装置10によれば、ある物体が写っている単一の二次元画像から、その物体の照明基底Bを推定することが可能となる。また、その単一の二次元画像から、その物体の相対形状関数(f,f)を推定することが可能となる。ここで、その物体を、ステレオ/多眼カメラ等の特別な撮影装置で撮影する必要はない。よって、コストが削減される。また、撮影時の情報を保存しておく必要はなく、その二次元画像の撮影環境に対する制約もない。
図7は、本発明に係る特徴点位置探索装置20の構成を示すブロック図である。この特徴点位置探索装置20は、入力部21、特徴点抽出部22、記憶部25、及び出力部26を備えている。特徴点抽出部22は、色・輝度特徴点抽出部23と形状特徴点抽出部24を含んでいる。記憶部25には、ある顔における複数の「特徴点」の位置を示す特徴点位置データ52が格納される。特徴点抽出部22は、この特徴点位置データ52を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部25としては、ハードディスクドライブやメモリが例示される。
顔の「特徴点」とは、目の中心、鼻の頂点、鼻の下など、顔の特徴的な点のことである。この特徴点は、色や輝度に特徴がある「色・輝度特徴点(第1特徴点)」と、形状に特徴がある「形状特徴点(第2特徴点)」を含む。色・輝度特徴点としては、目や口が例示される。例えば、唇は周囲より強い赤み成分を有しており、東洋人の場合であれば目は黒い。よって、これらは画像に含まれる色・輝度情報から抽出することが可能である。一方、形状特徴点としては、鼻や鼻の下が例示される。これらは形状に特徴があるので、相対形状関数(f,f)を用いて抽出することが可能である。
図8は、本発明に係る特徴点位置探索装置20の動作を示すフローチャートである。
ステップS201:
上述の顔画像データ50及び相対形状分析装置10によって得られた相対形状データ51が、入力部21を介して特徴点抽出部22に入力される。
ステップS202:
まず、色・輝度特徴点抽出部23が、顔画像データ50に含まれる色・輝度情報を用いることによって、「色・輝度特徴点」を抽出する。この色・輝度特徴点の位置に関する情報は、形状特徴点抽出部24に出力される。
ステップS203:
次に、鼻などの形状特徴点の抽出が行われる。図9は、側面から見た時のある顔の輪郭、すなわち、あるx座標における形状関数z=f(y)を示している。ここで、そのあるx座標は、両目の中心に対応しているものとする。図9に示されるように、目の位置a1から+y方向にある形状関数z=f(y)で、最初の極小点が鼻の頂点の位置a2に対応すると考えられる。また、最初の極大点が鼻の下の位置a3に対応すると考えられる。更に、次の極小点が、唇の頂点の位置a4に対応すると考えられる。よって、このような極小点・極大点を探索すればよい。ここで、顔の形状関数f(x,y)は、未だ得られていない。従って、形状特徴点抽出部24は、次の式に基づいて、顔表面の曲率Hを計算する。
Figure 2006049147
ここで、(f,f)は、相対形状データ51から知ることができる。また、fxx,fyy,fxyは、形状関数f(x,y)の二階偏微分であり、相対形状データ51が示す相対形状関数(f,f)から知ることができる。つまり、形状特徴点抽出部24は、曲率Hを計算することができる。また、両目の位置a1は、色・輝度特徴点抽出部23によって得られた色・輝度特徴点情報から知ることができる。従って、形状特徴点抽出部24は、両目の中心位置a1から+y方向で、曲率Hの最大点を鼻の頂点の位置a2として決定する。同様に、鼻の下の位置a3や、唇頂点の位置a4も決定される。このようにして、形状特徴点抽出部24は、顔の二次元画像及び相対形状関数(f,f)に基づいて、「形状特徴点」を抽出する。
ステップS204:
特徴点抽出部22は、上記ステップS202、S203で得られた色・輝度特徴点と形状特徴点の位置を示す特徴点位置データ52を出力する。この特徴点位置データ52は、出力部26を介して絶対形状分析装置30に出力される。また、この特徴点位置データ52は、記憶部25に格納されてもよい。
以上に示されたように、本発明に係る特徴点位置装置20によれば、ある物体が写っている単一の二次元画像から、その物体の特徴点を自動的に見つけることが可能となる。それは、相対形状分析装置10によって推定された相対形状関数(f,f)に基づいて、形状特徴点を抽出することができるからである。顔画像中の特徴点を手動で指定する必要はなくなる。
図10は、本発明に係る絶対形状分析装置30の構成を示すブロック図である。この絶対形状分析装置30は、入力部31、学習データ作成部32、記憶部33、絶対形状算出部34、及び出力部35を備えている。記憶部33には、三次元絶対形状データ53及び三次元形状学習データ62が格納される。この三次元形状学習データ(第2学習データ)62は、複数の人物の顔(複数の同種の物体)の三次元形状に関する情報を示し、あらかじめ学習により蓄積される。学習データ作成部32は、この三次元形状学習データ62を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。絶対形状算出部34は、三次元絶対形状データ53を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部33としては、ハードディスクドライブやメモリが例示される。
まず、三次元形状学習データ62の作成が行われる。図11は、その三次元形状学習データ62を作成する際の絶対形状分析装置30の動作、すなわち学習データ作成部32の動作を示すフローチャートである。
ステップS301:
まず、レンジファインダ等の三次元形状計測機器を用いることによって、複数の人物の顔の三次元形状データ(形状関数z=f(x,y))が取得される。取得された三次元形状データにおいて、正面はxy面で表され、奥行きやz方向で表される(図1参照)。この複数人の顔の三次元形状データ60が、入力部31を介して学習データ作成部32に入力される。
ステップS302:
次に、学習データ作成部32は、取得した複数の三次元形状データのそれぞれにおいて、特徴点を見つける。具体的には、学習データ作成部32は、上述の特徴点抽出部22と同様の方法で、特徴点の位置を探索する。すなわち、特徴点抽出部22が抽出する部位と同じ部位が抽出される。ここで、各々の顔の形状関数z=f(x,y)がわかっているので、学習データ作成部32は、その形状関数zを用いて特徴点の位置を探索してもよい。あるいは、この学習データの作成は事前に一度だけ行われるものなので、ユーザが手動で行ってもよい。このステップにおいて、一人一人の顔について、複数の特徴点の位置が決定される。
ステップS303:
次に、学習データ作成部32は、抽出された複数の特徴点(部位)のうち一点を「基点O」として設定する。この「基点O」は、全ての三次元顔形状の座標を固定するための基準点(原点)であり、全ての顔で共通に設定される。例えば、この基点Oとして、顔の中心付近に存在する鼻の下が選択される。
ステップS304:
次に、学習データ作成部32は、基点O以外の複数の特徴点の、基点Oに対する相対位置を計算する。例えば、図12は、ある人物の顔を示している。この顔において、両目の中心(P1,P2)、鼻の下、口の左右両端(P3,P4)の5点が特徴点として抽出されている。また、そのうち鼻の下が、基点Oとして選択されている。この時、基点(原点)Oに対する特徴点P1〜P4のそれぞれの相対位置、すなわち、基点Oを原点とする座標系における特徴点P1〜P4のぞれぞれの座標が計算される。この計算は、全ての三次元形状データ60に対して実行される。その後、学習データ作成部32は、全ての顔に対する相対位置の平均値(平均相対位置)を、各特徴点(P1,P2,P3,P4)に対して計算する。つまり、各特徴点の座標の平均値が計算され、特徴点P1〜P4のそれぞれに対する4つの平均相対位置が算出される。
ステップS305:
次に、学習データ作成部32は、全ての顔に対して、複数の特徴点がそれぞれの平均相対位置と一致するように、形状関数f(x,y)を座標変換する。具体的には、各特徴点の周辺領域の拡大/縮小が行われる。例えば、図12において、基点Oを通る座標軸uvによって、顔が4つの領域R1〜R4に区分けされている。領域R1〜R4のそれぞれは、特徴点P1〜P4のそれぞれを含んでいる。この時、複数の特徴点P1〜P4がそれぞれの平均相対位置と一致するような拡大/縮小率で、領域R1〜R4のそれぞれが拡大/縮小される。例えば、基点Oと特徴点P1との間の距離をOP1、基点Oと領域R1内の任意の点X1との間の距離をOX1とする。また、基点Oから特徴点P1の平均相対位置への距離をOP1’とする。また、領域R1内の任意の点X1が、拡大/縮小操作によって点X1’に移動し、基点Oと点X1’との間の距離がOX1’であるとする。この時、距離OP1、OP1’、OX1、OX1’の間には、以下の関係が成り立つ。
Figure 2006049147
逆に、式(12)の関係が成り立つように、点X1が点X1’に移動されればよい。このようにして、領域R1〜R4の拡大/縮小が行われる。すなわち、全ての顔の形状関数f(x,y)に対して座標変換処理が行われる。この座標変換によって生成される関数は、以下、「修正形状関数z’」と参照される。修正形状関数z’は、次の式で与えられる。
Figure 2006049147
また、修正形状関数z’=g(x,y)の偏微分は、相対形状関数(f,f)に対応して、「修正相対形状関数(g,g)」と参照される。この修正相対形状関数(g,g)は、次の式で与えられる。
Figure 2006049147
尚、実際には、画像処理と同じく微分は差分に近似して計算される。
ステップS306:
次に、学習データ作成部32は、全ての顔の修正形状関数g(x,y)を用いて成分分析を行い、成分分析データを作成する。上記ステップS305で得られた全ての修正形状関数g(x,y)においては、基点Oを含めた複数の特徴点が一致している。これらを一致させて主成分分析などの成分分析が行われる。例えば、n個の修正形状関数z’があるとする。このうち第1番目の修正形状関数g(x,y)の、あるデータ(画素)の位置x,yにおける値をz で表す。ここで、kは、二次元上の画素の位置を一次元で表すためのパラメータであり、k=y×w+x(wは、x方向の画素数;図2参照)で表される。また、第n番目の修正形状関数g(x,y)のその位置kでの値は、z で表される。この時、その位置(画素)kに対して、次の式で表されるn次のベクトルZが定義される。
Figure 2006049147
このベクトルZを画素数s(s=w×h;図2参照)だけ並べることによって、次の式で表されるs×n行列Zが得られる。
Figure 2006049147
この行列Zを特異値分解することによって、次の式が得られる。
Figure 2006049147
ここで、Uはs×n行列であり、V はn×n行列であり、Sはn×n対角行列である。こうして得られた行列Uの列ベクトルをして主成分を得ることができる。
ステップS307:
同様に、学習データ作成部32は、全ての顔の修正相対形状関数(g,g)を用いて成分分析を行い、成分分析データを作成する。第1番目の修正相対形状関数gのある位置(画素)kにおける値をd で表す。また、第n番目の修正相対形状関数gのその位置kにおける値をd で表す。また、第1番目の修正相対形状関数gのその位置kにおける値をe で表す。また、第n番目の修正相対形状関数gのその位置kにおける値をe で表す。この時、その位置kに対して、次の式で表されるn次のベクトルD,Eが定義される。
Figure 2006049147
これらベクトルD,Eを画素数s(s=w×h)だけ並べることによって、次の式で表されるs×n行列D及びs×n行列Eが得られる。
Figure 2006049147
これら行列D,Eを特異値分解することによって、次の式が得られる。
Figure 2006049147
Figure 2006049147
ここで、U,Uはs×n行列であり、V ,V はn×n行列であり、S,Sはn×n対角行列である。こうして得られた行列U,Uの列ベクトルをして主成分を得ることができる。
ステップS308:
学習データ作成部32は、このようにして得られた修正形状関数g(x,y)に関する情報Uz、修正相対形状関数(gx,gy)に関する情報U,U、及び各特徴点の平均相対位置を示すデータを、三次元形状学習データ62として記憶部33に格納する。
次に、上述のある人物に関する相対形状データ51及び特徴点位置データ52から、その人物の顔の形状関数f(x,y)を示す三次元絶対形状データ53を推定する方法が示される。図13は、絶対形状分析装置30の絶対形状算出部34の動作を示すフローチャートである。
ステップS311:
まず、相対形状分析装置10によって作成された相対形状データ51及び特徴点位置探索装置20によって作成された特徴点位置データ52が、入力部31を介して絶対形状算出部34に入力される。
ステップS312:
次に、絶対形状算出部34は、特徴点位置データ52に示される複数の特徴点の位置に基づいて、相対形状データ51に示される相対形状関数(f,f)中に特徴点を設定する。また、絶対形状算出部34は、それら複数の特徴点の中から1つを「基点」として設定する。この基点は、上述のステップS303で設定された基点と同じ場所を示す。更に、絶対形状算出部34は、基点O以外の複数の特徴点の、基点Oに対する相対位置を計算する。これにより、処理中の人物の顔における複数の特徴点のそれぞれについて相対位置が得られる。
ステップS313:
次に、絶対形状算出部34は、記憶部33に格納された三次元学習データ62を読み込み、各特徴点の「平均相対位置」を取得する。そして、絶対形状算出部34は、複数の特徴点がそれぞれの平均相対位置と一致するように、相対形状関数(f,f)を座標変換する。具体的には、上述のステップS305と同様の方法で、各特徴点の周辺領域の拡大/縮小が行われる。この座標変換処理によって、相対形状データ51に示される相対形状関数(f,f)から、処理中の顔に関する修正相対形状関数z’=(g,g)が算出される(式(14)参照)。
ステップS314:
次に、絶対形状算出部34は、三次元学習データ62から、複数人の修正形状関数g(x,y)に関する情報U、修正相対形状関数(g,g)に関する情報U,Uを取得する。これら学習データと上記ステップS313で算出された修正相対形状関数(g,g)に基づいて、絶対形状算出部34は、処理中の顔に関する修正形状関数g(x,y)を算出する。具体的には、ある位置k(k=y×w+x)における修正相対形状関数(g,g)の値をそれぞれg(k)及びg(k)とする時、絶対形状算出部34は、次の式で与えられる列ベクトルG及びn次の列ベクトルcを作成する。
Figure 2006049147
Figure 2006049147
これら列ベクトルG、列ベクトルc及び上記三次元形状学習データ62が示す情報U,Uを用いることによって、次の式で与えられる汎関数E2が定義される。
Figure 2006049147
そして、絶対形状算出部34は、この汎関数E2が最小になるn次の列ベクトルcを計算する。更に、その算出された列ベクトルcと上記三次元形状学習データ62が示す情報Uとを用いて、次の式で与えられるs次の列ベクトルG2が得られる。
Figure 2006049147
ここでs(s=w×h)は画素数であり、g(k)は上記位置k(k=y×w+x)における修正形状関数g(x,y)の値である。すなわち、上記式(25)によって、処理中の顔の修正形状関数g(x,y)が算出される。
ステップS315:
次に、絶対形状算出部34は、得られた修正形状関数g(x,y)における複数の特徴点の位置が、特徴点位置データ52が示す元の位置に戻るように、その修正形状関数g(x,y)を座標変換する。具体的には、上述のステップS305と逆の処理で、各特徴点の周辺領域の拡大/縮小が行われる。この座標変換処理によって、修正形状関数g(x,y)から、処理中の顔に関する形状関数f(x,y)が算出される。すなわち、処理中の顔の三次元形状が推定される。
ステップS316:
絶対形状算出部34は、このようにして得られた形状関数f(x,y)を示す三次元絶対形状データ53を、出力部35を介して出力する。また、絶対形状算出部34は、その三次元絶対形状データ53を、記憶部33に格納してもよい。このように、絶対形状分析装置30は、三次元形状学習データ62と特徴点位置データ52を参照することによって、相対形状データ51に示されたある顔の相対形状関数(f,f)を、その顔の形状関数f(x,y)に変換する。
以上に説明されたように、本発明に係る三次元形状推定システム1及び三次元形状推定方法によれば、ある顔画像データ50から三次元絶対形状データ53を得ることが可能となる。すなわち、ある物体が写っている単一の二次元画像から、その物体の三次元形状を推定することが可能となる。ここで、その物体を、ステレオ/多眼カメラ等の特別な撮影装置で撮影しておく必要はない。よって、コストが削減される。また、撮影時の情報を保存しておく必要はなく、その二次元画像の撮影環境に対する制約もなくなる。その処理途中においては、その二次元画像から、その物体の照明基底Bや相対形状関数(f,f)が推定される。また、手動で指定することなく、その物体の特徴点を自動的に見つけることが可能となる。
(第2の実施の形態)
第1の実施の形態による機能は、コンピュータシステム及びコンピュータプログラムによって実現することも可能である。図14は、本発明の第2の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。この三次元形状推定システム1’は、記憶装置70、演算処理装置71、入力装置72、表示装置73、データ入出力インターフェース74、及び三次元形状推定プログラム80を備えている。
記憶装置70は、ハードディスクドライブ(HDD)やRAM等のメモリである。この記憶装置70には、上述の顔画像データ50、相対形状データ51、特徴点位置データ52、三次元絶対形状データ53、一般化照明基底データ61、及び三次元形状学習データ62が格納される。演算処理装置71は、各装置に接続され、データのやりとりや各種演算を実行する。
入力装置72としては、キーボードやマウスが例示される。ユーザは、この入力装置72を用いることによって、データを入力したり各種コマンドを指定することができる。また、表示装置73はディスプレイであり、この表示装置73によって各種情報がユーザに通知される。ユーザは、通知された情報に基づいて、新たなコマンドを入力したりデータを入力したりできる。データ入出力インターフェース74は、顔画像データ50や三次元形状データ60の入力に用いられる。そのため、データ入出力インターフェース74は、レンジファインダやデジタルカメラ等の撮像装置、CD/DVDドライブ、他の端末などに接続される。
三次元形状推定プログラム80は、演算処理装置71によって実行されるソフトウェアプログラムである。この三次元形状推定プログラム80は、相対形状分析部81、特徴点位置探索部82、絶対形状分析部83、及び学習データ作成部84を含んでいる。これらプログラム群は、記憶装置70に格納されていてもよい。これらプログラムが演算処理装置71によって実行されることにより、第1の実施の形態において提供された機能と同じ機能が実現される。
具体的には、三次元形状推定プログラム80の相対形状分析部81の命令に従い、演算処理装置71は、顔画像データ50から相対形状データ51を作成する。これは、図4における相対形状算出部14の機能と同じである(図6参照)。また、三次元形状推定プログラム80の特徴点位置探索部82の命令に従い、演算処理装置71は、顔画像データ50及び相対形状データ51から特徴点位置データ52を作成する。これは、図7における特徴点抽出部22の機能と同じである(図8参照)。また、三次元形状推定プログラム80の絶対形状分析部83の命令に従い、演算処理装置71は、相対形状データ51及び特徴点位置データ52から三次元絶対形状データ53を作成する。これは、図10における絶対形状算出部34の機能と同じである(図13参照)。また、三次元形状推定プログラム80の学習データ作成部84の命令に従い、演算処理装置71は、一般化照明基底データ61や三次元形状学習データ62を作成する。これは、図4や図10における学習データ作成部12、32の機能と同じである(図5、図11参照)。
以上に示された三次元形状推定システム1’及び三次元形状推定プログラム80によれば、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することが可能となる。ここで、特別な計測装置を用いる必要はないので、コストが低減される。また、その単一の二次元画像から、その物体の照明基底Bや相対形状関数f,fを推定することが可能となる。更に、その単一の二次元画像から、その物体の特徴点を自動的に見つけることが可能となる。
(第3の実施の形態)
図15は、本発明の第3の実施の形態に係る画像生成システムの構成を示すブロック図である。この画像生成システム100は、相対形状分析装置110、特徴点位置探索装置120、絶対形状分析装置130、及び画像生成装置140を備えている。この画像生成システム100は、ある顔の二次元画像を示す顔画像データ50(図2参照)から、異なる照明条件を有する二次元画像(照明変換画像)、あるいは異なる照明条件と異なる顔の向きを有する二次元画像(回転変換画像)を示す変換画像データ55を作成する。
本実施の形態における相対形状分析装置110は、第1の実施の形態における相対形状分析装置10と同様の構成を有する。つまり、この相対形状分析装置110は、顔画像データ50から相対形状データ51を作成し、その相対形状データ51を特頂点位置探索装置120及び絶対形状分析装置130に出力する。また、本実施の形態において、相対形状分析装置110は、上記ステップS114で算出される照明基底Bを示す照明基底データ54を、画像生成装置140に出力する。
本実施の形態における特徴点位置探索装置120は、第1の実施の形態における特徴点位置探索装置20と同様の構成を有する。つまり、この特徴点位置探索装置120は、顔画像データ50と相対形状データ51から特徴点位置データ52を作成し、その特徴点位置データ52を絶対形状分析装置130に出力する。
本実施の形態における絶対形状分析装置130は、第1の実施の形態における絶対形状分析装置30と同様の構成を有する。つまり、この絶対形状分析装置130は、相対形状データ51と特徴点位置データ52から三次元絶対形状データ53を作成する。本実施の形態において、その三次元絶対形状データ53は、画像生成装置140に出力される。
画像生成装置140は、三次元絶対形状データ53及び照明基底データ54を受け取り、変換画像データ55を作成する。図16は、本実施の形態における画像生成装置140の構成を示すブロック図である。この画像生成装置140は、入力部141、画像生成部142、記憶部145、及び出力部146を備えている。画像生成部142は、二次元画像変換部143と三次元画像変換部144を含んでいる。記憶部145には、変換画像データ55が格納される。画像生成部142は、この変換画像データ55を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部145としては、ハードディスクドライブやメモリが例示される。
図17は、本発明に係る画像生成装置140の動作を示すフローチャートである。
ステップS401:
まず、相対形状分析装置110から照明基底データ54が、また、絶対形状分析装置130から三次元絶対形状データ53が、入力部141を介して画像生成部142に入力される。
ステップS402:
二次元画像変換部143は、上記式(6)のように、照明基底データ54が示すある人物の照明基底Bに、任意の照明強度ベクトルsを掛け合わせる。これによって、顔画像データ50が示す二次元顔画像とは異なる照明条件の下での二次元顔画像(照明変換画像)が得られる。二次元画像変換部143は、この照明変換画像を示す照明変換画像データ56を出力する。
回転変換画像が必要でない場合(ステップS403;No)、作成された照明変換画像データ56は、変換画像データ55として、出力部146を介して出力される(ステップS406)。また、その照明変換画像データ56は、変換画像データ55として、記憶部145に格納されてもよい。このように、本実施の形態によれば、相対形状分析装置110と画像生成装置140だけで、照明条件の異なる照明変換画像を作成することが可能となる。
ステップS404:
回転変換画像が必要な場合(ステップS403;Yes)、三次元画像変換部144は、三次元絶対形状データ53に加えて、上記ステップS402で作成された照明変換画像データ56を受け取る。つまり、三次元画像変換部144は、処理中の顔に関する、「推定された三次元形状(形状関数f(x,y))」と「照明条件の異なる照明変換画像」を取得する。そして、三次元画像変換部144は、その照明変換画像とその三次元形状を組み合わせる、すなわち、その照明変換画像をその三次元形状に張り合わせる。これによって、「照明条件の異なる新たな三次元形状」が作成される。
ステップS405:
次に、三次元画像変換部144は、その新たな三次元形状を三次元的に回転させ、顔の向きを所望の向きに設定する。これによって、元の二次元画像と異なる照明条件・顔の向きを有する二次元画像(回転変換画像)が得られる。三次元画像変換部144は、この回転変換画像を示す回転変換データ57を出力する。
ステップS406:
画像生成部142は、このようにして作成された照明変換画像データ56及び回転変換画像データ57の少なくとも1つを、変換画像データ55として出力する。その変換画像データ55は、出力部146を介して外部に出力される、あるいは記憶部145に格納される。
以上に説明されたように、本発明に係る画像生成システム100及び画像生成方法によれば、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することが可能となる。
(第4の実施の形態)
第3の実施の形態による機能は、コンピュータシステム及びコンピュータプログラムによって実現することも可能である。図18は、本発明の第4の実施の形態に係る画像生成システムの構成を示すブロック図である。この画像生成システム100’は、記憶装置170、演算処理装置171、入力装置172、表示装置173、データ入出力インターフェース174、及び画像生成プログラム180を備えている。
記憶装置170は、ハードディスクドライブ(HDD)やRAM等のメモリである。この記憶装置170には、上述の顔画像データ50、相対形状データ51、特徴点位置データ52、三次元絶対形状データ53、照明基底データ54、変換画像データ55、一般化照明基底データ61、及び三次元形状学習データ62が格納される。演算処理装置71は、各装置に接続され、データのやりとりや各種演算を実行する。
入力装置172としては、キーボードやマウスが例示される。ユーザは、この入力装置172を用いることによって、データを入力したり各種コマンドを指定することができる。また、表示装置173はディスプレイであり、この表示装置173によって各種情報がユーザに通知される。ユーザは、通知された情報に基づいて、新たなコマンドを入力したりデータを入力したりできる。データ入出力インターフェース174は、顔画像データ50や三次元形状データ60の入力に用いられる。そのため、データ入出力インターフェース174は、レンジファインダやデジタルカメラ等の撮像装置、CD/DVDドライブ、他の端末などに接続される。
画像生成プログラム180は、演算処理装置171によって実行されるソフトウェアプログラムである。この画像生成プログラム180は、相対形状分析部181、特徴点位置探索部182、絶対形状分析部183、画像生成部184、及び学習データ作成部185を含んでいる。これらプログラム群は、記憶装置170に格納されていてもよい。これらプログラムが演算処理装置171によって実行されることにより、第3の実施の形態において提供された機能と同じ機能が実現される。
具体的には、画像生成プログラム180の相対形状分析部181の命令に従い、演算処理装置171は、顔画像データ50から相対形状データ51及び照明基底データ54を作成する。これは、図15における相対形状分析装置110の機能と同じである。また、画像生成プログラム180の特徴点位置探索部182の命令に従い、演算処理装置171は、顔画像データ50及び相対形状データ51から特徴点位置データ52を作成する。これは、図15における特徴点位置探索装置120の機能と同じである。また、画像生成プログラム180の絶対形状分析部183の命令に従い、演算処理装置171は、相対形状データ51及び特徴点位置データ52から三次元絶対形状データ53を作成する。これは、図15における絶対形状分析装置130の機能と同じである。また、画像生成プログラム180の画像生成部184の命令に従い、演算処理装置171は、照明基底データ54及び三次元絶対形状データ53から変換画像データ55を作成する。これは、図15における画像生成装置140の機能と同じである。また、画像生成プログラム180の学習データ作成部185の命令に従い、演算処理装置171は、一般化照明基底データ61や三次元形状学習データ62を作成する。これは、図4や図10における学習データ作成部12、32と同じ機能である。
以上に説明されたように、本発明に係る画像生成システム100’及び画像生成プログラム180によれば、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することが可能となる。
以上に説明された本発明は、特に、顔個人認証技術などのセキュリティ分野、美容・整形の分野、アミューズメントの分野等において利用されることが期待される。

Claims (23)

  1. 複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを格納する記憶装置と、
    ある物体の二次元画像及び前記第1学習データに基づいて前記ある物体の照明基底を算出し、前記ある物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を前記算出された照明基底から算出し、前記相対形状関数を示す相対形状データを出力する相対形状分析装置と、
    前記二次元画像及び前記相対形状データに基づいて前記二次元顔画像から複数の特徴点を抽出し、前記複数の特徴点の位置を示す特徴点位置データを出力する特徴点位置探索装置と、
    前記相対形状データと前記特徴点位置データを受け取り、前記第2学習データと前記複数の特徴点の位置を参照することによって前記相対形状関数を前記形状関数に変換し、前記形状関数を示す三次元絶対形状データを出力する絶対形状分析装置と
    を具備する
    三次元形状推定システム。
  2. 請求項1に記載の三次元形状推定システムであって、
    前記複数の特徴点は、色・輝度に特徴を有する少なくとも1つの第1特徴点と、形状に特徴を有する少なくとも1つの第2特徴点を含み、
    前記特徴点位置探索装置は、前記二次元画像を用いて前記第1特徴点を抽出し、
    前記特徴点位置探索装置は、前記相対形状データが示す前記相対形状関数を用いて前記ある物体の表面の曲率を算出し、前記第1特徴点の位置及び前記曲率に基づいて前記第2特徴点を抽出する
    三次元形状推定システム。
  3. 請求項1又は2に記載の三次元形状推定システムであって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記照明基底は、B={B,B,B}で表され、ここで、Bα={bi,α}(α=x,y,z;iは各画素の番号)であり、
    前記相対形状分析装置は、前記算出された照明基底に基づいて、前記相対形状関数(f,f)を(f,f)=(bi,x/bi,z,bi,y/bi,z)として算出する
    三次元形状推定システム。
  4. 請求項1乃至3のいずれかに記載の三次元形状推定システムであって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記複数の特徴点のうちの1つを原点として、前記複数の特徴点の各々の位置が相対位置として表されるとき、
    前記第2学習データは、
    前記複数の物体における前記相対位置の平均値を、前記複数の特徴点の各々に対して示す情報と、
    前記複数の物体の各々に対して、前記複数の特徴点のそれぞれの前記相対位置が前記平均値と一致するように前記形状関数f(x,y)を座標変換することによって得られる修正形状関数g(x,y)に関する情報と、
    前記修正形状関数g(x,y)の偏微分形である修正相対形状関数(g,g)=(∂g/∂x,∂g/∂y)に関する情報とを含む
    三次元形状推定システム。
  5. 請求項4に記載の三次元形状推定システムであって、
    前記絶対形状分析装置は、
    前記特徴点位置データに基づいて、前記ある物体の前記複数の特徴点の前記原点に対する相対位置を算出し、
    前記複数の特徴点のそれぞれの前記相対位置が前記第2学習データが示す前記平均値と一致するように、前記相対形状データが示す前記相対形状関数(f,f)を座標変換することによって、前記ある物体に関する修正相対形状関数(g,g)を算出し、
    前記第2学習データが示す前記修正形状関数g(x,y)及び前記修正相対形状関数(g,g)に関する情報を参照することによって、前記ある物体に関する前記修正相対形状関数(g,g)を、前記ある物体に関する修正形状関数g(x,y)に変換し、
    前記複数の特徴点の位置が前記特徴点位置データが示す位置に戻るように前記修正形状関数g(x,y)を座標変換することによって、前記ある物体に関する前記形状関数f(x,y)を算出する
    三次元形状推定システム。
  6. 請求項1乃至5のいずれかに記載の三次元形状推定システムであって、
    前記複数の物体及び前記ある物体は、人間の顔である
    三次元形状推定システム。
  7. 請求項1乃至6のいずれかに記載の三次元形状推定システムと、
    画像生成装置と
    を具備し、
    前記画像生成装置は、
    前記三次元形状推定システムの前記相対形状分析装置から、前記ある物体の前記照明基底を示す照明基底データを受け取り、
    前記照明基底と任意の照明強度に基づいて、前記二次元画像と異なる照明条件を有する照明変換画像を生成する
    画像生成システム。
  8. 請求項7に記載の画像生成システムであって、
    前記画像生成装置は、
    前記三次元形状推定システムの前記絶対形状分析装置から、前記ある物体に関する三次元絶対形状データを受け取り、
    前記照明変換画像と前記三次元形状を組み合わせることによって、照明条件の異なる新たな三次元形状を作成し、
    前記新たな三次元形状を回転させることによって、前記二次元画像と異なる照明条件及び前記ある物体の向きを有する回転変換画像を生成する
    画像生成システム。
  9. 複数の物体の照明基底を示す第1学習データを格納する記憶装置と、
    ある物体の二次元画像及び前記第1学習データに基づいて前記ある物体の照明基底を算出し、前記算出された照明基底を示す照明基底データを出力する相対形状分析装置と、
    前記照明基底と任意の照明強度に基づいて、前記二次元画像と異なる照明条件を有する照明変換画像を生成する画像生成装置と
    を具備する
    画像生成システム。
  10. コンピュータが読み取り可能な記録媒体に記録され、実行された時にコンピュータに次のステップ:
    (A)複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを記憶装置に格納するステップと、
    (B)ある物体の二次元画像及び前記第1学習データに基づいて、前記ある物体の照明基底を算出するステップと、
    (C)前記算出された照明基底に基づいて、前記ある物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップと、
    (D)前記二次元画像及び前記相対形状関数に基づいて、前記二次元顔画像から複数の特徴点を抽出するステップと、
    (E)前記第2学習データと前記複数の特徴点の位置を参照することによって、前記算出された相対形状関数を前記形状関数に変換するステップと
    を実行させる三次元形状推定プログラム。
  11. 請求項10に記載の三次元形状推定プログラムであって、
    前記複数の特徴点は、色・輝度に特徴を有する少なくとも1つの第1特徴点と、形状に特徴を有する少なくとも1つの第2特徴点を含み、
    前記(D)ステップは、
    (D1)前記二次元顔画像を用いて前記第1特徴点を抽出するステップと、
    (D2)前記相対形状関数を用いて前記ある物体の表面の曲率を算出するステップと、
    (D3)前記第1特徴点の位置及び前記算出された曲率に基づいて前記第2特徴点を抽出するステップと
    を有する
    三次元形状推定プログラム。
  12. 請求項10又は11に記載の三次元形状推定プログラムであって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記照明基底は、B={B,B,B}で表され、ここで、Bα={bi,α}(α=x,y,z;iは各画素の番号)であり、
    前記(C)ステップにおいて、前記相対形状関数(f,f)は、前記算出された照明基底に基づいて、(f,f)=(bi,x/bi,z,bi,y/bi,z)として算出される
    三次元形状推定プログラム。
  13. 請求項10乃至12のいずれかに記載の三次元形状推定プログラムであって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記(A)ステップは、
    (A1)前記複数の物体のそれぞれの前記三次元形状を読み込むステップと、
    (A2)前記三次元形状に基づいて、前記複数の物体のそれぞれに対して複数の特徴点の位置を決定するステップと、
    (A3)前記複数の特徴点のうち1つを原点として決定するステップと、
    (A4)前記複数の特徴点の各々の前記原点に対する位置を相対位置として算出するステップと、
    (A5)前記複数の物体における前記相対位置の平均値を、前記複数の特徴点の各々に対して算出するステップと、
    (A6)前記複数の特徴点のそれぞれの前記相対位置が前記平均値と一致するように、前記形状関数f(x,y)を座標変換することによって修正形状関数g(x,y)を算出するステップと、
    (A7)前記修正形状関数g(x,y)の偏微分形である修正相対形状関数(g,g)=(∂g/∂x,∂g/∂y)を算出するステップと、
    (A8)前記修正形状関数g(x,y)に関する情報、前記修正相対形状関数(g,g)に関する情報、及び前記複数の特徴点の各々に対する前記平均値を示すデータを、前記第2学習データとして前記記憶装置に格納するステップと
    を有する
    三次元形状推定プログラム。
  14. 請求項13に記載の三次元形状推定プログラムであって、
    前記(E)ステップは、
    (E1)前記ある物体の前記複数の特徴点の各々の前記原点に対する相対位置を算出するステップと、
    (E2)前記複数の特徴点のそれぞれの前記相対位置が前記第2学習データが示す前記平均値と一致するように、前記相対形状関数(f,f)を座標変換することにより、前記ある物体に関する修正相対形状関数(g,g)を算出するステップと、
    (E3)前記第2学習データが示す前記修正形状関数g(x,y)及び前記修正相対形状関数(g,g)に関する情報を参照することによって、前記ある物体に関する前記修正相対形状関数(g,g)を、前記ある物体に関する修正形状関数g(x,y)に変換するステップと、
    (E4)前記複数の特徴点の位置が前記二次元画像が示す位置に戻るように、前記修正形状関数g(x,y)を座標変換することによって、前記ある物体に関する前記形状関数f(x,y)を算出するステップと
    を有する
    三次元形状推定プログラム。
  15. コンピュータが読み取り可能な記録媒体に記録され、実行された時にコンピュータに次のステップ:
    (a)複数の物体の照明基底を示す第1学習データを記憶装置に格納するステップと、
    (b)ある物体の二次元画像及び前記第1学習データに基づいて、前記ある物体の照明基底を算出するステップと、
    (c)前記照明基底と任意の照明強度に基づいて、前記二次元画像と異なる照明条件を有する照明変換画像を生成するステップと
    を実行させる画像生成プログラム。
  16. 請求項15に記載の画像生成プログラムであって、
    更に、
    (d)前記複数の物体の三次元形状を示す第2学習データを前記記憶装置に格納するステップと、
    (e)前記算出された照明基底に基づいて、前記ある物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップと、
    (f)前記二次元画像及び前記相対形状関数に基づいて、前記二次元顔画像から複数の特徴点を抽出するステップと、
    (g)前記第2学習データと前記複数の特徴点の位置を参照することによって、前記算出された相対形状関数を前記形状関数に変換するステップと、
    (h)前記照明変換画像と前記形状関数に基づいて、照明条件の異なる新たな三次元形状を作成するステップと、
    (i)前記新たな三次元形状を回転させることによって、前記二次元画像と異なる照明条件及び前記ある物体の向きを有する回転変換画像を生成するステップと
    を前記コンピュータに実行させる
    画像生成プログラム。
  17. コンピュータプログラムの命令に従って動作する演算処理装置と前記演算処理装置に接続された記憶装置を備える三次元形状推定システムにおける三次元形状推定方法であって、
    (A)前記演算処理装置が、複数の物体の照明基底及び三次元形状のそれぞれを示す第1学習データ及び第2学習データを前記記憶装置に格納するステップと、
    (B)前記演算処理装置が、ある物体の二次元画像及び前記第1学習データに基づいて、前記ある物体の照明基底を算出するステップと、
    (C)前記演算処理装置が、前記算出された照明基底に基づいて、前記ある物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップと、
    (D)前記演算処理装置が、前記二次元画像及び前記相対形状関数に基づいて、前記二次元顔画像から複数の特徴点を抽出するステップと、
    (E)前記演算処理装置が、前記第2学習データと前記複数の特徴点の位置を参照することによって、前記算出された相対形状関数を前記形状関数に変換するステップとを含む
    三次元形状推定方法。
  18. 請求項17に記載の三次元形状推定方法であって、
    前記複数の特徴点は、色・輝度に特徴を有する少なくとも1つの第1特徴点と、形状に特徴を有する少なくとも1つの第2特徴点を含み、
    前記(D)ステップは、
    (D1)前記演算処理装置が、前記二次元顔画像を用いて前記第1特徴点を抽出するステップと、
    (D2)前記演算処理装置が、前記相対形状関数を用いて前記ある物体の表面の曲率を算出するステップと、
    (D3)前記演算処理装置が、前記第1特徴点の位置及び前記算出された曲率に基づいて前記第2特徴点を抽出するステップとを含む
    三次元形状推定方法。
  19. 請求項17又は18に記載の三次元形状推定方法であって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記照明基底は、B={B,B,B}で表され、ここで、Bα={bi,α}(α=x,y,z;iは各画素の番号)であり、
    前記(C)ステップにおいて、前記相対形状関数(f,f)が、前記算出された照明基底に基づいて、(f,f)=(bi,x/bi,z,bi,y/bi,z)として算出される
    三次元形状推定方法。
  20. 請求項17乃至19のいずれかに記載の三次元形状推定方法であって、
    前記二次元画像がxy座標系を用いて表されるとき、
    前記形状関数はf(x,y)で表され、
    前記相対形状関数は(f,f)=(∂f/∂x,∂f/∂y)で表され、
    前記(A)ステップは、
    (A1)前記演算処理装置が、前記複数の物体のそれぞれの前記三次元形状を読み込むステップと、
    (A2)前記演算処理装置が、前記三次元形状に基づいて、前記複数の物体のそれぞれに対して複数の特徴点の位置を決定するステップと、
    (A3)前記演算処理装置が、前記複数の特徴点のうち1つを原点として決定するステップと、
    (A4)前記演算処理装置が、前記複数の特徴点の各々の前記原点に対する位置を相対位置として算出するステップと、
    (A5)前記演算処理装置が、前記複数の物体における前記相対位置の平均値を、前記複数の特徴点の各々に対して算出するステップと、
    (A6)前記演算処理装置が、前記複数の特徴点のそれぞれの前記相対位置が前記平均値と一致するように、前記形状関数f(x,y)を座標変換することによって修正形状関数g(x,y)を算出するステップと、
    (A7)前記演算処理装置が、前記修正形状関数g(x,y)の偏微分形である修正相対形状関数(g,g)=(∂g/∂x,∂g/∂y)を算出するステップと、
    (A8)前記演算処理装置が、前記修正形状関数g(x,y)に関する情報、前記修正相対形状関数(g,g)に関する情報、及び前記複数の特徴点の各々に対する前記平均値を示すデータを、前記第2学習データとして前記記憶装置に格納するステップとを含む
    三次元形状推定方法。
  21. 請求項20に記載の三次元形状推定方法であって、
    前記(E)ステップは、
    (E1)前記演算処理装置が、前記ある物体の前記複数の特徴点の各々の前記原点に対する相対位置を算出するステップと、
    (E2)前記演算処理装置が、前記複数の特徴点のそれぞれの前記相対位置が前記第2学習データが示す前記平均値と一致するように、前記相対形状関数(f,f)を座標変換することにより、前記ある物体に関する修正相対形状関数(g,g)を算出するステップと、
    (E3)前記演算処理装置が、前記第2学習データが示す前記修正形状関数g(x,y)及び前記修正相対形状関数(g,g)に関する情報を参照することによって、前記ある物体に関する前記修正相対形状関数(g,g)を、前記ある物体に関する修正形状関数g(x,y)に変換するステップと、
    (E4)前記演算処理装置が、前記複数の特徴点の位置が前記二次元画像が示す位置に戻るように、前記修正形状関数g(x,y)を座標変換することによって、前記ある物体に関する前記形状関数f(x,y)を算出するステップとを含む
    三次元形状推定方法。
  22. コンピュータプログラムの命令に従って動作する演算処理装置と前記演算処理装置に接続された記憶装置を備える画像生成システムにおける画像生成方法であって、
    (a)前記演算処理装置が、複数の物体の照明基底を示す第1学習データを前記記憶装置に格納するステップと、
    (b)前記演算処理装置が、ある物体の二次元画像及び前記第1学習データに基づいて、前記ある物体の照明基底を算出するステップと、
    (c)前記演算処理装置が、前記照明基底と任意の照明強度に基づいて、前記二次元画像と異なる照明条件を有する照明変換画像を生成するステップとを含む
    画像生成方法。
  23. 請求項22に記載の画像生成方法であって、
    更に、
    (d)前記演算処理装置が、前記複数の物体の三次元形状を示す第2学習データを前記記憶装置に格納するステップと、
    (e)前記演算処理装置が、前記算出された照明基底に基づいて、前記ある物体の三次元形状を表現する形状関数の偏微分形である相対形状関数を算出するステップと、
    (f)前記演算処理装置が、前記二次元画像及び前記相対形状関数に基づいて、前記二次元顔画像から複数の特徴点を抽出するステップと、
    (g)前記演算処理装置が、前記第2学習データと前記複数の特徴点の位置を参照することによって、前記算出された相対形状関数を前記形状関数に変換するステップと、
    (h)前記演算処理装置が、前記照明変換画像と前記形状関数に基づいて、照明条件の異なる新たな三次元形状を作成するステップと、
    (i)前記演算処理装置が、前記新たな三次元形状を回転させることによって、前記二次元画像と異なる照明条件及び前記ある物体の向きを有する回転変換画像を生成するステップとを含む
    画像生成方法。
JP2006542385A 2004-11-04 2005-11-01 三次元形状推定システム及び画像生成システム Active JP4284664B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004321159 2004-11-04
JP2004321159 2004-11-04
PCT/JP2005/020067 WO2006049147A1 (ja) 2004-11-04 2005-11-01 三次元形状推定システム及び画像生成システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007223223A Division JP4623320B2 (ja) 2004-11-04 2007-08-29 三次元形状推定システム及び画像生成システム

Publications (2)

Publication Number Publication Date
JPWO2006049147A1 true JPWO2006049147A1 (ja) 2008-08-07
JP4284664B2 JP4284664B2 (ja) 2009-06-24

Family

ID=36319153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006542385A Active JP4284664B2 (ja) 2004-11-04 2005-11-01 三次元形状推定システム及び画像生成システム

Country Status (4)

Country Link
US (1) US7860340B2 (ja)
EP (1) EP1808810A4 (ja)
JP (1) JP4284664B2 (ja)
WO (1) WO2006049147A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8532344B2 (en) * 2008-01-09 2013-09-10 International Business Machines Corporation Methods and apparatus for generation of cancelable face template
JP5071198B2 (ja) * 2008-03-28 2012-11-14 富士通株式会社 信号機認識装置,信号機認識方法および信号機認識プログラム
JP5106459B2 (ja) * 2009-03-26 2012-12-26 株式会社東芝 立体物判定装置、立体物判定方法及び立体物判定プログラム
US8861800B2 (en) * 2010-07-19 2014-10-14 Carnegie Mellon University Rapid 3D face reconstruction from a 2D image and methods using such rapid 3D face reconstruction
MY160274A (en) 2010-08-19 2017-02-28 Nissan Motor Three-dimensional object detection device and three-dimensional object detection method
US8334985B2 (en) * 2010-10-08 2012-12-18 Omron Corporation Shape measuring apparatus and shape measuring method
US8860660B2 (en) * 2011-12-29 2014-10-14 Grinbath, Llc System and method of determining pupil center position
US9910490B2 (en) 2011-12-29 2018-03-06 Eyeguide, Inc. System and method of cursor position control based on the vestibulo-ocular reflex
US9292086B2 (en) 2012-09-26 2016-03-22 Grinbath, Llc Correlating pupil position to gaze location within a scene
US10179031B2 (en) * 2013-10-28 2019-01-15 Brainlab Ag Interrelated point acquisition for navigated surgery
JP5744161B2 (ja) * 2013-11-18 2015-07-01 シャープ株式会社 画像処理装置
JP6576083B2 (ja) * 2015-04-15 2019-09-18 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
CN105809107B (zh) * 2016-02-23 2019-12-03 深圳大学 基于面部特征点的单样本人脸识别方法及系统
US20180357819A1 (en) * 2017-06-13 2018-12-13 Fotonation Limited Method for generating a set of annotated images
JP2020204790A (ja) * 2017-08-31 2020-12-24 らしさ・ドット・コム株式会社 シミュレーション装置、シミュレーション方法、及びコンピュータプログラム
JP6601825B2 (ja) 2018-04-06 2019-11-06 株式会社EmbodyMe 画像処理装置および2次元画像生成用プログラム
US11521460B2 (en) 2018-07-25 2022-12-06 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
AU2019208182B2 (en) 2018-07-25 2021-04-08 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
KR102526700B1 (ko) * 2018-12-12 2023-04-28 삼성전자주식회사 전자 장치 및 그의 3d 이미지 표시 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9201006D0 (en) 1992-01-17 1992-03-11 Philip Electronic And Associat Classifying faces
JPH11242745A (ja) 1998-02-25 1999-09-07 Victor Co Of Japan Ltd 顔画像の計測・処理方法
JP4213327B2 (ja) 1999-07-12 2009-01-21 富士フイルム株式会社 光源方向と3次元形状の推定方法および装置並びに記録媒体
JP2001283216A (ja) * 2000-04-03 2001-10-12 Nec Corp 画像照合装置、画像照合方法、及びそのプログラムを記録した記録媒体
WO2002007095A1 (fr) 2000-07-17 2002-01-24 Mitsubishi Denki Kabushiki Kaisha Dispositif de representation en 3d du visage et dispositif de reconnaissance peripherique comprenant ce dernier
JP4036005B2 (ja) 2002-02-04 2008-01-23 コニカミノルタホールディングス株式会社 撮影条件検出装置および撮影条件検出プログラム
JP3940690B2 (ja) 2002-03-25 2007-07-04 株式会社東芝 画像処理装置及びその方法
JP2004021924A (ja) * 2002-06-20 2004-01-22 Nec Corp 顔特徴抽出方法、装置および情報記憶媒体
JP2004054947A (ja) 2002-07-16 2004-02-19 Nec Corp 物体照合システム、物体照合方法および物体照合プログラム
JP2004094773A (ja) * 2002-09-03 2004-03-25 Nec Corp 頭部装着物画像合成方法、化粧画像合成方法、頭部装着物画像合成装置、化粧画像合成装置及びプログラム
EP1679657B1 (en) * 2003-10-30 2017-12-27 NEC Corporation Estimation system, estimation method, and estimation program for estimating object state
JP4552431B2 (ja) * 2003-12-08 2010-09-29 日本電気株式会社 画像照合装置、画像照合方法及び画像照合プログラム
US7609860B2 (en) * 2005-06-14 2009-10-27 Mitsubishi Electric Research Laboratories, Inc. Bilinear illumination model for robust face recognition
US7609859B2 (en) * 2005-06-14 2009-10-27 Mitsubishi Electric Research Laboratories, Inc. Method and system for generating bi-linear models for faces

Also Published As

Publication number Publication date
EP1808810A1 (en) 2007-07-18
WO2006049147A1 (ja) 2006-05-11
EP1808810A4 (en) 2013-07-24
US20080008399A1 (en) 2008-01-10
US7860340B2 (en) 2010-12-28
JP4284664B2 (ja) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4284664B2 (ja) 三次元形状推定システム及び画像生成システム
Wechsler Reliable Face Recognition Methods: System Design, Impementation and Evaluation
US6072903A (en) Image processing apparatus and image processing method
Pighin et al. Modeling and animating realistic faces from images
US6278460B1 (en) Creating a three-dimensional model from two-dimensional images
JP4950787B2 (ja) 画像処理装置及びその方法
AU2019203928B2 (en) Face location detection
WO2019035155A1 (ja) 画像処理システム、画像処理方法、及びプログラム
JP6207210B2 (ja) 情報処理装置およびその方法
JP2006249618A (ja) 仮想試着装置
JP2006520055A (ja) 2次元画像からの3次元オブジェクトの不変視点検出および識別
JP2002133446A (ja) 顔画像処理方法およびシステム
CN111553284A (zh) 人脸图像处理方法、装置、计算机设备和存储介质
US11120624B2 (en) Three-dimensional head portrait generating method and electronic device
JP5503510B2 (ja) 姿勢推定装置および姿勢推定プログラム
JP5419777B2 (ja) 顔画像合成装置
JP4623320B2 (ja) 三次元形状推定システム及び画像生成システム
JP2017122993A (ja) 画像処理装置、画像処理方法及びプログラム
JPH0273471A (ja) 三次元形状推定方法
JP5865092B2 (ja) 画像処理装置、画像処理方法及びプログラム
Jian et al. Realistic face animation generation from videos
Chouvatut et al. Face reconstruction and camera pose using multi-dimensional descent
Zhang et al. Anthropometric modeling of faces from range scans
Šimkutė et al. An Overview of 3D Modelling for Facial Recognition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4284664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5