JP6601825B2 - 画像処理装置および2次元画像生成用プログラム - Google Patents

画像処理装置および2次元画像生成用プログラム Download PDF

Info

Publication number
JP6601825B2
JP6601825B2 JP2018073826A JP2018073826A JP6601825B2 JP 6601825 B2 JP6601825 B2 JP 6601825B2 JP 2018073826 A JP2018073826 A JP 2018073826A JP 2018073826 A JP2018073826 A JP 2018073826A JP 6601825 B2 JP6601825 B2 JP 6601825B2
Authority
JP
Japan
Prior art keywords
image
evaluation value
data
image data
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073826A
Other languages
English (en)
Other versions
JP2019185295A (ja
Inventor
一星 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Embodyme
Original Assignee
Embodyme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Embodyme filed Critical Embodyme
Priority to JP2018073826A priority Critical patent/JP6601825B2/ja
Priority to US16/498,875 priority patent/US10893252B2/en
Priority to EP19774044.2A priority patent/EP3591620B1/en
Priority to ES19774044T priority patent/ES2906626T3/es
Priority to PCT/JP2019/014985 priority patent/WO2019194282A1/ja
Priority to CN201980002055.7A priority patent/CN110546687B/zh
Publication of JP2019185295A publication Critical patent/JP2019185295A/ja
Application granted granted Critical
Publication of JP6601825B2 publication Critical patent/JP6601825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Graphics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Image Generation (AREA)

Description

本発明は、画像処理装置および2次元画像生成用プログラムに関し、特に、3Dモデルの3次元データから2次元画像データを生成する装置に用いて好適なものである。
従来、コンピュータグラフィックス分野において、撮影画像から3Dモデルを生成する技術が多数提供されている。その中には、機械学習を用いて、2次元画像から3次元形状を推定するようにした技術も存在する(例えば、特許文献1参照)。
逆に、3Dモデルから2次元画像を生成する技術も知られている(例えば、特許文献2参照)。この特許文献2には、3次元モデルデータの利用および管理の利便性を向上させるために、3Dモデルの特徴部を含むように3Dモデルのサムネイル画像を作成することが開示されている。
2次元画像から3Dモデルの作成と、3Dモデルから2次元画像の作成とを双方向で行うようにした技術も知られている(例えば、特許文献3参照)。この特許文献3に記載の画像処理装置は、撮影された顔画像を修正する際に、自然な顔の形に容易に修正することができるようにすることを目的としたものであり、被写体の3Dモデルを生成し、当該生成した3Dモデルの表面に被写体の撮影画像をマッピングした後、3Dモデルの形状を変形する。そして、変形した3Dモデルを、撮影画像をマッピングした方向に射影し、これによって得られた2次元平面画像を処理結果画像とする。
WO06/049147号公報 特開2017−4065号公報 特開2006−4158号公報
ところで、特許文献2に記載の画像処理装置において作成している2次元画像は、3Dモデルの特徴部を含むサムネイル画像であるから、このサムネイル画像自体を高精度に生成する必要性はそれほど高くない。これに対し、特許文献3に記載の画像処理装置では、自然な顔の形に修正された2次元画像を得ることを目的としているので、2次元画像を一定レベル以上の品質で高精度に生成することが要求される。3Dモデルから高精度な2次元画像を生成したいというニーズは、特許文献3に記載されたユースケース以外にも多く存在する。ここで言う高精度な2次元画像とは、撮影画像と遜色のない2次元画像のことである。
しかしながら、3Dモデルから2次元画像を生成する場合において、その2次元画像を高精度に生成するためには、従来は3Dモデル自体を高精度に生成する必要があった。また、その3Dモデルに対する撮影画像のマッピング(貼り付け)も正確に行う必要があった。さらに、撮影画像がマッピングされた3Dモデルを2次元画像に変換する際に、特許文献3のように単純な投影を行うだけでは、高精度な2次元画像は得られない。すなわち、現実のあらゆる光の物理現象を忠実にシミュレーションし、そのシミュレーション結果を反映させるように変換処理を行う必要があった。しかしながら、これらの全て満たす処理を実際に行うのは困難であり、3Dモデルから高精度な2次元画像を生成することはできていないというのが実情であった。
本発明は、このような問題を解決するために成されたものであり、3Dモデルから撮影画像と遜色のない高精度な2次元画像を生成することができるようにすることを目的とする。
上記した課題を解決するために、本発明は、3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成部と、生成された2次元画像データと正解画像として用いる撮影画像データとの近似性を表す評価値を算出する評価値算出部とを備え、3次元データを2D画像生成部に入力して処理を繰り返し行ったときに生成される2次元画像データについて都度算出される評価値が最適化するように、2D画像生成部の2D変換アルゴリズムを学習によって改変するようにしている。
上記のように構成した本発明によれば、2D画像生成部による3次元データから2次元画像データの生成が、2D変換アルゴリズムを改変しながら繰り返し実行される。このとき、高精度な撮影画像データを正解画像として、2D画像生成部により生成される2次元画像データについて都度算出される評価値が最適化するように、2D変換アルゴリズムが学習により進化してく。これにより、高精度な3Dモデルの3次元データでなくても、3Dモデルから撮影画像と遜色のない高精度な2次元画像を生成することができる。
本実施形態による画像処理装置の機能構成例を示すブロック図である。 第1パターンによる学習を行う場合の機能構成例を示すブロック図である。 第2パターンによる学習を行う場合の機能構成例を示すブロック図である。 第3パターンによる学習を行う場合の機能構成例を示すブロック図である。 第4パターンによる学習を行う場合の機能構成例を示すブロック図である。 第1パターン〜第4パターンを適用して学習を行う場合の機能構成例を示すブロック図である。
以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による画像処理装置の機能構成例を示すブロック図である。図1に示すように、本実施形態の画像処理装置は、その機能構成として、3Dデータ取得部11、正解画像取得部12、2D画像生成部13および評価値算出部14を備えている。これらの各機能ブロック11〜14は、ハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、上記各機能ブロック11〜14は、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。
3Dデータ取得部11は、撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する。3Dデータ取得部11が取得する3次元データは、高精度な3Dモデルの3次元データであることは必須でない。ここで、高精度な3Dモデルの3次元データとは、物体の3次元形状を3Dモデルによって忠実に表していて、その3Dモデルに対する撮影画像のマッピング(貼り付け)も正確に行われているデータをいう。本実施形態の3Dデータ取得部11が取得する3次元データは、ここまで高精度なデータでなくてもよい。例えば、3Dデータ取得部11が取得する3次元データは、2次元の撮影画像データを公知の技術により3Dモデルに変換したデータとすることが可能である。
正解画像取得部12は、学習の正解画像として用いる2次元の撮影画像データを取得する。例えば、正解画像取得部12が取得する撮影画像データは、3Dデータ取得部11により取得される3次元データの生成元として用いられた撮影画像データとすることが可能である。
2D画像生成部13は、3Dデータ取得部11により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する。なお、この2D変換アルゴリズムを、以下では記号“g()”で表すものとする。ここで用いる2D変換アルゴリズムは、公知のアルゴリズムを用いることが可能である。ただし、後述するように、この2D変換アルゴリズムを学習によって改変するので、改変が可能なアルゴリズムであることを必須とする。
なお、本実施形態において、2D変換アルゴリズムを改変することは、例えば、3次元データを特定する3次元空間座標上の値を、2次元画像データを特定する2次元空間座標上の値に変換する際の変換処理ロジックの変更や、その変換処理ロジックにおいて用いる関数やパラメータの変更、変換処理ロジックにおいて用いるライブラリの変更などの少なくとも1つを含む。
評価値算出部14は、2D画像生成部13により生成された2次元画像データと、正解画像取得部12により取得された撮影画像データとの近似性を表す評価値を算出する。そして、2D画像生成部13は、3次元データを2D画像生成部13に入力して処理を繰り返し行ったときに生成される2次元画像データについて都度算出される評価値が最適化するように、2D変換アルゴリズムを学習によって改変する。
本実施形態では、2D画像生成部13は、以下に示す4つのパターンを適用して2D変換アルゴリズムの学習を行う。図2〜図5は、この4つのパターンによる学習を行う場合における画像処理装置の具体的な機能構成例を示している。以下に、4つのパターンの学習を順に説明する。
<第1パターン>
図2は、第1パターンによる学習を行う場合の機能構成例を示すブロック図である。第1パターンによる学習は、いわゆるGAN(Generative Adversarial Network:敵対的生成ネットワーク)として知られた学習アルゴリズムを適用したものである。図2に示すように、画像処理装置は、第1パターンによる学習を行うための機能構成として、2D画像生成部13Aおよび第1の評価値算出部14Aを備えている。2D画像生成部13Aは、GANにおいて一般的に生成器(generator)と呼ばれるものに相当する。一方、第1の評価値算出部14Aは、GANにおいて一般的に識別器(discriminator)と呼ばれるものに相当する。
第1の評価値算出部14Aは、3Dデータ取得部11により取得された3次元データ(以下、記号“s”で表す)と、正解画像取得部12により正解画像として取得された撮影画像データ(以下、記号“x”で表す。正解画像xと記すこともある。)または2D画像生成部13Aにより3次元データsから生成された2次元画像データ(以下、記号“g(s)”で表す)とを入力として、所定の識別アルゴリズムに従って、入力された画像が正解画像xであるか、2D画像生成部13Aにより生成された2次元画像データg(s)であるかを識別し、正解画像であると識別される確率を第1の評価値(以下、記号“A”で表す)として算出する。
画像処理装置は、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように2D画像生成部13Aの2D変換アルゴリズムを改変する。また、画像処理装置は、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最小化するとともに、撮影画像データ(正解画像)xを入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように第1の評価値算出部14Aの識別アルゴリズムを改変する。識別アルゴリズムを改変するとは、入力された画像が正解画像か否かを識別する際の識別処理ロジックの変更や、その識別処理ロジックにおいて用いる関数やパラメータの変更、識別処理ロジックにおいて用いるライブラリの変更などの少なくとも1つを含む。
ここで、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最小化するとともに、正解画像xを入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように第1の評価値算出部14Aの識別アルゴリズムを改変するというのは、識別器に相当する第1の評価値算出部14Aが、入力される画像が正解画像なのかそうでないのかを識別する能力を高めるように学習することを意味する。この識別能力が高まっていけば、第1の評価値算出部14Aは、正解画像とわずかに異なる画像であっても、それが正解画像ではないと識別することができるようになる。
一方、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように2D画像生成部13Aの2D変換アルゴリズムを改変するというのは、2D画像生成部13Aが、第1の評価値算出部14Aが正解画像かどうかを識別できないような2次元画像データg(s)を生成する能力を高めるように学習することを意味する。この生成能力が高まっていけば、2D画像生成部13Aは、正解画像と殆ど相違のない2次元画像データg(s)を生成することができるようになる。
実際には、2D画像生成部13Aによる学習と、第1の評価値算出部14Aによる学習とを交互に繰り返す。このように、2D画像生成部13A(generator)は、正解画像xにできるだけ近く第1の評価値算出部14Aを騙せるような2次元画像データg(s)を生成し、第1の評価値算出部14A(discriminator)は、2D画像生成部13Aが正解画像に似せようとして生成した2次元画像データg(s)と正解画像xとをできるだけ見分けられるように学習する。これにより、学習が進むと、2D画像生成部13Aは、撮影画像データxと見分けがつかない2次元画像データg(s)を生成することができるようになる。
<第2パターン>
図3は、第2パターンによる学習を行う場合の機能構成例を示すブロック図である。第2パターンによる学習は、いわゆるスタイル変換(Neural Style Transfer)として知られた学習アルゴリズムの損失関数を適用したものである。図3に示すように、画像処理装置は、第2パターンによる学習を行うための機能構成として、2D画像生成部13Bおよび第2の評価値算出部14Bを備えている。
第2の評価値算出部14Bは、2次元画像データの画像分類のために学習済みのニューラルネットワークを有する。以下では、ニューラルネットワークを記号“Φ”で表し、当該ネットワークの各階層をΦ_Lで表す。第2の評価値算出部14Bは、当該ニューラルネットワークΦを構成する各階層Φ_Lにおいて、正解画像取得部12により取得された撮影画像データxおよび2D画像生成部13Bにより生成された2次元画像データg(s)のそれぞれに関する値の差の合計値または平均値を第2の評価値(以下、記号“B”で表す)として算出する。
すなわち、ニューラルネットワークΦの入力層(第1階層)Φ_1には、正解画像取得部12により取得された正解画像xおよび2D画像生成部13Bにより生成された2次元画像データg(s)が入力される。ニューラルネットワークΦの第2階層Φ_2では、第1階層Φ_1の正解画像xおよび2次元画像データg(s)からそれぞれ抽出された特徴量群をマップ化した特徴マップが生成される。ニューラルネットワークΦの第3階層Φ_2では、正解画像xおよび2次元画像データg(s)のそれぞれに対応する第2階層Φ_2の特徴マップからそれぞれ更に抽出された特徴量群をマップ化した特徴マップが生成される。以下同様にして、第3階層以降Φ_L(L=3,4,・・・)において特徴マップが生成される。
例えば、第2の評価値算出部14Bは、ニューラルネットワークΦの第1階層Φ_1における正解画像xの各ピクセルにおける色の値と2次元画像データg(s) の各ピクセルにおける色の値との差の和または平均値(以下、差の和または平均値を単に差分と称することがある)を算出する。また、第2の評価値算出部14Bは、第2階層以降Φ_L(L=2,3,・・・)のそれぞれにおいて、正解画像xおよび2次元画像データg(s)のそれぞれから生成される特徴マップにおける特徴量群の差の和または平均値(差分)を算出する。そして、各階層Φ_L(L=1,2,3,・・・)において算出した差分を合計し、その合計値または平均値を第2の評価値Bとして算出する。
画像処理装置は、第2の評価値算出部14Bにより算出される第2の評価値Bを最小化するように2D画像生成部13Bの2D変換アルゴリズムを改変する。第2の評価値Bを最小化するように2D画像生成部13Bの2D変換アルゴリズムを改変するというのは、2D画像生成部13Bが正解画像xと殆ど差のない2次元画像データg(s)を生成する能力を高めるように学習することを意味する。この生成能力が高まっていけば、2D画像生成部13Bは、撮影画像データxと殆ど相違のない2次元画像データg(s)を生成することができるようになる。
<第3パターン>
図4は、第3パターンによる学習を行う場合の機能構成例を示すブロック図である。第4パターンによる学習は、いわゆるCycleGANとして知られた学習アルゴリズムを適用したものである。図4に示すように、画像処理装置は、第3パターンによる学習を行うための機能構成として、2D画像生成部13Cおよび評価値算出部14Cを備えている。評価値算出部14Cは、3次元データ生成部14C−1、第1差分値算出部14C−2、第2差分値算出部14C−3および第3の評価値算出部14C−4を備えている。
3次元データ生成部14C−1は、2次元の画像データから3Dモデルの3次元データを所定の3D変換アルゴリズムに従って生成する。なお、この3D変換アルゴリズムを、以下では記号“f()”で表すものとする。ここで用いる3D変換アルゴリズムは、公知のアルゴリズムを用いることが可能である。ただし、後述するように、この3D変換アルゴリズムを学習によって改変するので、改変が可能なアルゴリズムであることを必須とする。
なお、本実施形態において、3D変換アアルゴリズムを改変することは、例えば、2次元画像データを特定する2次元空間座標上の値を、3次元データを特定する3次元空間座標上の値に変換する際の変換処理ロジックの変更や、その変換処理ロジックにおいて用いる関数やパラメータの変更、変換処理ロジックにおいて用いるライブラリの変更などの少なくとも1つを含む。
本実施形態では、3次元データ生成部14C−1は、正解画像取得部11により取得された撮影画像データ(正解画像)xから3次元データ(以下、記号“f(x)”で表す)を生成するとともに、2D画像生成部13Cにより3次元データsをもとに生成された2次元画像データg(s)から3次元データ(以下、記号“f(g(s))”で表す)を生成する。3次元データf(g(s))の生成は、3次元データsから生成された2次元画像データg(s)を元の3次元データsに戻す処理に相当する(ただし、s=f(g(s))になるとは限らない)。3次元データ生成部14C−1により生成された3次元データf(x)は2D画像生成部13Cに供給され、3次元データf(g(s))は第1差分値算出部14C−2に供給される。
2D画像生成部13Cは、3Dデータ取得部11により取得された3次元データsから所定の2D変換アルゴリズムに従って2次元画像データg(s)を生成する。これに加えて、2D画像生成部13Cは、正解画像取得部11により取得された正解画像xから3次元データ生成部14C−1により生成された3次元データf(x)をもとに、2D変換アルゴリズムに従って2次元画像データg(f(x)) を生成する。この2次元画像データg(f(x))の生成は、正解画像xから生成された3次元データf(x)を元の正解画像xに戻す処理に相当する(ただし、x=g(f(x)になるとは限らない)。2D画像生成部13Cにより生成された2次元画像データg(s)は3次元データ生成部14C−1に供給され、2次元画像データg(f(x)) は第2差分値算出部14C−3に供給される。
第1差分値算出部14C−2は、2D画像生成部13Cにより生成された2次元画像データg(s)から3次元データ生成部14C−1により生成された3次元データf(g(s))と、3Dデータ取得部11により取得された3次元データsとの差を第1差分値として算出する。第1差分値は、例えば、3次元データf(g(s))の各座標における色の値と3次元データsの各座標における色の値との差の和または平均値とすることが可能である。ここで、2D画像生成部13Cの2D変換アルゴリズムが完璧で、かつ、3次元データ生成部14C−1の3D変換アルゴリズムも完璧であれば、3次元データf(g(s))と3次元データsとが同じとなり、第1差分値はゼロとなる。
第2差分値算出部14C−3は、正解画像取得部11により取得された正解画像xから3次元データ生成部14C−1により生成された3次元データf(x)をもとに2D画像生成部13Cにより生成した2次元画像データg(f(x))と、正解画像取得部11により取得された正解画像xとの差を第2差分値として算出する。第2差分値は、例えば、2次元画像データg(f(x))の各ピクセルにおける色の値と正解画像xの各ピクセルにおける色の値との差の和または平均値とすることが可能である。ここで、2D画像生成部13Cの2D変換アルゴリズムが完璧で、かつ、3次元データ生成部14C−1の3D変換アルゴリズムも完璧であれば、2次元画像データg(f(x))と正解画像xとが同じとなり、第2差分値はゼロとなる。
第3の評価値算出部14C−4は、第1差分値算出部14C−2により算出された第1差分値と第2差分値算出部14C−3により算出された第2差分値との合計値を第3の評価値(以下、記号“C”で表す)として算出する。
画像処理装置は、第3の評価値算出部14C−4により算出される第3の評価値Cを最小化するように2D画像生成部13Cの2D変換アルゴリズムおよび3次元データ生成部14C−1の3D変換アルゴリズムを改変する。第3の評価値Cを最小化するように2D画像生成部13Cの2D変換アルゴリズムおよび3次元データ生成部14C−1の3D変換アルゴリズムを改変するというのは、2D画像生成部13Cが正解画像xと殆ど差のない2次元画像データg(f(x))を生成し、かつ、3次元データ生成部14C−1が3次元データs(3次元データの正解データと言えるもの)と殆ど差のない3次元データf(g(s))を生成する能力を高めるように学習することを意味する。この生成能力が高まっていけば、2D画像生成部13Cは、撮影画像データxと殆ど相違のない2次元画像データg(s)を生成することができるようになる。
<第4パターン>
図5は、第4パターンによる学習を行う場合の機能構成例を示すブロック図である。図5に示すように、画像処理装置は、第4パターンによる学習を行うための機能構成として、2D画像生成部13Dおよび第4の評価値算出部14Dを備えている。
第4の評価値算出部14Dは、2D画像生成部13Dにより生成された2次元画像データg(s)と正解画像取得部11により取得された正解画像xとの差を第4の評価値(以下、記号“D”で表す)として算出する。
画像処理装置は、第4の評価値算出部14Dにより算出される第4の評価値Dを最小化するように2D画像生成部13Dの2D変換アルゴリズムを改変する。第4の評価値Dを最小化するように2D画像生成部13Dの2D変換アルゴリズムを改変するというのは、2D画像生成部13Dが正解画像xと殆ど差のない2次元画像データg(s)を生成する能力を高めるように学習することを意味する。この生成能力が高まっていけば、2D画像生成部13Dは、撮影画像データxと殆ど相違のない2次元画像データg(s)を生成することができるようになる。
なお、評価値算出部14は、図2〜図5に示した第1パターン〜第4パターンの何れか1つのみを備える構成としてもよいし、第1パターン〜第4パターンのうち少なくとも2つを備え、当該少なくとも2つにより算出される評価値をそれぞれ最適化するように2D変換アルゴリズムを改変するようにしてもよい。なお、少なくとも2つの中に第1パターンが含まれる場合には、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最小化するとともに、正解画像xを入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように第1の評価値算出部14Aの識別アルゴリズムを更に改変する。また、少なくとも2つの中に第3パターンが含まれる場合には、第3の評価値Cを最小化するように3次元データ生成部14C−1の3D変換アルゴリズムを更に改変する。
図6は、第1パターン〜第4パターンを全て適用した場合における学習処理部14の機能構成例を示す図である。なお、ここでは図示を簡略化しているが、各パターンの詳細な構成は、図2〜図5に示した通りである。この場合、2D画像生成部13は、各評価値算出部14A〜14Dにより算出される各評価値A〜Dをそれぞれ最適化(最大化または最小化)するように2D変換アルゴリズムを改変する。また、評価値算出部14は、2次元画像データg(s)を入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最小化するとともに、正解画像xを入力として第1の評価値算出部14Aにより算出される第1の評価値Aを最大化するように第1の評価値算出部14Aの識別アルゴリズムを改変し、第3の評価値Cを最小化するように3次元データ生成部14C−1の3D変換アルゴリズムを改変する。
なお、2D画像生成部13は、第1パターン〜第4パターンのうち少なくとも2つにより算出される評価値をそれぞれ最適化することに代えて、当該少なくとも2つにより算出される評価値を重み付け加算し、その重み付け加算値を最適化するように2D変換アルゴリズムを改変するようにしてもよい。例えば、図6に示す構成において、2D画像生成部13は、H=αA+βB+γC+δD(α,β,γ,δはそれぞれ重み付け係数で、ゼロを含む任意の値に設定可能)なる重み付け評価値Hを算出し、この重み付け評価値Hを最小化するように2D変換アルゴリズムを改変するようにしてよい。
その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
11 3Dデータ取得部
12 正解画像取得部
13,13A〜13D 2D画像生成部
14 評価値算出部
14A 第1の評価値算出部
14B 第2の評価値算出部
14C−1 3次元データ生成部
14C−2 第1差分値算出部
14C−3 第2差分値算出部
14C−4 第3の評価値算出部
14D 第4の評価値算出部

Claims (10)

  1. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得部と、
    正解画像として用いる撮影画像データを取得する正解画像取得部と、
    上記3Dデータ取得部により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成部と、
    上記2D画像生成部により生成された上記2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出部とを備え、
    上記2D画像生成部は、上記3次元データを上記2D画像生成部に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出部は、上記3Dデータ取得部により取得された上記3次元データと、上記正解画像取得部により取得された上記撮影画像データまたは上記2D画像生成部により生成された上記2次元画像データとを入力として、所定の識別アルゴリズムに従って、入力された画像が正解画像であるか、上記2D画像生成部により生成された2次元画像データであるかを識別し、上記正解画像であると識別される確率を第1の評価値として算出する第1の評価値算出部により構成され、
    上記2次元画像データを入力として上記第1の評価値算出部により算出される上記第1の評価値を最大化するように上記2D画像生成部の上記2D変換アルゴリズムを改変し、上記2次元画像データを入力として上記第1の評価値算出部により算出される上記第1の評価値を最小化するとともに、上記撮影画像データを入力として上記第1の評価値算出部により算出される上記第1の評価値を最大化するように上記第1の評価値算出部の上記識別アルゴリズムを改変することを特徴とする画像処理装置。
  2. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得部と、
    正解画像として用いる撮影画像データを取得する正解画像取得部と、
    上記3Dデータ取得部により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成部と、
    上記2D画像生成部により生成された上記2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出部とを備え、
    上記2D画像生成部は、上記3次元データを上記2D画像生成部に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出部は、上記2次元画像データの画像分類のために学習済みのニューラルネットワークを有し、当該ニューラルネットワークを構成する各階層において上記正解画像取得部により取得された上記撮影画像データおよび上記2D画像生成部により生成された上記2次元画像データのそれぞれに関する値の差の合計値または平均値を第2の評価値として算出する第2の評価値算出部により構成され、
    上記第2の評価値算出部により算出される上記第2の評価値を最小化するように上記2D画像生成部の上記2D変換アルゴリズムを改変することを特徴とする画像処理装置。
  3. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得部と、
    正解画像として用いる撮影画像データを取得する正解画像取得部と、
    上記3Dデータ取得部により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成部と、
    上記2D画像生成部により生成された上記2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出部とを備え、
    上記2D画像生成部は、上記3次元データを上記2D画像生成部に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出部は、
    画像データから3Dモデルの3次元データを所定の3D変換アルゴリズムに従って生成する3次元データ生成部と、
    上記2D画像生成部により生成された上記2次元画像データから上記3次元データ生成部により生成された3次元データと上記3Dデータ取得部により取得された上記3次元データとの差を第1差分値として算出する第1差分値算出部と、
    上記正解画像取得部により取得された上記撮影画像データから上記3次元データ生成部により生成された3次元データをもとに上記2D画像生成部により生成した2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの差を第2差分値として算出する第2差分値算出部と、
    上記第1差分値算出部により算出された上記第1差分値と上記第2差分値算出部により算出された上記第2差分値との合計値を第3の評価値として算出する第3の評価値算出部とを備え、
    上記第3の評価値算出部により算出される上記第3の評価値を最小化するように上記2D画像生成部の上記2D変換アルゴリズムおよび上記3次元データ生成部の上記3D変換アルゴリズムを改変することを特徴とする画像処理装置。
  4. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得部と、
    正解画像として用いる撮影画像データを取得する正解画像取得部と、
    上記3Dデータ取得部により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成部と、
    上記2D画像生成部により生成された上記2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出部とを備え、
    上記2D画像生成部は、上記3次元データを上記2D画像生成部に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出部は、
    上記3Dデータ取得部により取得された上記3次元データと、上記正解画像取得部により取得された上記撮影画像データまたは上記2D画像生成部により生成された上記2次元画像データとを入力として、所定の識別アルゴリズムに従って、入力された画像が正解画像であるか、上記2D画像生成部により生成された2次元画像データであるかを識別し、上記正解画像であると識別される確率を第1の評価値として算出する第1の評価値算出部と、
    上記2次元画像データの画像分類のために学習済みのニューラルネットワークを有し、当該ニューラルネットワークを構成する各階層において上記正解画像取得部により取得された上記撮影画像データおよび上記2D画像生成部により生成された上記2次元画像データのそれぞれから生成される特徴量を差の合計値または平均値を第2の評価値として算出する第2の評価値算出部と、
    上記2D画像生成部により生成された上記2次元画像データから所定の3D変換アルゴリズムに従って生成された3次元データと上記3Dデータ取得部により取得された上記3次元データとの差を第1差分値として算出するとともに、上記正解画像取得部により取得された上記撮影画像データから上記所定の3D変換アルゴリズムに従って生成された3次元データをもとに上記2D画像生成部により生成した2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの差を第2差分値として算出し、当該算出した上記第1差分値と上記第2差分値との合計値を第3の評価値として算出する第3の評価値算出部と、
    上記2D画像生成部により生成された上記2次元画像データと上記正解画像取得部により取得された上記撮影画像データとの差を第4の評価値として算出する第4の評価値算出部と、
    のうち少なくとも2つを備え、
    上記少なくとも2つにより算出される評価値をそれぞれ最適化するように上記2D変換アルゴリズムを改変し、上記少なくとも2つの中に上記第1の評価値算出部が含まれる場合には、上記2次元画像データを入力として上記第1の評価値算出部により算出される上記第1の評価値を最小化するとともに、上記撮影画像データを入力として上記第1の評価値算出部により算出される上記第1の評価値を最大化するように上記識別アルゴリズムを更に改変し、上記少なくとも2つの中に上記第3の評価値算出部が含まれる場合には上記第3の評価値を最小化するように上記3D変換アルゴリズムを更に改変することを特徴とする画像処理装置。
  5. 上記少なくとも2つにより算出される評価値をそれぞれ最適化することに代えて、上記少なくとも2つにより算出される評価値を重み付け加算し、その重み付け加算値を最適化するように上記2D変換アルゴリズムを改変することを特徴とする請求項4に記載の画像処理装置。
  6. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得手段、
    正解画像として用いる撮影画像データを取得する正解画像取得手段、
    上記3Dデータ取得手段により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成手段、および
    上記2D画像生成手段により生成された上記2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出手段
    としてコンピュータを機能させ、
    上記2D画像生成手段は、上記3次元データを上記2D画像生成手段に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出手段が、上記3Dデータ取得手段により取得された上記3次元データと、上記正解画像取得手段により取得された上記撮影画像データまたは上記2D画像生成手段により生成された上記2次元画像データとを入力として、所定の識別アルゴリズムに従って、入力された画像が正解画像であるか、上記2D画像生成手段により生成された2次元画像データであるかを識別し、上記正解画像であると識別される確率を第1の評価値として算出する第1の評価値算出手段として機能し、
    上記2次元画像データを入力として上記第1の評価値算出手段により算出される上記第1の評価値を最大化するように上記2D画像生成手段の上記2D変換アルゴリズムを改変し、上記2次元画像データを入力として上記第1の評価値算出手段により算出される上記第1の評価値を最小化するとともに、上記撮影画像データを入力として上記第1の評価値算出手段により算出される上記第1の評価値を最大化するように上記第1の評価値算出手段の上記識別アルゴリズムを改変することを特徴とする画像生成用プログラム。
  7. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得手段、
    正解画像として用いる撮影画像データを取得する正解画像取得手段、
    上記3Dデータ取得手段により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成手段、および
    上記2D画像生成手段により生成された上記2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出手段
    としてコンピュータを機能させ、
    上記2D画像生成手段は、上記3次元データを上記2D画像生成手段に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出手段が、上記2次元画像データの画像分類のために学習済みのニューラルネットワークを有し、当該ニューラルネットワークを構成する各階層において上記正解画像取得手段により取得された上記撮影画像データおよび上記2D画像生成手段により生成された上記2次元画像データのそれぞれに関する値の差の合計値または平均値を第2の評価値として算出する第2の評価値算出手段として機能し、
    上記第2の評価値算出手段により算出される上記第2の評価値を最小化するように上記2D画像生成手段の上記2D変換アルゴリズムを改変することを特徴とする画像生成用プログラム。
  8. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得手段、
    正解画像として用いる撮影画像データを取得する正解画像取得手段、
    上記3Dデータ取得手段により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成手段、および
    上記2D画像生成手段により生成された上記2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出手段
    としてコンピュータを機能させ、
    上記2D画像生成手段は、上記3次元データを上記2D画像生成手段に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出手段が、
    画像データから3Dモデルの3次元データを所定の3D変換アルゴリズムに従って生成する3次元データ生成手段、
    上記2D画像生成手段により生成された上記2次元画像データから上記3次元データ生成手段により生成された3次元データと上記3Dデータ取得手段により取得された上記3次元データとの差を第1差分値として算出する第1差分値算出手段、
    上記正解画像取得手段により取得された上記撮影画像データから上記3次元データ生成手段により生成された3次元データをもとに上記2D画像生成手段により生成した2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの差を第2差分値として算出する第2差分値算出手段、および
    上記第1差分値算出手段により算出された上記第1差分値と上記第2差分値算出手段により算出された上記第2差分値との合計値を第3の評価値として算出する第3の評価値算出手段として機能し、
    上記第3の評価値算出手段により算出される上記第3の評価値を最小化するように上記2D画像生成手段の上記2D変換アルゴリズムおよび上記3次元データ生成手段の上記3D変換アルゴリズムを改変することを特徴とする画像生成用プログラム。
  9. 撮影画像が表面にマッピングされた3Dモデルの3次元データを取得する3Dデータ取得手段、
    正解画像として用いる撮影画像データを取得する正解画像取得手段、
    上記3Dデータ取得手段により取得された3次元データから所定の2D変換アルゴリズムに従って2次元画像データを生成する2D画像生成手段、および
    上記2D画像生成手段により生成された上記2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの近似性を表す評価値を算出する評価値算出手段
    としてコンピュータを機能させ、
    上記2D画像生成手段は、上記3次元データを上記2D画像生成手段に入力して処理を繰り返し行ったときに生成される上記2次元画像データについて都度算出される上記評価値が最適化するように、上記2D変換アルゴリズムを学習によって改変し、
    上記評価値算出手段が、
    上記3Dデータ取得手段により取得された上記3次元データと、上記正解画像取得手段により取得された上記撮影画像データまたは上記2D画像生成手段により生成された上記2次元画像データとを入力として、所定の識別アルゴリズムに従って、入力された画像が正解画像であるか、上記2D画像生成手段により生成された2次元画像データであるかを識別し、上記正解画像であると識別される確率を第1の評価値として算出する第1の評価値算出手段、
    上記2次元画像データの画像分類のために学習済みのニューラルネットワークを有し、当該ニューラルネットワークを構成する各階層において上記正解画像取得手段により取得された上記撮影画像データおよび上記2D画像生成手段により生成された上記2次元画像データのそれぞれから生成される特徴量を差の合計値または平均値を第2の評価値として算出する第2の評価値算出手段、
    上記2D画像生成手段により生成された上記2次元画像データから所定の3D変換アルゴリズムに従って生成された3次元データと上記3Dデータ取得手段により取得された上記3次元データとの差を第1差分値として算出するとともに、上記正解画像取得手段により取得された上記撮影画像データから上記所定の3D変換アルゴリズムに従って生成された3次元データをもとに上記2D画像生成手段により生成した2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの差を第2差分値として算出し、当該算出した上記第1差分値と上記第2差分値との合計値を第3の評価値として算出する第3の評価値算出手段、および
    上記2D画像生成手段により生成された上記2次元画像データと上記正解画像取得手段により取得された上記撮影画像データとの差を第4の評価値として算出する第4の評価値算出手段、
    のうち少なくとも2つの手段として機能し、
    上記少なくとも2つにより算出される評価値をそれぞれ最適化するように上記2D変換アルゴリズムを改変し、上記少なくとも2つの中に上記第1の評価値算出手段が含まれる場合には、上記2次元画像データを入力として上記第1の評価値算出手段により算出される上記第1の評価値を最小化するとともに、上記撮影画像データを入力として上記第1の評価値算出手段により算出される上記第1の評価値を最大化するように上記識別アルゴリズムを更に改変し、上記少なくとも2つの中に上記第3の評価値算出手段が含まれる場合には上記第3の評価値を最小化するように上記3D変換アルゴリズムを更に改変することを特徴とする画像生成用プログラム。
  10. 上記少なくとも2つにより算出される評価値をそれぞれ最適化することに代えて、上記少なくとも2つにより算出される評価値を重み付け加算し、その重み付け加算値を最適化するように上記2D変換アルゴリズムを改変することを特徴とする請求項9に記載の画像生成用プログラム。
JP2018073826A 2018-04-06 2018-04-06 画像処理装置および2次元画像生成用プログラム Active JP6601825B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018073826A JP6601825B2 (ja) 2018-04-06 2018-04-06 画像処理装置および2次元画像生成用プログラム
US16/498,875 US10893252B2 (en) 2018-04-06 2019-04-04 Image processing apparatus and 2D image generation program
EP19774044.2A EP3591620B1 (en) 2018-04-06 2019-04-04 Image processing device and two-dimensional image generation program
ES19774044T ES2906626T3 (es) 2018-04-06 2019-04-04 Dispositivo de tratamiento de imágenes y programa de generación de imágenes bidimensionales
PCT/JP2019/014985 WO2019194282A1 (ja) 2018-04-06 2019-04-04 画像処理装置および2次元画像生成用プログラム
CN201980002055.7A CN110546687B (zh) 2018-04-06 2019-04-04 图像处理装置及二维图像生成用程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018073826A JP6601825B2 (ja) 2018-04-06 2018-04-06 画像処理装置および2次元画像生成用プログラム

Publications (2)

Publication Number Publication Date
JP2019185295A JP2019185295A (ja) 2019-10-24
JP6601825B2 true JP6601825B2 (ja) 2019-11-06

Family

ID=68100715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073826A Active JP6601825B2 (ja) 2018-04-06 2018-04-06 画像処理装置および2次元画像生成用プログラム

Country Status (6)

Country Link
US (1) US10893252B2 (ja)
EP (1) EP3591620B1 (ja)
JP (1) JP6601825B2 (ja)
CN (1) CN110546687B (ja)
ES (1) ES2906626T3 (ja)
WO (1) WO2019194282A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763231B (zh) * 2020-06-08 2024-02-09 北京京东乾石科技有限公司 模型生成方法、图像透视图确定方法、装置、设备及介质
CN112509129B (zh) * 2020-12-21 2022-12-30 神思电子技术股份有限公司 一种基于改进gan网络的空间视场图像生成方法
CN112634128B (zh) * 2020-12-22 2022-06-14 天津大学 一种基于深度学习的立体图像重定向方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643671B2 (en) * 2003-03-24 2010-01-05 Animetrics Inc. Facial recognition system and method
JP2006004158A (ja) 2004-06-17 2006-01-05 Olympus Corp 画像処理プログラム、画像処理方法、画像処理装置及び記録媒体
JP4284664B2 (ja) 2004-11-04 2009-06-24 日本電気株式会社 三次元形状推定システム及び画像生成システム
JP5393318B2 (ja) * 2009-07-28 2014-01-22 キヤノン株式会社 位置姿勢計測方法及び装置
WO2012025786A1 (en) * 2010-08-24 2012-03-01 Penjani Wallen Mphepo Autostereoscopic 3-dimensional display system
JP6270450B2 (ja) 2013-12-13 2018-01-31 キヤノン株式会社 放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法
CN103761767A (zh) * 2014-01-02 2014-04-30 华南理工大学 一种基于稀疏数据的三维超声图像快速重建方法
JP6650689B2 (ja) 2015-06-04 2020-02-19 キヤノン株式会社 サムネイル画像作成装置、3次元造形システム
US10451403B2 (en) * 2015-10-23 2019-10-22 The Boeing Company Structure-based camera pose estimation system
US20180012411A1 (en) * 2016-07-11 2018-01-11 Gravity Jack, Inc. Augmented Reality Methods and Devices
US10290119B2 (en) * 2016-09-15 2019-05-14 Sportsmedia Technology Corporation Multi view camera registration
US10970819B2 (en) * 2017-05-26 2021-04-06 Rakuten, Inc. Image processing device, image processing method, and image processing program

Also Published As

Publication number Publication date
US20200092529A1 (en) 2020-03-19
EP3591620A4 (en) 2020-03-18
EP3591620A1 (en) 2020-01-08
ES2906626T3 (es) 2022-04-19
CN110546687A (zh) 2019-12-06
WO2019194282A1 (ja) 2019-10-10
EP3591620B1 (en) 2021-12-15
CN110546687B (zh) 2022-05-17
US10893252B2 (en) 2021-01-12
JP2019185295A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6659336B2 (ja) 3dモデル化オブジェクトのテクスチャリング
JP2018169672A (ja) 教師画像を生成する方法、コンピュータおよびプログラム
JP6601825B2 (ja) 画像処理装置および2次元画像生成用プログラム
US20200057831A1 (en) Real-time generation of synthetic data from multi-shot structured light sensors for three-dimensional object pose estimation
Orts-Escolano et al. 3d surface reconstruction of noisy point clouds using growing neural gas: 3d object/scene reconstruction
JP2013097806A (ja) 映像処理装置及び方法
JP2020052543A (ja) 形状補完装置、形状補完学習装置、方法、及びプログラム
WO2021219835A1 (en) Pose estimation method and apparatus
US20140300941A1 (en) Method and apparatus for generating hologram based on multi-view image
JP7294788B2 (ja) 3d配置のタイプに応じた2d画像の分類
CN110838122A (zh) 点云的分割方法、装置及计算机存储介质
KR20230073751A (ko) 레이아웃 기반의 동일 화풍 영상 생성 시스템 및 방법
JP2023109570A (ja) 情報処理装置、学習装置、画像認識装置、情報処理方法、学習方法、画像認識方法
CN115690359B (zh) 一种点云处理方法、装置、电子设备及存储介质
JP7416170B2 (ja) 学習方法、学習装置、プログラムおよび記録媒体
WO2017094536A1 (ja) 画像処理装置および画像処理方法
WO2020121739A1 (ja) 画像マッチング方法、および画像マッチング処理を実行するための演算システム
JP2022018829A (ja) 学習済モデル生成装置、学習済モデル生成方法、学習済モデル生成プログラム
CN117351157B (zh) 单视图三维场景位姿估计方法、系统及设备
WO2022123636A1 (ja) 学習用データ生成装置及び学習用データ生成方法
Lee et al. Overfitting control for surface reconstruction
US20240242419A1 (en) Method of creating a volumetric texture for a 3d model of a physical object
CN114004856A (zh) 一种深度图像滤波方法、装置、电子设备
Kumar et al. Efficient 3D Object Synthesis and Modeling Through Generative Adversarial Networks
JP6796850B2 (ja) 物体検出装置、物体検出方法および物体検出プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190814

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6601825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250