JPWO2005044959A1 - Unleaded gasoline composition and method for producing the same - Google Patents

Unleaded gasoline composition and method for producing the same Download PDF

Info

Publication number
JPWO2005044959A1
JPWO2005044959A1 JP2005515277A JP2005515277A JPWO2005044959A1 JP WO2005044959 A1 JPWO2005044959 A1 JP WO2005044959A1 JP 2005515277 A JP2005515277 A JP 2005515277A JP 2005515277 A JP2005515277 A JP 2005515277A JP WO2005044959 A1 JPWO2005044959 A1 JP WO2005044959A1
Authority
JP
Japan
Prior art keywords
gasoline
naphtha fraction
less
volume
diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005515277A
Other languages
Japanese (ja)
Other versions
JP4932257B2 (en
Inventor
泰博 荒木
泰博 荒木
勝昭 石田
勝昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2005515277A priority Critical patent/JP4932257B2/en
Publication of JPWO2005044959A1 publication Critical patent/JPWO2005044959A1/en
Application granted granted Critical
Publication of JP4932257B2 publication Critical patent/JP4932257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/04Metals, or metals deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Abstract

硫黄分が1質量ppm以下で、十分な運転特性を保持した無鉛ガソリン組成物及びその製造方法を提供する。5容量%留出温度が25℃以上、かつ95容量%留出温度が210℃以下、オレフィン分が5質量%以上、ジエン価が0.3g/100g以下である分解ナフサ留分を脱硫処理する工程、及び得られた脱硫分解ナフサ留分を、他のガソリン基材と混合するブレンド工程を含む、硫黄分が1質量ppm以下、かつリサーチ法オクタン価が89.0以上である無鉛ガソリン組成物の製造方法。また、リサーチ法オクタン価が89.0以上、50容量%留出温度が105℃以下、オレフィン分が10容量%以上、全硫黄分が1質量ppm以下、全硫黄分に占めるチオフェン類硫黄化合物の割合が硫黄分として50質量%以上である無鉛ガソリン組成物。An unleaded gasoline composition having a sulfur content of 1 mass ppm or less and having sufficient operating characteristics and a method for producing the same. Desulfurization treatment is performed on a cracked naphtha fraction having a 5% by volume distillation temperature of 25 ° C. or more, a 95% by volume distillation temperature of 210 ° C. or less, an olefin content of 5% by mass or more, and a diene value of 0.3 g / 100 g or less. An unleaded gasoline composition having a sulfur content of 1 mass ppm or less and a research octane number of 89.0 or more, comprising a blending step of mixing the obtained desulfurization cracking naphtha fraction with another gasoline base Production method. In addition, the octane number of the research method is 89.0 or more, the 50% by volume distillation temperature is 105 ° C. or less, the olefin content is 10% by volume or more, the total sulfur content is 1 mass ppm or less, and the ratio of thiophene sulfur compounds in the total sulfur content An unleaded gasoline composition having a sulfur content of 50% by mass or more.

Description

本発明は、環境への影響を低減した無鉛ガソリン組成物とその製造方法に関する。特に、硫黄分を1質量ppm以下に低減して、環境への影響に配慮しつつ十分な運転特性を確保した無鉛ガソリン組成物及びその製造方法に関する。   The present invention relates to an unleaded gasoline composition with reduced environmental impact and a method for producing the same. In particular, the present invention relates to an unleaded gasoline composition in which sulfur content is reduced to 1 mass ppm or less and sufficient operating characteristics are ensured while taking into consideration the influence on the environment, and a method for producing the same.

近年、自動車の高性能化に伴って、高い運転性能をもつ高性能ガソリンの需要が増加している。一方、自動車燃料やその燃焼排ガスによる環境汚染が社会問題になってきている。したがって、高い運転性能を維持するとともに、環境負荷の少ない自動車燃料が望まれている。特に、排ガス浄化と燃費改善の観点から、硫黄分の一層の低減が切望されている。   In recent years, the demand for high-performance gasoline having high driving performance has increased with the improvement in performance of automobiles. On the other hand, environmental pollution due to automobile fuel and its combustion exhaust gas has become a social problem. Therefore, an automobile fuel that maintains high driving performance and has a low environmental impact is desired. In particular, further reduction of sulfur content is desired from the viewpoint of exhaust gas purification and fuel efficiency improvement.

JIS K 2202には、リサーチ法オクタン価(RON)が96.0以上の1号自動車ガソリンと89.0以上の2号自動車ガソリンが規定されており、前者は高性能なプレミアムガソリンとして、後者はレギュラーガソリンとして市販されている。従来、プレミアムガソリンは、接触改質ガソリン基材、メチルt−ブチルエーテル(MTBE)のような100以上のRONをもつ基材、アルキレートガソリン基材、接触分解ガソリン基材のような93以上のRONをもつ基材を中心に、各種の基材を配合して製造されている。   JIS K 2202 stipulates No. 1 automobile gasoline with a research octane number (RON) of 96.0 or more and No. 2 automobile gasoline with 89.0 or more. The former is a high-performance premium gasoline and the latter is regular. Commercially available as gasoline. Conventionally, premium gasoline has a catalytic reforming gasoline base, a base with more than 100 RON such as methyl t-butyl ether (MTBE), 93 or more RON such as alkylate gasoline base, catalytic cracking gasoline base It is manufactured by blending various types of base materials, mainly on base materials with

重質な石油留分を分解することによって製造される分解ガソリン基材は、他のガソリン基材に比べ、経済的に製造できるという利点がある一方、高い硫黄分を含んでいた。その結果、上述のようにして製造されるガソリン中の硫黄分の大部分は、分解ガソリン基材に由来していた。   The cracked gasoline base produced by cracking heavy petroleum fractions has the advantage that it can be produced economically compared to other gasoline bases, while containing a high sulfur content. As a result, most of the sulfur content in the gasoline produced as described above was derived from the cracked gasoline base material.

分解ガソリン基材の硫黄分の低減は、高圧水素と触媒の共存下で水素化精製するという公知技術で容易に可能である。しかし、その場合は、接触分解ガソリン基材中に多く含まれ、高いRONをもつオレフィン分が水素化されて基材のRONが低下してしまうため、それを配合したガソリンでは十分な運転性能が得られないという問題点があった。   The sulfur content of the cracked gasoline base material can be easily reduced by a known technique of hydrorefining in the presence of high-pressure hydrogen and a catalyst. However, in that case, a large amount of catalytic cracking gasoline base material is contained, and the olefin content having high RON is hydrogenated to lower the base material RON. There was a problem that it could not be obtained.

一方、炭化水素油を、特定の条件下、吸着剤と接触させて硫黄化合物を吸着させる工程と、吸着剤に水素を通気させることにより吸着剤から硫黄化合物を脱離する工程を繰り返すことにより、オレフィンの水素化反応など不要な反応を抑制し、ガソリンの基材となる炭化水素油に含まれる硫黄分を連続的に低減する方法が提案されている(特許文献1参照)。しかしながら、このような吸着剤を用いる方法も、原料油に含有される特定の炭化水素化合物によるせいか、硫黄の吸着能が阻害されて硫黄分を効率よく継続的に低減することができず、必ずしも満足できる方法ではなかった。
特開2003−277768号公報
On the other hand, by repeating a step of adsorbing a sulfur compound by contacting hydrocarbon oil with an adsorbent under specific conditions, and a step of desorbing the sulfur compound from the adsorbent by passing hydrogen through the adsorbent, There has been proposed a method in which an unnecessary reaction such as an olefin hydrogenation reaction is suppressed, and a sulfur content contained in a hydrocarbon oil serving as a gasoline base material is continuously reduced (see Patent Document 1). However, the method using such an adsorbent is also due to the specific hydrocarbon compound contained in the raw material oil, the sulfur adsorption capacity is inhibited and the sulfur content cannot be reduced efficiently and continuously. It was not always a satisfactory method.
JP 2003-277768 A

硫黄分が1質量ppm以下と低く、かつ、十分な実用性能を確保した環境対応ガソリン、及びその製造方法は未だ確立されていない。本発明は、このような状況下で、硫黄分を低減し、かつ、十分な運転特性を確保した無鉛ガソリン組成物及びその製造方法を提供することを目的とするものである。   An environment-friendly gasoline having a sulfur content as low as 1 mass ppm or less and sufficient practical performance and a method for producing the same have not been established yet. An object of the present invention is to provide an unleaded gasoline composition that reduces sulfur content and secures sufficient operating characteristics under such circumstances, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、ジエン含有量が低い分解ナフサ留分を用いて水素化精製以外の脱硫処理を行うと、高いRONを維持したまま、硫黄分を効率よく低減できることを見出し、そして、このようにして得られた基材を用いることにより、十分な運転特性を確保した無鉛ガソリン組成物が得られることを見出し、本発明の無鉛ガソリン組成物及びその製造方法に想到した。   As a result of diligent research to solve the above problems, the present inventors have conducted a desulfurization treatment other than hydrorefining using a cracked naphtha fraction having a low diene content, while maintaining a high RON while maintaining a high RON. It is found that an unleaded gasoline composition having sufficient operating characteristics can be obtained by using the substrate thus obtained, and the unleaded gasoline composition of the present invention and I came up with the manufacturing method.

すなわち、本発明による硫黄分が1質量ppm以下、かつリサーチ法オクタン価(RON)が89.0以上である無鉛ガソリン組成物の製造方法は、
(1)5容量%留出温度が25℃以上、かつ95容量%留出温度が210℃以下、オレフィン分が5容量%以上、ジエン価が0.3g/100g以下である分解ナフサ留分を脱硫処理する脱硫工程、及び
(2)前記(1)の脱硫工程で得られた脱硫分解ナフサ留分と他のガソリン基材とを混合するブレンド工程
を含む。
That is, the method for producing an unleaded gasoline composition having a sulfur content of 1 mass ppm or less and a research octane number (RON) of 89.0 or more according to the present invention is as follows:
(1) A cracked naphtha fraction having a 5% by volume distillation temperature of 25 ° C. or more, a 95% by volume distillation temperature of 210 ° C. or less, an olefin content of 5% by volume or more, and a diene value of 0.3 g / 100 g or less. A desulfurization step of desulfurization treatment, and (2) a blending step of mixing the desulfurization cracked naphtha fraction obtained in the desulfurization step (1) and another gasoline base material.

好ましくは、(1)の工程において、予めジエン低減処理を経たジエン価が0.3g/100g以下の分解ナフサ留分を用いる。すなわち、本発明の無鉛ガソリン組成物の製造方法は、分解ナフサ留分の原料油に対し、予めジエン低減処理を行う工程を含むことが好ましい。また、このとき、ジエン低減処理は、分解ナフサ留分の原料油と周期律表第8族の元素を含む触媒とを接触させることが好ましく、このとき、ジエン低減触媒が、コバルトまたはニッケルから選ばれる少なくとも1種を含むものであることが好ましい。   Preferably, a cracked naphtha fraction having a diene value of 0.3 g / 100 g or less previously subjected to a diene reduction treatment is used in the step (1). That is, it is preferable that the manufacturing method of the unleaded gasoline composition of this invention includes the process of performing the diene reduction process previously with respect to the raw material oil of a cracked naphtha fraction. In this case, the diene reduction treatment is preferably performed by bringing the cracked naphtha fraction feedstock into contact with the catalyst containing Group 8 element of the periodic table. At this time, the diene reduction catalyst is selected from cobalt or nickel. It is preferable that it contains at least one kind.

さらに、本発明の無鉛ガソリン組成物の製造方法は、(1)の脱硫工程において、硫黄収着機能をもった多孔質脱硫剤を水素分圧1MPa以下の水素共存下で分解ナフサ留分と接触させて脱硫処理することが好ましく、このとき、多孔質脱硫剤が、銅、亜鉛、ニッケル及び鉄から選ばれる少なくとも1種を含むものであることが好ましい。
(2)のブレンド工程において、10〜90容量%の脱硫分解ナフサ留分と90〜10容量%の他のガソリン基材とを混合することが好ましい。
Furthermore, in the method for producing an unleaded gasoline composition of the present invention, in the desulfurization step (1), a porous desulfurization agent having a sulfur sorption function is brought into contact with a cracked naphtha fraction in the presence of hydrogen having a hydrogen partial pressure of 1 MPa or less. The desulfurization treatment is preferably performed, and at this time, the porous desulfurization agent preferably contains at least one selected from copper, zinc, nickel, and iron.
In the blending step (2), it is preferable to mix 10 to 90% by volume of the desulfurized cracked naphtha fraction and 90 to 10% by volume of another gasoline base.

また、本発明の無鉛ガソリン組成物の製造方法は、よりオクタン価の高い、例えばリサーチ法オクタン価が93.0以上、特には96.0以上といった無鉛ガソリン組成物を得るために、分解ナフサ留分は、5容量%留出温度が25〜43℃、かつ95容量%留出温度が55〜100℃、オレフィン分が5容量%以上、ジエン価が0.3g/100g以下である軽質な分解ナフサ留分を前記(1)の脱硫工程で用いることが好ましい。
このような軽質な分解ナフサ留分は、当該分解ナフサ留分の原料油をジエン低減処理した後に分留して得たものであっても、あるいは前記分解ナフサ留分の原料油を分留した後にジエン低減処理して得たものであっても、あるいは分留とジエン低減処理を同時に行って得たものでもよい。
さらに、軽質な分解ナフサ留分を得る分留を行う前に、あるいは分留と同時に分解ナフサ留分の原料油又はジエン低減処理した分解ナフサ留分の原料油に対し、含まれる硫黄化合物の分子量を大きくする前処理を施しておくことが好ましく、こうすることによって、軽質な分解ナフサ留分に含まれる硫黄分を容易に低減しておくことができる。
Further, the method for producing an unleaded gasoline composition of the present invention has a higher octane number, for example, to obtain an unleaded gasoline composition having a research octane number of 93.0 or more, particularly 96.0 or more. A light cracked naphtha fraction having a 5% by volume distillation temperature of 25 to 43 ° C, a 95% by volume distillation temperature of 55 to 100 ° C, an olefin content of 5% by volume or more, and a diene value of 0.3g / 100g or less. It is preferable to use the minute in the desulfurization step (1).
Such a light cracked naphtha fraction may be obtained by fractionating the raw oil of the cracked naphtha fraction after diene reduction treatment, or the raw oil of the cracked naphtha fraction was fractionated. It may be obtained later by diene reduction treatment, or obtained by performing fractional distillation and diene reduction treatment simultaneously.
Furthermore, the molecular weight of the sulfur compounds contained in the raw material oil of the cracked naphtha fraction or the raw material oil of the cracked naphtha fraction subjected to the diene reduction treatment before the fractionation to obtain a light cracked naphtha fraction or simultaneously with the fractionation It is preferable to carry out a pretreatment for increasing the amount of sulfur. By doing so, the sulfur content contained in the light cracked naphtha fraction can be easily reduced.

本発明の無鉛ガソリン組成物の好ましい製造方法は、このような軽質な分解ナフサ留分を前記(1)の工程で脱硫処理した後、前記(2)のブレンド工程において、10〜60容量%の軽質な脱硫分解ナフサ留分と90〜40容量%の他のガソリン基材とを混合し、リサーチ法オクタン価が93.0以上である無鉛ガソリン組成物の製造方法である。   In a preferred method for producing the unleaded gasoline composition of the present invention, such a light cracked naphtha fraction is desulfurized in the step (1), and then 10 to 60% by volume in the blending step (2). This is a method for producing an unleaded gasoline composition in which a light desulfurization cracked naphtha fraction and 90 to 40% by volume of another gasoline base are mixed, and the research octane number is 93.0 or more.

本発明による無鉛ガソリン組成物は、リサーチ法オクタン価が89.0以上、50容量%留出温度が105℃以下、オレフィン分が10容量%以上、全硫黄分が1質量ppm以下、及び全硫黄分に占めるチオフェン類硫黄化合物の割合が硫黄分として50質量%以上である。
また、好ましくは本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が93.0以上である。さらに好ましくは、全オレフィン分に占める沸点範囲35〜100℃のオレフィン分が90容量%以上、全硫黄分に占めるチオフェン及び2−メチルチオフェンの合計量の割合が硫黄分として50質量%以上、及び/又は、チオール類の含有量が硫黄分として0.1質量ppm以下である。
The unleaded gasoline composition according to the present invention has a research octane number of 89.0 or more, a 50% by volume distillation temperature of 105 ° C. or less, an olefin content of 10% by volume or more, a total sulfur content of 1 mass ppm or less, and a total sulfur content. The proportion of the thiophene sulfur compound in the total is 50% by mass or more as the sulfur content.
Preferably, the unleaded gasoline composition of the present invention has a research octane number of 93.0 or more. More preferably, the olefin content in the boiling range of 35 to 100 ° C. in the total olefin content is 90% by volume or more, the ratio of the total amount of thiophene and 2-methylthiophene in the total sulfur content is 50% by mass or more as the sulfur content, and / Or Content of thiols is 0.1 mass ppm or less as a sulfur content.

特に接触分解ガソリンや各種の分解ガソリンなどの分解ナフサ留分には、ジエン類が不可避的に含有される。ジエン類が含まれると、多孔質脱硫剤による処理において、ジエン類が多孔質脱硫剤に優先的に吸着し、硫黄を吸着(収着)する機能が阻害される。一方、本発明によれば、予めジエンを低減する処理を行い、ジエン価を0.3g/100g以下に制限しているので、高い硫黄収着機能を長時間持続することができる。すなわち、接触分解ガソリンをジエン除去した後、わずかな水素共存の下、硫黄収着機能をもつ多孔質脱硫剤によって処理して得た脱硫分解ナフサ留分と、硫黄分が10質量ppm以下の他のガソリン基材とを混合することによって、硫黄分1質量ppm以下の無鉛ガソリン組成物を製造することが可能となる。接触分解ガソリンなどの分解ナフサ留分中のチオフェン類硫黄化合物も除去することが可能なので、チオフェン類硫黄化合物を多く含む分解ナフサ留分などの軽質な分解ナフサ留分も脱硫処理が可能である。また、接触分解軽質ガソリンなどの軽質な分解ナフサ留分に多く含まれるオレフィン分はほとんど水素化されないので、脱硫処理に伴うオクタン価ロスを回避できる。したがって、従来得られている無鉛ガソリン組成物から他の性状をほとんど変えることなく硫黄分だけを1質量ppm以下まで減じることが可能である。   In particular, dienes are inevitably contained in cracked naphtha fractions such as catalytically cracked gasoline and various cracked gasolines. When the diene is contained, in the treatment with the porous desulfurizing agent, the diene is preferentially adsorbed on the porous desulfurizing agent and the function of adsorbing (sorbing) sulfur is inhibited. On the other hand, according to the present invention, since the diene is reduced in advance and the diene value is limited to 0.3 g / 100 g or less, a high sulfur sorption function can be maintained for a long time. That is, after removing the catalytically cracked gasoline by diene, a desulfurized cracked naphtha fraction obtained by treating with a porous desulfurizing agent having a sulfur sorption function in the presence of a slight amount of hydrogen, and a sulfur content of 10 ppm by mass or less It is possible to produce an unleaded gasoline composition having a sulfur content of 1 mass ppm or less by mixing with the gasoline base. Since thiophene sulfur compounds in cracked naphtha fractions such as catalytic cracked gasoline can also be removed, light cracked naphtha fractions such as cracked naphtha fractions containing a large amount of thiophene sulfur compounds can also be desulfurized. Further, since the olefin content contained in the light cracked naphtha fraction such as catalytic cracked light gasoline is hardly hydrogenated, the octane loss associated with the desulfurization treatment can be avoided. Therefore, it is possible to reduce only the sulfur content to 1 ppm by mass or less without changing other properties from the conventional unleaded gasoline composition.

本発明は、特定の性状を有する分解ナフサ留分を脱硫処理する脱硫工程、及び得られた脱硫分解ナフサ留分を、他のガソリン基材と混合するブレンド工程を含む硫黄分が1質量ppm以下、かつリサーチ法オクタン価が89.0以上である無鉛ガソリン組成物の製造方法である。なお、以下の説明において、分解ナフサ留分として、いわゆる流動接触分解ガソリン(FCCガソリン)を主体的に引用して説明するが、本発明はFCCガソリンに限定されるものでなく、その他の石油精製及び石油化学などのプロセス、装置から得られる製品、中間製品などで、例えば熱分解装置から生成する熱分解ナフサ、脱ろう装置から生成する脱ろうナフサ、ナフサクラッカーから生成する分解ナフサなどを分解ナフサ留分として用いることができる。要は、5容量%留出温度が25℃以上、かつ95容量%留出温度が210℃以下、オレフィン分が5容量%以上、ジエン価が0.3g/100g以下の分解ナフサ留分であればよい。したがって、いわゆるホール(whole)の分解ナフサ留分のほかに、それをさらに分留して得た軽質な分解ナフサ留分、あるいは重質な分解ナフサ留分であっても、前記条件を満足すればよい。なお、これらの分解ナフサ留分の5容量%留出温度は25〜130℃、及び95容量%留出温度は55〜210℃が好ましい。また、ジエン価が0.3g/100g以下のものを用いるために、分解ナフサ留分は、予め以下に詳述するジエンを低減する処理が施され、前記ジエン価を有するものを使用することが好ましい。   The present invention includes a desulfurization step of desulfurizing a cracked naphtha fraction having specific properties, and a sulfur content of 1 mass ppm or less including a blending step of mixing the obtained desulfurized cracked naphtha fraction with another gasoline base material. And a method for producing an unleaded gasoline composition having a research octane number of 89.0 or more. In the following description, a so-called fluid catalytic cracking gasoline (FCC gasoline) will be mainly cited and explained as the cracked naphtha fraction, but the present invention is not limited to FCC gasoline, and other petroleum refining For example, pyrolysis naphtha produced from pyrolysis equipment, dewaxed naphtha produced from dewaxing equipment, cracked naphtha produced from naphtha crackers, etc. It can be used as a fraction. In short, a cracked naphtha fraction having a 5% by volume distillation temperature of 25 ° C. or more, a 95% by volume distillation temperature of 210 ° C. or less, an olefin content of 5% by volume or more, and a diene value of 0.3 g / 100 g or less. That's fine. Therefore, in addition to the so-called whole cracked naphtha fraction, even the light cracked naphtha fraction obtained by further fractional distillation or the heavy cracked naphtha fraction should satisfy the above conditions. That's fine. The 5 vol% distillation temperature of these cracked naphtha fractions is preferably 25 to 130 ° C, and the 95 vol% distillation temperature is preferably 55 to 210 ° C. In addition, since a diene value of 0.3 g / 100 g or less is used, the cracked naphtha fraction is subjected to a treatment for reducing diene, which will be described in detail below, and the one having the diene value is used. preferable.

〔ジエン低減処理〕
本発明の無鉛ガソリン組成物の製造方法において、予めFCCガソリンのような分解ナフサ留分に対しジエン低減処理を行い、ジエン価が0.3g/100g以下である分解ナフサ留分を得る。ジエン価が0.1g/100g以下であると、なお一層好ましい。ジエン価が0.3g/100gを超えると、その後の脱硫工程に用いる硫黄収着機能をもつ多孔質脱硫剤の脱硫性能が低下し、特にチオフェン類硫黄化合物の脱硫が困難になる。脱硫性能の低下は、単位処理量における脱硫率の低下、あるいは所定の脱硫率を保持するための多孔質脱硫剤の再生頻度の増加によって知ることができる。したがって、ジエン化合物を低減する前処理を行ってから次の脱硫工程に供することが好ましい。ただし、このジエン低減処理工程においては、オレフィンが水素化されパラフィンに転化するとオクタン価が大きく低下するから、オレフィンが水素化されないように選択的なジエン低減処理をすることが好ましい。
[Diene reduction treatment]
In the method for producing an unleaded gasoline composition of the present invention, a cracked naphtha fraction such as FCC gasoline is previously subjected to a diene reduction treatment to obtain a cracked naphtha fraction having a diene value of 0.3 g / 100 g or less. It is even more preferable that the diene value is 0.1 g / 100 g or less. When the diene value exceeds 0.3 g / 100 g, the desulfurization performance of the porous desulfurization agent having a sulfur sorption function used in the subsequent desulfurization step is lowered, and in particular, desulfurization of the thiophene sulfur compound becomes difficult. The decrease in the desulfurization performance can be recognized by a decrease in the desulfurization rate in the unit treatment amount or an increase in the regeneration frequency of the porous desulfurization agent for maintaining a predetermined desulfurization rate. Accordingly, it is preferable to perform the pretreatment for reducing the diene compound and then use it for the next desulfurization step. However, in this diene reduction treatment step, when the olefin is hydrogenated and converted to paraffin, the octane number is greatly reduced. Therefore, selective diene reduction treatment is preferably performed so that the olefin is not hydrogenated.

なお、ここでいうジエン価とはUOP326−82にて測定した値である。
また、ジエン低減処理において、用いる触媒と条件を選択することによって、硫黄分も同時に低減できる。そうすれば、収着機能をもった多孔質脱硫剤の寿命を延長させることが可能である。
Here, the diene value is a value measured by UOP326-82.
In the diene reduction treatment, the sulfur content can be reduced simultaneously by selecting the catalyst and conditions to be used. By doing so, it is possible to extend the lifetime of the porous desulfurization agent having a sorption function.

ジエン低減処理の方法は、ジエン低減触媒と接触分解ナフサ留分を水素の共存下で接触させ、ジエンをモノオレフィンに転化するか、あるいは、ジエンと共存する硫黄化合物とを反応させスルフィドに転化させる方法が好ましい。ジエン低減触媒としてはアルミナなどの無機多孔質担体に周期律表第8属の金属を少なくとも1種を担持した触媒が好ましく用いられる。さらには、硫黄を含む原料油に対して耐性があるニッケルまたはコバルトを含む触媒がなおいっそう好ましい。反応条件としては、接触分解ナフサ留分中のジエン価が0.3g/100g以下でありかつ、オレフィン水素化率が20%以下となるように設定する必要がある。ここで、オレフィン水素化率とは、処理前のオレフィン含有量を100%とした場合の、処理後のオレフィン含有量の低減率をいう。
なお、ジエン低減触媒と接触分解ナフサ留分を水素の共存下で接触させる好ましい反応条件は、反応温度40〜300℃、反応圧力0.0〜4.0MPa(ゲージ圧)、LHSV1.0〜10.0hr−1、H/OIL比1〜100NL/Lである。
The diene reduction treatment method involves contacting the diene reduction catalyst and the catalytic cracking naphtha fraction in the presence of hydrogen to convert the diene to a monoolefin, or reacting the sulfur compound coexisting with the diene to convert to a sulfide. The method is preferred. As the diene-reducing catalyst, a catalyst in which at least one metal of Group 8 of the periodic table is supported on an inorganic porous carrier such as alumina is preferably used. Furthermore, a catalyst containing nickel or cobalt that is resistant to sulfur-containing feedstock is even more preferred. The reaction conditions must be set so that the diene value in the catalytic cracking naphtha fraction is 0.3 g / 100 g or less and the olefin hydrogenation rate is 20% or less. Here, the olefin hydrogenation rate means a reduction rate of the olefin content after the treatment when the olefin content before the treatment is 100%.
The preferable reaction conditions for contacting the diene-reducing catalyst and the catalytic cracking naphtha fraction in the presence of hydrogen are as follows: reaction temperature 40 to 300 ° C., reaction pressure 0.0 to 4.0 MPa (gauge pressure), LHSV 1.0 to 10 0.0 hr −1 , H 2 / OIL ratio is 1 to 100 NL / L.

従来から石油精製においては、オレフィン中のジエンを選択的に水素化精製することが行われており、本発明においてジエンを低減する方法として適用できる。具体的には、IFP Selective Hydrogenationプロセス、Hules Selective Hydrogenationプロセスなどが好ましく用いられる(石油学会編石油精製プロセス、p.62、講談社サイエンティフィク、1998、参照)。
また、本発明においてジエンを低減する方法として、SHUプロセス(21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37(2002))やCD Hydroプロセス(NPRA 2001 Annual Meeting, AM-01-39)も用いることができる。
Conventionally, in petroleum refining, diene in olefins has been selectively hydrorefined, and can be applied as a method for reducing diene in the present invention. Specifically, the IFP Selective Hydrogenation process, the Hules Selective Hydrogenation process, etc. are preferably used (refer to Petroleum Institute Petroleum Refining Process, p.62, Kodansha Scientific, 1998).
In addition, as a method for reducing diene in the present invention, the SHU process (21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37 (2002)) and the CD Hydro process (NPRA 2001 Annual Meeting, AM-01-39) Can also be used.

〔接触分解ガソリン〕
本発明の無鉛ガソリン組成物の製造方法において、分解ナフサ留分として前述のように接触分解ガソリンが代表的に用いられる。この接触分解ガソリンを製造するプロセスは、接触分解装置、原料油、運転条件を特に限定するものでなく、公知の任意の製造工程を採用できる。接触分解装置は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して高オクタン価ガソリン基材を得る装置である。例えば石油学会編「新石油精製プロセス」に記載のあるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などがある。
[Catalytic cracking gasoline]
In the method for producing an unleaded gasoline composition of the present invention, catalytic cracked gasoline is typically used as the cracked naphtha fraction as described above. The process for producing the catalytic cracking gasoline does not particularly limit the catalytic cracking apparatus, the raw material oil, and the operating conditions, and any known production process can be employed. The catalytic cracker uses a catalyst such as amorphous silica alumina, zeolite, etc., in addition to the petroleum fraction from light oil to vacuum gas oil, while it is obtained from the heavy oil indirect desulfurization unit, the direct desulfurization unit obtained from the degasification oil and heavy oil direct desulfurization unit. This is a device that obtains a high octane gasoline base material by catalytically cracking degassed oil, atmospheric residue oil, etc. For example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, RCC method, HOC method, etc. Examples include fluid catalytic cracking.

分解ナフサ留分中の硫黄化合物を低減するためには、接触分解装置の原料油として軽油から減圧軽油までの石油留分、特にその硫黄分を4000質量ppm以下、より好ましくは2000質量ppm以下、さらには1000質量ppm以下、特には500質量ppm以下に水素化精製などにより低減した留分を用いることが好ましい。   In order to reduce the sulfur compound in the cracked naphtha fraction, the petroleum fraction from light oil to vacuum gas oil as the feedstock for the catalytic cracking device, particularly the sulfur content is 4000 mass ppm or less, more preferably 2000 mass ppm or less, Furthermore, it is preferable to use a fraction reduced to 1000 mass ppm or less, particularly 500 mass ppm or less by hydrorefining or the like.

〔脱硫工程〕
本発明の無鉛ガソリン組成物の製造方法における脱硫工程では、ジエン価が0.3g/100g以下である分解ナフサ留分を脱硫処理して、次のブレンド工程に供する脱硫分解ナフサ留分を得る。脱硫工程で得られる脱硫分解ナフサ留分の硫黄分を、2質量ppm以下に脱硫することが好ましく、1質量ppm以下、さらには0.5質量ppm以下にすることができるとなお一層好ましい。脱硫工程においては、硫黄化合物のうちチオフェン類硫黄化合物が最も残留しやすい硫黄化合物であるため、脱硫分解ナフサ留分中の全硫黄分に占めるチオフェン類硫黄化合物の割合は硫黄分として50質量%以上、さらには70質量%以上であるのが好ましい。なお、ここでいうチオフェン類硫黄化合物とは、チオフェン、2−メチルチオフェン、2,5−ジメチルチオフェン等の分子内にチオフェン骨格を含む硫黄化合物のことである。また、脱硫接触分解ガソリンのオレフィン分は5〜60容量%、特には20〜40容量%であることが好ましい。
[Desulfurization process]
In the desulfurization step in the method for producing an unleaded gasoline composition of the present invention, a desulfurized naphtha fraction having a diene value of 0.3 g / 100 g or less is desulfurized to obtain a desulfurized cracked naphtha fraction for use in the next blending step. The sulfur content of the desulfurized cracked naphtha fraction obtained in the desulfurization step is preferably desulfurized to 2 ppm by mass or less, more preferably 1 ppm by mass or less, and even more preferably 0.5 ppm by mass or less. In the desulfurization process, among the sulfur compounds, the thiophene sulfur compound is the sulfur compound most likely to remain, so the proportion of the thiophene sulfur compound in the total sulfur content in the desulfurization cracked naphtha fraction is 50% by mass or more as the sulfur content. Furthermore, it is preferable that it is 70 mass% or more. The thiophene sulfur compound referred to herein is a sulfur compound containing a thiophene skeleton in the molecule, such as thiophene, 2-methylthiophene, 2,5-dimethylthiophene. The olefin content of the desulfurized catalytic cracking gasoline is preferably 5 to 60% by volume, particularly 20 to 40% by volume.

脱硫工程における脱硫処理の方法は、水素の共存下で収着機能をもった脱硫剤と分解ナフサ留分を接触させる方法が好ましい。水素化脱硫触媒と水素の存在下で、分解ナフサ留分を水素化精製処理する方法では、オレフィンが水素化されて得られるガソリン基材のRONが低下しやすく、また水素化脱硫によって生成する硫化水素がオレフィンと反応してチオール類を再生成しやすいため、十分に脱硫処理できないので不適切である。収着機能をもった脱硫剤を用いると有機硫黄化合物から除去される硫黄が脱硫剤上に固定化されオレフィンと反応してチオール類を再生成することがないので好ましい。   The desulfurization treatment method in the desulfurization step is preferably a method in which a desulfurization agent having a sorption function and a cracked naphtha fraction are contacted in the presence of hydrogen. In the method of hydrotreating a cracked naphtha fraction in the presence of a hydrodesulfurization catalyst and hydrogen, the RON of the gasoline base material obtained by hydrogenating the olefin is likely to decrease, and the sulfur produced by hydrodesulfurization Since hydrogen easily reacts with olefins to regenerate thiols, it cannot be adequately desulfurized and is inappropriate. Use of a desulfurizing agent having a sorption function is preferable because sulfur removed from the organic sulfur compound is immobilized on the desulfurizing agent and does not react with the olefin to regenerate thiols.

硫黄の収着機能をもった脱硫剤と分解ナフサ留分を接触させる方法を用いる場合の脱硫剤としては、硫黄化合物に対する収着機能を有するものであれば特に限定はない。銅、亜鉛、ニッケル及び鉄から選ばれる少なくとも1種を含む多孔質脱硫剤が好ましく用いられる。好ましい脱硫剤は、銅などの金属成分を0.5〜85質量%、特には1〜80質量%含有する。脱硫剤の製造方法は特に限定されないが、アルミナのような多孔質担体に銅などの金属成分を含浸、担持して焼成する製造方法や、共沈法によって銅などの金属成分とアルミニウムなどの成分とを沈殿させて成形、焼成等の工程を経る製造方法が、好ましい方法として挙げられる。また、成形、焼成された脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、焼成されたものをそのまま用いてもよいし、水素雰囲気下で処理して用いてもよい。脱硫剤の比表面積は、好ましくは30m/g以上、特には50〜600m/gである。脱硫剤の組成や製造方法は特に限定されないが、特許第3324746号公報、特許第3230864号公報および特開平11-61154号公報に開示されているような脱硫剤が好ましいものとして挙げられる。The desulfurization agent in the case of using a method of bringing a desulfurization agent having a sulfur sorption function into contact with a cracked naphtha fraction is not particularly limited as long as it has a sorption function for a sulfur compound. A porous desulfurization agent containing at least one selected from copper, zinc, nickel and iron is preferably used. A preferred desulfurizing agent contains 0.5 to 85% by mass, particularly 1 to 80% by mass of a metal component such as copper. The production method of the desulfurization agent is not particularly limited, but a production method in which a porous carrier such as alumina is impregnated with metal components such as copper, supported, and fired, or a metal component such as copper and a component such as aluminum by a coprecipitation method A preferable method is a production method in which the above is precipitated and subjected to steps such as molding and baking. Alternatively, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired. The desulfurization agent may be used as it is, or may be used after being treated in a hydrogen atmosphere. The specific surface area of the desulfurizing agent is preferably 30 m 2 / g or more, particularly 50 to 600 m 2 / g. The composition and production method of the desulfurizing agent are not particularly limited, and preferred desulfurizing agents are those disclosed in Japanese Patent No. 3324746, Japanese Patent No. 3230864 and Japanese Patent Laid-Open No. 11-61154.

本発明の硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基については、有機硫黄化合物中の炭素−硫黄結合が開裂することによって脱硫剤から脱離させる機能をもった多孔質脱硫剤をいう。この炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれた炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがあっても構わない。一方、硫黄は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として硫化水素などの硫黄化合物を発生しない。   The porous desulfurization agent having a sulfur sorption function of the present invention is to fix the sulfur atom in the organic sulfur compound to the desulfurization agent, and for the hydrocarbon residue other than the sulfur atom in the organic sulfur compound, A porous desulfurization agent having a function of desorbing from a desulfurization agent by cleavage of a carbon-sulfur bond in a sulfur compound. When this hydrocarbon residue is eliminated, hydrogen present in the system is added to the carbon whose bond with sulfur has been cleaved. Accordingly, a hydrocarbon compound obtained by removing sulfur atoms from the organic sulfur compound is obtained as a product. However, the hydrocarbon compound from which the sulfur atom is removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition. On the other hand, since sulfur is fixed to the desulfurizing agent, unlike hydrorefining, sulfur compounds such as hydrogen sulfide are not generated as products.

脱硫処理は、バッチ式で行っても、流通式で行っても構わないが、脱硫剤を充填した固定床脱硫塔に分解ナフサ留分を流通させて行うことが、脱硫剤と得られる脱硫分解ナフサ留分の分離が簡便にできるので好ましい。脱硫処理する温度は、0〜400℃の範囲から選ぶことができ、好ましくは20〜380℃の範囲から選ぶとよい。脱硫剤と接触させただけでは脱硫されにくいチオフェン類の脱硫を促進するために、水素を共存させて脱硫処理を行ってもよい。ただし、オレフィンが水素化され、得られるガソリン基材のRONが低下することを避けるため、水素分圧は1MPa未満とすることが好ましく、さらには0.6MPa未満とすることが好ましい。固定床流通式で脱硫剤と分解ナフサ留分を接触させて脱硫処理を行う場合、LHSVは、0.01〜10000hr−1の範囲から選ぶことが好ましい。The desulfurization treatment may be performed batchwise or flow-through, but the desulfurization cracking obtained with the desulfurization agent can be performed by circulating the cracked naphtha fraction through a fixed-bed desulfurization tower filled with a desulfurization agent. This is preferable because the naphtha fraction can be easily separated. The temperature for the desulfurization treatment can be selected from the range of 0 to 400 ° C, and preferably from the range of 20 to 380 ° C. In order to promote desulfurization of thiophenes that are not easily desulfurized only by contacting with a desulfurizing agent, desulfurization treatment may be performed in the presence of hydrogen. However, the hydrogen partial pressure is preferably less than 1 MPa, and more preferably less than 0.6 MPa in order to avoid hydrogenation of the olefin and a decrease in RON of the resulting gasoline base material. When the desulfurization treatment is performed by bringing the desulfurizing agent and cracked naphtha fraction into contact with each other in a fixed bed flow type, the LHSV is preferably selected from the range of 0.01 to 10,000 hr −1 .

プレミアムガソリンを製造する場合、用いるガソリン基材は高いオクタン価を有することが望ましい。また、高いオクタン価を有するガソリン基材は、レギュラーガソリンを製造するブレンドの際にも、ブレンドのフレキシビリティを広げる上で好ましい。分解ナフサ留分をさらに分留して、比較的高オクタン価の軽質な分解ナフサ留分を、上記のジエン低減処理、脱硫した物を、他のガソリン基材と混合して本発明の無鉛ガソリン組成物を製造することができる。   When producing premium gasoline, it is desirable that the gasoline base used has a high octane number. In addition, a gasoline base material having a high octane number is preferable in the case of blending for producing regular gasoline in order to expand the flexibility of the blend. The undiluted gasoline composition of the present invention is obtained by further fractionating the cracked naphtha fraction and mixing the light cracked naphtha fraction having a relatively high octane number with the above-mentioned diene reduction treatment and desulfurization with other gasoline base materials. Can be manufactured.

分留及びジエン低減処理後の軽質な分解ナフサ留分は、5容量%留出温度が25〜43℃、かつ95容量%留出温度が55〜100℃、オレフィン分が5容量%以上、ジエン価が0.3g/100g以下であるであることが好ましく、この軽質な分解ナフサ留分は、ジエン低減処理した後に分留して得たものであっても、分留した後にジエン低減処理して得たものであっても、あるいはジエン低減処理と分留を同時に行って得たものであってもよい。また、分留に先立ってあるいは分留中に、硫黄化合物の分子量を大きくする前処理を施しておくと、大きな分子量になった硫黄分は高沸点の重質な分解ナフサ留分中に移動して、軽質な分解ナフサ留分中の硫黄分を簡単な操作で少なくすることができる。以下、前記分留の工程、及び硫黄化合物の分子量を大きくする前処理の工程についてより詳しく説明する。   The light cracked naphtha fraction after fractionation and diene reduction treatment has a 5% by volume distillation temperature of 25 to 43 ° C, a 95% by volume distillation temperature of 55 to 100 ° C, an olefin content of 5% by volume or more, The light cracked naphtha fraction is preferably obtained by fractional distillation after diene reduction treatment, and diene reduction treatment after fractionation is preferable. Or obtained by performing diene reduction treatment and fractional distillation at the same time. In addition, if a pretreatment for increasing the molecular weight of the sulfur compound is performed prior to or during fractional distillation, the sulfur component having a large molecular weight moves into the high-boiling heavy cracked naphtha fraction. Thus, the sulfur content in the light cracked naphtha fraction can be reduced by a simple operation. Hereinafter, the fractionation step and the pretreatment step for increasing the molecular weight of the sulfur compound will be described in more detail.

〔分留工程〕
本発明の無鉛ガソリン組成物の製造方法における分留工程では、接触分解ガソリンを分留して5容量%留出温度が25.0〜43.0℃であって、かつ95容量%留出温度が55.0〜100.0℃である接触分解軽質ガソリンなどの軽質な分解ナフサ留分を得る。5容量%留出温度が25.0℃未満であると、無鉛ガソリン組成物の蒸気圧が高くなる。95容量%留出温度が80.0℃、特に100.0℃を超えると、脱硫接触分解軽質ガソリンの硫黄分が高くなる。5容量%留出温度が43.0℃を超えたり、95容量%留出温度が55.0℃未満であったりすると、無鉛ガソリン組成物の蒸留性状の調整が困難になったり、分留工程で得られる接触分解軽質ガソリンの得率が低下し無鉛ガソリン組成物のコストが高くなったりする。
[Fractionation process]
In the fractionation step in the method for producing an unleaded gasoline composition of the present invention, the catalytically cracked gasoline is fractionated to give a 5% by volume distillation temperature of 25.0 to 43.0 ° C and a 95% by volume distillation temperature. A light cracked naphtha fraction, such as catalytically cracked light gasoline, having a 55.0 to 100.0 ° C. When the 5% by volume distillation temperature is less than 25.0 ° C, the vapor pressure of the unleaded gasoline composition increases. If the 95% by volume distillation temperature exceeds 80.0 ° C, particularly 100.0 ° C, the sulfur content of the desulfurized catalytically cracked light gasoline increases. If the 5% by volume distillation temperature exceeds 43.0 ° C. or the 95% by volume distillation temperature is less than 55.0 ° C., it is difficult to adjust the distillation properties of the unleaded gasoline composition, or the fractionation process. The yield of catalytically cracked light gasoline obtained at 1 is reduced and the cost of unleaded gasoline composition is increased.

分留工程で得られる接触分解軽質ガソリンは、チオフェン類硫黄化合物を硫黄分として0.1〜50質量ppm含むことが好ましい。20質量ppm以下、さらには10質量ppm以下であるとなお一層好ましい。チオフェン類硫黄化合物は、後の工程での脱硫処理で得られる脱硫接触分解軽質ガソリン中に残留しやすい硫黄化合物であるため、分留工程で得られる接触分解軽質ガソリンが、硫黄分として50質量ppmを超えるチオフェン類硫黄化合物を含んでいると、脱硫工程において、脱硫剤の運転サイクルが短くなり好ましくない。分留工程で得られる接触分解軽質ガソリンが、硫黄分として0.1質量ppm未満のチオフェンしか含まないようにすることは、該接触分解軽質ガソリンの得率を低下させるので、好ましくない。   The catalytically cracked light gasoline obtained in the fractionation step preferably contains 0.1 to 50 mass ppm of the thiophene sulfur compound as the sulfur content. It is still more preferable that it is 20 mass ppm or less, Furthermore, it is 10 mass ppm or less. Since the thiophene sulfur compound is a sulfur compound that tends to remain in the desulfurization catalytic cracking light gasoline obtained by the desulfurization treatment in the subsequent step, the catalytic cracking light gasoline obtained in the fractionation step has a sulfur content of 50 mass ppm. If it contains more than thiophene sulfur compounds, the operation cycle of the desulfurizing agent is shortened in the desulfurization step, which is not preferable. It is not preferable that the catalytically cracked light gasoline obtained in the fractionation step contains only thiophene having a sulfur content of less than 0.1 mass ppm because the yield of the catalytically cracked light gasoline is reduced.

また、分留工程で、接触分解ガソリンを分留して軽質な分解ナフサ留分を得ると、当然、比較的重質な分解ナフサ留分も製造することになる。このとき、本発明は重質な分解ナフサ留分を排除するものではなく、5容量%留出温度が25℃以上、好ましくは25〜130℃、かつ95容量%留出温度が210℃以下、好ましくは55〜210℃、オレフィン分が5質量%以上、ジエン価が0.3g/100g以下を満足すれば、本発明の無鉛ガソリン組成物、特に比較的低オクタン価のガソリン組成物の製造に低コストで、好適に用いることができる。
通常、接触分解重質ガソリンは接触分解軽質ガソリンよりも硫黄分が多く、特に接触分解重質ガソリン中の硫黄分が50質量ppm以上の場合は、ジエンだけを除去して、水素の共存下で収着機能をもった脱硫剤による処理を行うと、脱硫剤の寿命が著しく短くなる。また、接触分解重質ガソリンは比較的オレフィン量が少ないため、高圧の水素存在下における水素化脱硫でも硫黄分5質量ppm程度までならば、比較的オクタン価ロスを損なうことなく脱硫が可能である。したがって、高圧の水素共存下における水素化脱硫によって、オレフィン水素化率を20%以下、好ましくは10%以下に抑えながら接触分解重質ガソリン中の硫黄分を20質量ppm以下、好ましくは10質量ppm以下、さらには5質量ppm以下に低減した後、水素の共存下で収着機能をもった脱硫剤による処理を行い脱硫することが好ましい。なお、ジエン量の低減については、水素化脱硫の際、脱硫と同時に行うことができる。好ましくはジエン重合等による水素化脱硫触媒や水素化脱硫装置への悪影響を抑制するため、予めジエン低減処理を行うのがよい。
In the fractionation step, when catalytic cracked gasoline is fractionated to obtain a light cracked naphtha fraction, naturally a relatively heavy cracked naphtha fraction is also produced. At this time, the present invention does not exclude the heavy cracked naphtha fraction, 5 vol% distillation temperature is 25 ℃ or more, preferably 25 to 130 ℃, 95 vol% distillation temperature is 210 ℃ or less, Preferably, when the olefin content is 55 to 210 ° C., the olefin content is 5% by mass or more, and the diene value is 0.3 g / 100 g or less, the production of the unleaded gasoline composition of the present invention, particularly a gasoline composition having a relatively low octane number, is low. It can be suitably used at a low cost.
Normally, catalytically cracked heavy gasoline has a higher sulfur content than catalytically cracked light gasoline. Especially when the sulfur content in catalytically cracked heavy gasoline is 50 mass ppm or more, only diene is removed and hydrogen is present in the presence of hydrogen. When a treatment with a desulfurizing agent having a sorption function is performed, the life of the desulfurizing agent is remarkably shortened. In addition, since catalytically cracked heavy gasoline has a relatively small amount of olefin, hydrosulfurization in the presence of high-pressure hydrogen can be desulfurized with relatively low octane loss as long as the sulfur content is about 5 ppm by mass. Therefore, the sulfur content in catalytic cracked heavy gasoline is 20 mass ppm or less, preferably 10 mass ppm, while suppressing the olefin hydrogenation rate to 20% or less, preferably 10% or less by hydrodesulfurization in the presence of high-pressure hydrogen. In the following, it is preferable to further desulfurize by reducing to 5 ppm by mass or less and then treating with a desulfurizing agent having a sorption function in the presence of hydrogen. In addition, about the reduction | decrease of the amount of dienes, it can carry out simultaneously with desulfurization in the case of hydrodesulfurization. Preferably, diene reduction treatment is preferably performed in advance in order to suppress adverse effects on the hydrodesulfurization catalyst or hydrodesulfurization apparatus due to diene polymerization or the like.

チオフェン類硫黄化合物の中でもとりわけ、2位にアルキル基をもつチオフェン類硫黄化合物は、脱硫工程で得られる脱硫接触分解軽質ガソリン中に最も残留しやすい硫黄化合物である。接触分解軽質ガソリン中においては、チオフェン類硫黄化合物として主にチオフェン、2−メチルチオフェン、3−メチルチオフェンが含まれるが、2位にアルキル基をもつチオフェン類硫黄化合物としては2−メチルチオフェンが該当する。したがって、分留工程において、2−メチルチオフェンを低減しておくことが好ましい。このためには、分留時の95容量%留出温度を100.0℃、特には85.0℃、さらには75℃以下とすることが好ましい。分留時の95容量%留出温度を75℃以下まで下げると2−メチルチオフェンだけでなく3−メチルチオフェンも接触分解軽質ガソリン中にほとんど含まれなくなるため、このとき含まれるチオフェン類硫黄化合物は主にチオフェンとなる。したがって、分留時の95容量%留出温度が75℃以下の場合には、脱硫工程で得られる脱硫接触分解軽質ガソリン中に最も残留しやすい硫黄化合物はチオフェンとなる。   Among the thiophene sulfur compounds, the thiophene sulfur compound having an alkyl group at the 2-position is the sulfur compound most likely to remain in the desulfurized catalytically cracked light gasoline obtained in the desulfurization step. In catalytically cracked light gasoline, thiophene sulfur compounds mainly include thiophene, 2-methylthiophene, and 3-methylthiophene, but 2-thiophene is a thiophene sulfur compound having an alkyl group at the 2-position. To do. Therefore, it is preferable to reduce 2-methylthiophene in the fractionation step. For this purpose, the 95% by volume distillation temperature during fractional distillation is preferably 100.0 ° C., more preferably 85.0 ° C., and even more preferably 75 ° C. or less. When the 95% by volume distillation temperature during fractional distillation is lowered to 75 ° C. or lower, not only 2-methylthiophene but also 3-methylthiophene is hardly contained in the catalytically cracked light gasoline. Mainly thiophene. Therefore, when the 95% by volume distillation temperature during fractional distillation is 75 ° C. or lower, the sulfur compound most likely to remain in the desulfurized catalytically cracked light gasoline obtained in the desulfurization step is thiophene.

〔硫黄化合物の分子量を大きくする前処理〕
分留工程に供する接触分解ガソリンについて、含まれる硫黄化合物の分子量を大きくする前処理を行って分留工程に供するか、あるいは分留と同時に硫黄化合物の分子量を大きくする前処理を行うことが好ましい。チオール類などの硫黄化合物の分子量を選択的に大きくすることにより、その含硫黄化合物の沸点が高くなるため、分留工程において、含硫黄化合物を接触分解重質ガソリン中に移行することができ、分留工程で得られる接触分解軽質ガソリンの硫黄分を低減することができる。具体的には、接触分解軽質ガソリンのチオール類の含有量を硫黄分として合計0.1質量ppm以下にすると一層好ましい。
[Pretreatment to increase the molecular weight of sulfur compounds]
About catalytically cracked gasoline to be subjected to the fractionation step, it is preferable to perform a pretreatment for increasing the molecular weight of the contained sulfur compound to be used for the fractionation step, or to perform a pretreatment for increasing the molecular weight of the sulfur compound simultaneously with the fractionation. . By selectively increasing the molecular weight of the sulfur compound such as thiols, the boiling point of the sulfur-containing compound is increased, so that the sulfur-containing compound can be transferred into catalytically cracked heavy gasoline in the fractionation step, The sulfur content of the catalytically cracked light gasoline obtained in the fractionation process can be reduced. Specifically, it is more preferable that the content of thiols in the catalytically cracked light gasoline is 0.1 mass ppm or less in terms of the sulfur content.

従来から石油精製においては、チオール類を処理して製品を無臭化するためのスイートニングが行われるが、酸化法や酸化抽出法によって、チオール類をジスルフィド類に転化する公知の方法は、本発明において硫黄化合物の分子量を大きくする方法として適用できる。具体的には、マーロックス法、ドクター法などが好ましく用いられる(産業図書株式会社、石油精製技術便覧第3版、1981、参照)。   Conventionally, in petroleum refining, sweetening for treating thiols to make the product non-brominated is performed, but a known method for converting thiols to disulfides by an oxidation method or an oxidation extraction method is the present invention. Can be applied as a method of increasing the molecular weight of the sulfur compound. Specifically, the Marlox method, the doctor method and the like are preferably used (see Sangyo Tosho Co., Ltd., Petroleum Refining Technology Handbook 3rd Edition, 1981).

また、本発明において硫黄化合物の分子量を大きくする方法として、分解ナフサ留分に含まれる硫黄化合物とオレフィン類とを反応させる方法も好適に用いられる。具体的には、チオール類とオレフィン類とを反応させる方法(特開2001-55584号公報参照)やチオール類やチオフェン類をオレフィン類と反応させる方法(“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond”, Petroleum Refining Technology Seminar August 2001, 11-18、参照)が挙げられる。また、特に好ましくは硫黄化合物の分子量を大きくする処理とジエン低減処理を同時にできるプロセスを用いるのがよい。具体的には、前記のSHUプロセスが好適に用いられる。さらには、分留を行いながら、硫黄化合物の分子量を大きくする処理とジエン低減処理を同時にできるプロセスを用いるのがいっそう好ましい。具体的には、前記のCD Hydroプロセスが好適に用いられる。   In the present invention, as a method for increasing the molecular weight of the sulfur compound, a method of reacting the sulfur compound contained in the cracked naphtha fraction with olefins is also preferably used. Specifically, a method of reacting thiols with olefins (see JP 2001-55584 A) or a method of reacting thiols or thiophenes with olefins (“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond ”, Petroleum Refining Technology Seminar August 2001, 11-18). Further, it is particularly preferable to use a process capable of simultaneously performing a treatment for increasing the molecular weight of the sulfur compound and a diene reduction treatment. Specifically, the above SHU process is preferably used. Furthermore, it is more preferable to use a process capable of simultaneously performing a treatment for increasing the molecular weight of the sulfur compound and a diene reduction treatment while performing fractional distillation. Specifically, the CD Hydro process is preferably used.

〔ブレンド工程に用いられる他のガソリン基材〕
ブレンド工程で混合される他のガソリン基材としては、接触改質ガソリン基材、アルキレートガソリン基材、直留ナフサを脱硫処理した基材、異性化ガソリン基材、ナフサクラッカーから生成したナフサ基材、トルエン、キシレン及びMTBE、エチルt−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)、エタノール、メタノール等の含酸素ガソリン基材等、公知のガソリン基材を用いることができる。ブレンド工程で混合される他のガソリン基材は、硫黄分が10質量ppm以下であり、好ましくは3質量ppm以下、さらには1質量ppm以下、特には0.5質量ppm以下であることが好ましい。他のガソリン基材の硫黄分が10質量ppmを超えると、そのガソリン基材のブレンド工程での配合量が制約され、好ましくない。
[Other gasoline base materials used in the blending process]
Other gasoline base materials mixed in the blending process include catalytic reformed gasoline base materials, alkylate gasoline base materials, base materials obtained by desulfurizing straight-run naphtha, isomerized gasoline base materials, and naphtha bases generated from naphtha crackers. Known gasoline base materials such as oxygen-containing gasoline base materials such as wood, toluene, xylene and MTBE, ethyl t-butyl ether (ETBE), t-amyl ethyl ether (TAEE), ethanol and methanol can be used. The other gasoline base material mixed in the blending process has a sulfur content of 10 mass ppm or less, preferably 3 mass ppm or less, more preferably 1 mass ppm or less, and particularly preferably 0.5 mass ppm or less. . When the sulfur content of other gasoline base materials exceeds 10 mass ppm, the blending amount in the blending process of the gasoline base materials is restricted, which is not preferable.

好ましい配合量について各リサーチ法オクタン価別に説明する。例えば、リサーチ法オクタン価が96〜102の場合の好ましい配合量は、脱硫分解ナフサ留分を25〜80容量%、特には30〜50容量%、接触改質ガソリン基材を25〜50容量%、特には30〜45容量%、アルキレートガソリン基材を10〜40容量%、特には15〜30容量%である。
リサーチ法オクタン価が93〜96の場合の好ましい配合量は、脱硫分解ナフサ留分を50〜90容量%特には60〜80容量%、接触改質ガソリン基材を5〜35容量%、特には10〜25容量%、アルキレートガソリン基材を10〜25容量%、特には5〜15容量%である。
リサーチ法オクタン価が89〜93の場合の好ましい配合量は、脱硫分解ナフサ留分を55〜90容量%、特には65〜85容量%、接触改質ガソリン基材を0〜20容量%、特には5〜15容量%、アルキレートガソリン基材を0〜15容量%、特には0〜10容量%である。
A preferable blending amount will be described for each research method octane number. For example, when the research octane number is 96 to 102, the preferable blending amount is 25 to 80% by volume of the desulfurization cracked naphtha fraction, particularly 30 to 50% by volume, 25 to 50% by volume of the catalytic reformed gasoline base, In particular, it is 30 to 45% by volume, 10 to 40% by volume, especially 15 to 30% by volume of the alkylate gasoline base.
A preferable blending amount when the research octane number is 93 to 96 is 50 to 90% by volume of desulfurization cracking naphtha fraction, particularly 60 to 80% by volume, and 5 to 35% by volume of catalytic reformed gasoline base material, particularly 10 -25% by volume, 10-25% by volume of alkylate gasoline base, in particular 5-15% by volume.
A preferable blending amount when the research octane number is 89 to 93 is 55 to 90% by volume of desulfurization cracking naphtha fraction, particularly 65 to 85% by volume, and 0 to 20% by volume of catalytic reformed gasoline base, particularly 5 to 15% by volume, 0 to 15% by volume, especially 0 to 10% by volume of alkylate gasoline base.

〔添加剤〕
さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1質量%以下に維持することが好ましい。本発明のガソリンで使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。
〔Additive〕
Furthermore, the gasoline composition of the present invention may contain one or more fuel oil additives known in the art as needed. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 mass% or less normally. Examples of fuel oil additives that can be used in the gasoline of the present invention include phenolic, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based surfaces. Anti-ignition agent, detergent / dispersant such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, sulfuric acid of higher alcohol Examples include an auxiliary combustor such as an ester, an anionic surfactant, a cationic surfactant, an antistatic agent such as an amphoteric surfactant, and a colorant such as an azo dye.

〔無鉛ガソリン組成物〕
本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が89.0以上、50容量%留出温度が105℃以下で、オレフィン分が10容量%以上、全硫黄分が1質量ppm以下、全硫黄分に占めるチオフェン類硫黄化合物の割合が硫黄分として50〜100質量%である。好ましくは、リサーチ法オクタン価の下限が、93.0以上、特には96.0以上、上限が通常102.0以下、全オレフィン分に占める沸点範囲35〜100℃のオレフィン分が90容量%以上、全硫黄分に占めるチオフェン及び2−メチルチオフェンの合計量の割合が硫黄分として50質量%以上、さらには70質量%以上、チオール類の含有量が硫黄分として0.1質量ppm以下である。
[Unleaded gasoline composition]
The unleaded gasoline composition of the present invention has a research octane number of 89.0 or more, a 50% by volume distillation temperature of 105 ° C. or less, an olefin content of 10% by volume or more, a total sulfur content of 1 mass ppm or less, and a total sulfur content. The ratio of the thiophene sulfur compound in the total is 50 to 100% by mass as the sulfur content. Preferably, the lower limit of the research octane number is 93.0 or more, particularly 96.0 or more, the upper limit is usually 102.0 or less, and the olefin content in the boiling range 35 to 100 ° C. in the total olefin content is 90% by volume or more. The ratio of the total amount of thiophene and 2-methylthiophene in the total sulfur content is 50 mass% or more, further 70 mass% or more as the sulfur content, and the content of thiols is 0.1 mass ppm or less as the sulfur content.

以下に、実施例に基づいて本発明をより詳しく説明するが、本発明は下記の実施例に限定されるものではない。
ガソリン基材の調製1
アルミナにニッケルを20質量%担持した触媒5cmをn−ヘプタンにジメチルジスルフィドを2質量%溶かした溶液を用い300℃にて硫化した後、反応温度250℃、反応圧力常圧、液空間速度(LHSV)4hr-1、H/Oil比340NL/Lの条件のもと、中東系原油の減圧軽油留分を水素化精製処理したものを主たる原料油とする流動接触分解で得られた接触分解ガソリンAを通油してジエン低減処理を行い、接触分解ガソリンBを得た。共沈法にて調製した銅亜鉛アルミニウム複合酸化物(銅含有量35質量%、亜鉛含有量35質量%、アルミニウム含有量5質量%)5cmを反応管に充填し、これに水素ガスを5cm/min、温度200℃の条件にて16hr流通させ、還元処理を行った。その後、この反応管に接触分解ガソリンBを、反応温度100℃、反応圧力常圧、LHSV2.0hr-1、H/Oil比0.06NL/Lの条件のもと20時間通油して収着機能をもった脱硫剤によって脱硫した脱硫接触分解ガソリンCを得た。接触分解ガソリンA、接触分解ガソリンB及び脱硫接触分解ガソリンCの性状は、表1のとおりであった。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
Preparation of gasoline base material 1
After 5 cm 3 of a catalyst having 20% by mass of nickel supported on alumina was sulfurized at 300 ° C. using a solution of 2% by mass of dimethyl disulfide in n-heptane, the reaction temperature was 250 ° C., the reaction pressure was normal pressure, the liquid space velocity ( LHSV) 4hr -1, H 2 / oil ratio under the conditions of 340NL / L, catalytic cracking obtained by fluid catalytic cracking of a main raw material oil that treated hydrotreated vacuum gas oil fraction Middle Eastern crude Gasoline A was passed through to reduce the diene, and catalytic cracking gasoline B was obtained. A reaction tube was filled with 5 cm 3 of copper-zinc-aluminum composite oxide (copper content 35 mass%, zinc content 35 mass%, aluminum content 5 mass%) prepared by coprecipitation method, and hydrogen gas was added 5 cm to this. The reduction treatment was performed by circulating for 16 hours under the conditions of 3 / min and a temperature of 200 ° C. Thereafter, catalytic cracked gasoline B was passed through the reaction tube for 20 hours under the conditions of a reaction temperature of 100 ° C., a reaction pressure of normal pressure, LHSV of 2.0 hr −1 , and an H 2 / Oil ratio of 0.06 NL / L. Desulfurized catalytic cracking gasoline C desulfurized with a desulfurizing agent having an adhesion function was obtained. Properties of catalytic cracking gasoline A, catalytic cracking gasoline B and desulfurized catalytic cracking gasoline C are shown in Table 1.

なお、密度はJIS K 2249、蒸気圧はJIS K 2258、蒸留性状はJIS K 2254、ジエン価はUOP326−82に準拠して測定した。硫黄分は、ASTM D 5453(紫外蛍光法)に準拠して測定した。硫黄化合物の含有量(硫黄換算)は、化学発光によって硫黄化合物を選択的に検出、定量するANTEK製硫黄化学発光検出器を備えた島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。炭化水素成分組成及びRONは、ヒューレットパッカード社製PIONA装置を用いて、ガスクロマトグラフ法で測定した。   The density was measured according to JIS K 2249, the vapor pressure was measured according to JIS K 2258, the distillation property was measured according to JIS K 2254, and the diene value was measured according to UOP 326-82. The sulfur content was measured according to ASTM D 5453 (ultraviolet fluorescence method). The sulfur compound content (sulfur equivalent) was measured by gas chromatography using a Shimadzu gas chromatograph equipped with an ANTEK sulfur chemiluminescence detector that selectively detects and quantifies sulfur compounds by chemiluminescence. . The hydrocarbon component composition and RON were measured by a gas chromatograph method using a PIONA device manufactured by Hewlett-Packard Company.

Figure 2005044959
Figure 2005044959

接触分解ガソリンAはジエン価0.6g/100gであったが、接触分解ガソリンBはジエン価が0.1g/100gとなりジエンがほぼ除去されていた。接触分解ガソリンBは5.0質量ppmの硫黄分を含んでいたが、脱硫剤による処理によって硫黄分0.2質量ppmの脱硫接触分解ガソリンCが得られた。得られた脱硫接触分解ガソリンCは、チオフェン類を0.2質量ppm含んでいたが、その他の硫黄化合物は含んでいなかった。   The catalytically cracked gasoline A had a diene value of 0.6 g / 100 g, but the catalytically cracked gasoline B had a diene value of 0.1 g / 100 g, and the diene was almost removed. Although catalytic cracking gasoline B contained 5.0 mass ppm of sulfur, desulfurization catalytic cracking gasoline C having a sulfur content of 0.2 mass ppm was obtained by treatment with a desulfurizing agent. The obtained desulfurized catalytic cracking gasoline C contained 0.2 mass ppm of thiophenes but did not contain other sulfur compounds.

ガソリン基材の調製2
前記ガソリン基材の調製1と同様にして中東系原油から得られた別のロットの接触分解ガソリンDを軽質分と重質分に分留し、接触分解軽質ガソリンEを得た。この接触分解軽質ガソリンEを用い、反応温度を200℃、LHSVを2hr-1とした以外、前記ガソリン基材の調製1と同様にジエン低減処理を行い、接触分解軽質ガソリンFを得た。次いで、ガソリン基材の調製1と全く同じ方法、条件で、接触分解軽質ガソリンFを脱硫して脱硫接触分解軽質ガソリンGを得た。接触分解ガソリンD、接触分解軽質ガソリンE、接触分解軽質ガソリンF及び脱硫接触分解軽質ガソリンGの性状は、表2のとおりであった。
Preparation of gasoline base material 2
In the same manner as in the preparation of the gasoline base material, another batch of catalytic cracked gasoline D obtained from Middle Eastern crude oil was fractionated into a light fraction and a heavy fraction to obtain catalytic cracked light gasoline E. Using this catalytically cracked light gasoline E, except that the reaction temperature was 200 ° C. and LHSV was 2 hr −1 , the diene reduction treatment was performed in the same manner as in preparation of the gasoline base material to obtain catalytically cracked light gasoline F. Subsequently, catalytic cracking light gasoline F was desulfurized under exactly the same method and conditions as in preparation of gasoline base material 1 to obtain desulfurized catalytic cracking light gasoline G. Properties of catalytic cracking gasoline D, catalytic cracking light gasoline E, catalytic cracking light gasoline F and desulfurized catalytic cracking light gasoline G were as shown in Table 2.

Figure 2005044959
Figure 2005044959

接触分解軽質ガソリンEはジエン価1.6g/100gであったが、接触分解軽質ガソリンFはジエン価が0.1g/100gとなりジエンがほぼ除去されていた。接触分解軽質ガソリンFは14質量ppmの硫黄分を含んでいたが、脱硫剤による処理によって硫黄分0.2質量ppmの脱硫接触分解軽質ガソリンGが得られた。得られた脱硫接触分解軽質ガソリンGは、2−メチルチオフェンを0.2質量ppm含んでいたが、チオフェン及び3-メチルチオフェンは含んでいなかった。   The catalytically cracked light gasoline E had a diene value of 1.6 g / 100 g, whereas the catalytically cracked light gasoline F had a diene value of 0.1 g / 100 g, and the diene was almost removed. Catalytic cracked light gasoline F contained 14 mass ppm of sulfur, but desulfurized catalytic cracked light gasoline G having a sulfur content of 0.2 mass ppm was obtained by treatment with a desulfurizing agent. The obtained desulfurized catalytically cracked light gasoline G contained 0.2 mass ppm of 2-methylthiophene, but did not contain thiophene and 3-methylthiophene.

ガソリン基材の調製3
接触分解ガソリンDをスイートニング処理し接触分解ガソリンHを得た。接触分解ガソリンHを軽質分と重質分に分留し、接触分解軽質ガソリンIを得た。ガソリン基材の調製2と同じ方法によって、接触分解軽質ガソリンIに対してジエン低減処理を行い、接触分解軽質ガソリンJを得た。この接触分解軽質ガソリンJを、ガソリン基材の調製1にて調製した銅亜鉛複合酸化物を用い、ガソリン基材の調製1と同じ条件にて脱硫処理を行い、脱硫接触分解軽質ガソリンKを得た。接触分解ガソリンH、接触分解軽質ガソリンI、ジエンを除去した接触分解軽質ガソリンJ及び脱硫接触分解軽質ガソリンKの性状は、表3のとおりであった。
Preparation of gasoline base 3
The catalytic cracking gasoline D was sweetened and the catalytic cracking gasoline H was obtained. Catalytic cracking gasoline H was fractionated into light and heavy fractions to obtain catalytic cracking light gasoline I. Diene reduction treatment was performed on catalytically cracked light gasoline I by the same method as Preparation 2 of the gasoline base material to obtain catalytically cracked light gasoline J. This catalytic cracking light gasoline J is desulfurized under the same conditions as in gasoline base material preparation 1 using the copper zinc composite oxide prepared in gasoline base material preparation 1 to obtain desulfurized catalytic cracking light gasoline K. It was. Properties of catalytic cracking gasoline H, catalytic cracking light gasoline I, catalytic cracking light gasoline J from which diene was removed, and desulfurized catalytic cracking light gasoline K were as shown in Table 3.

Figure 2005044959
Figure 2005044959

接触分解ガソリンDに含まれていた軽質チオール類は、スイートニング処理によって、より高分子量のジスルフィド類に転化していた。接触分解軽質ガソリンIはジエン価1.6g/100gであったが、接触分解軽質ガソリンJはジエン価が0.1g/100gとなりジエンがほぼ除去されていた。接触分解軽質ガソリンJは、11質量ppmの硫黄分を含んでいたが、脱硫剤で処理することにより、硫黄分0.2質量ppmの脱硫接触分解軽質ガソリンKが得られた。得られた脱硫接触分解軽質ガソリンKは、2−メチルチオフェンを0.2質量ppm含んでいたが、チオフェン及び3-メチルチオフェンを含んでいなかった。分留する前にスイートニングすることによってチオール類はジスルフィドとなり重質分に移行するため、接触分解軽質ガソリン中の硫黄分はスイートニングしない場合の21質量ppmと比べて11質量ppmに低減できる。これにより、収着剤の負荷が低減できるため、収着剤を長寿命化できると考えられる。   Light thiols contained in the catalytic cracking gasoline D were converted to higher molecular weight disulfides by sweetening treatment. The catalytically cracked light gasoline I had a diene value of 1.6 g / 100 g, whereas the catalytically cracked light gasoline J had a diene value of 0.1 g / 100 g, and the diene was almost removed. Catalytic cracking light gasoline J contained 11 mass ppm of sulfur, but desulfurization catalytic cracking light gasoline K having a sulfur content of 0.2 mass ppm was obtained by treatment with a desulfurizing agent. The obtained desulfurized catalytically cracked light gasoline K contained 0.2 mass ppm of 2-methylthiophene, but did not contain thiophene and 3-methylthiophene. By sweetening before fractionation, the thiols become disulfides and shift to heavy components, so the sulfur content in the catalytically cracked light gasoline can be reduced to 11 ppm by mass compared to 21 ppm by mass when not sweetened. Thereby, since the load of a sorbent can be reduced, it is thought that a lifetime of a sorbent can be extended.

ガソリン基材の調製4
接触分解ガソリンA及び接触分解軽質ガソリンEをそれぞれガソリン基材の調製1にて調製した銅亜鉛複合酸化物を用い、ガソリン基材の調製1と同じ条件にて脱硫処理を行い、脱硫接触分解ガソリンL及び脱硫接触分解軽質ガソリンMを得た。脱硫接触分解ガソリンL及び脱硫接触分解軽質ガソリンMの性状は、表4のとおりであった。
Preparation of gasoline base 4
Catalytic cracking gasoline A and catalytic cracking light gasoline E were each subjected to desulfurization treatment using the copper-zinc composite oxide prepared in gasoline base preparation 1 under the same conditions as in gasoline base preparation 1, and desulfurized catalytic cracking gasoline L and desulfurized catalytic cracking light gasoline M was obtained. Table 4 shows the properties of the desulfurized catalytic cracked gasoline L and the desulfurized catalytic cracked light gasoline M.

Figure 2005044959
Figure 2005044959

脱硫接触分解ガソリンLには3.6質量ppmの硫黄分が含まれており、また、脱硫接触分解軽質ガソリンMは11質量ppmの硫黄分が含まれており、ともに、ジエンを除去しないで収着処理を行うと特にチオフェン類硫黄化合物の除去が困難であることが明らかである。   Desulfurized catalytic cracking gasoline L contains 3.6 mass ppm of sulfur, and desulfurized catalytic cracking light gasoline M contains 11 mass ppm of sulfur, both of which are collected without removing diene. It is clear that the removal of the thiophene sulfur compound is particularly difficult when the deposition treatment is performed.

ガソリン基材の調製5
接触分解以外の公知技術で得られるガソリン基材として、脱硫直留ナフサN、接触改質中質油O、接触改質重質油P、アルキレートガソリンQ、ETBE基材Rがあり、その性状は表5に示すとおりである。接触改質中質油Oは、接触改質ガソリンから、トルエンを多く含む留分を蒸留分離したものである。接触改質重質油Pは、接触改質ガソリンから、炭素数9以上であって11未満の芳香族を蒸留分離したものである。
Preparation of gasoline base material 5
Gasoline base materials obtained by known techniques other than catalytic cracking include desulfurization straight-run naphtha N, catalytic reforming medium oil O, catalytic reforming heavy oil P, alkylate gasoline Q, ETBE base material R, and their properties. Is as shown in Table 5. The catalytic reforming medium oil O is obtained by distilling and separating a fraction rich in toluene from catalytic reforming gasoline. The catalytically modified heavy oil P is obtained by distilling and separating aromatics having 9 or more carbon atoms and less than 11 from catalytically modified gasoline.

Figure 2005044959
Figure 2005044959

脱硫直留ナフサNを10.0容量%、接触改質中質油Oを5.0容量%、接触改質重質油Pを5.0容量%、アルキレートガソリンQを5.0容量%と、ガソリン基材の調製1記載の脱硫接触分解ガソリンCを75.0容量%配合し、無鉛ガソリン組成物Sを調製した。また、添加剤として、着色剤(シラド化学製CL−53)2mg/L、酸化防止剤(住友化学工業製スミライザー4ML)20mg/L、清浄分散剤(ビーエーエスエフ製Keropur AP−95)100mg/Lをそれぞれ添加した。なお、この添加剤の添加は、下記の実施例及び比較例の無鉛ガソリン組成物の調製においても全く同じ方法で行った。調製した無鉛ガソリン組成物Sの性状を表6に示す。   Desulfurization straight-run naphtha N is 10.0% by volume, catalytic reforming medium oil O is 5.0% by volume, catalytic reforming heavy oil P is 5.0% by volume, alkylate gasoline Q is 5.0% by volume. And 75.0% by volume of desulfurized catalytic cracking gasoline C described in Preparation 1 of gasoline base material to prepare an unleaded gasoline composition S. Moreover, as an additive, a coloring agent (CL-53 manufactured by Shirad Chemical Co., Ltd.) 2 mg / L, an antioxidant (Sumilyzer 4ML manufactured by Sumitomo Chemical Co., Ltd.) 20 mg / L, a cleaning dispersant (Keropur AP-95 manufactured by BASF) 100 mg / L Was added respectively. The addition of this additive was performed in exactly the same manner in the preparation of the unleaded gasoline compositions of the following Examples and Comparative Examples. Table 6 shows the properties of the prepared unleaded gasoline composition S.

また、脱硫直留ナフサNを3.5容量%、接触改質中質油Oを19.0容量%、接触改質重質油Pを15.0容量%、アルキレートガソリンQを23.0容量%と、ガソリン基材の調製3記載の脱硫接触分解軽質ガソリンKを39.5容量%配合し、無鉛ガソリン組成物Tを調製した。無鉛ガソリン組成物Tの性状を表6に示す。   Also, desulfurized straight-run naphtha N is 3.5% by volume, catalytic reforming medium oil O is 19.0% by volume, catalytic reforming heavy oil P is 15.0% by volume, and alkylate gasoline Q is 23.0%. The unleaded gasoline composition T was prepared by blending 39.5% by volume of the desulfurization catalytic cracking light gasoline K described in Preparation 3 of the gasoline base. Table 6 shows the properties of the unleaded gasoline composition T.

脱硫直留ナフサNを6.0容量%、接触改質中質油Oを8.0容量%、接触改質重質油Pを5.0容量%、アルキレートガソリンQを8.0容量%、ETBE基材Rを6.0容量%と、ガソリン基材の調製1記載の脱硫接触分解ガソリンCを67.0容量%配合し、無鉛ガソリン組成物Uを調製した。無鉛ガソリン組成物Uの性状を表6に示す。   Desulfurization straight-run naphtha N is 6.0% by volume, catalytic reforming medium oil O is 8.0% by volume, catalytic reforming heavy oil P is 5.0% by volume, alkylate gasoline Q is 8.0% by volume. An unleaded gasoline composition U was prepared by blending 6.0% by volume of ETBE base material R and 67.0% by volume of desulfurization catalytic cracking gasoline C described in Preparation 1 for gasoline base material. Table 6 shows the properties of the unleaded gasoline composition U.

脱硫直留ナフサNを6.0容量%、接触改質中質油Oを9.0容量%、接触改質重質油Pを8.0容量%、アルキレートガソリンQを10.0容量%と、ガソリン基材の調製1記載の脱硫接触分解ガソリンCを57.0容量%、ガソリン基材の調製3記載の脱硫接触分解軽質ガソリンKを10.0容量%配合し、無鉛ガソリン組成物Vを調製した。無鉛ガソリン組成物Vの性状を表6に示す。   Desulfurization straight-run naphtha N is 6.0% by volume, catalytic reforming medium oil O is 9.0% by volume, catalytic reforming heavy oil P is 8.0% by volume, alkylate gasoline Q is 10.0% by volume. And 57.0% by volume of desulfurized catalytic cracking gasoline C described in Preparation 1 of the gasoline base material and 10.0% by volume of desulfurized catalytic cracking light gasoline K described in Preparation 3 of the gasoline base material, and lead-free gasoline composition V Was prepared. Table 6 shows the properties of the unleaded gasoline composition V.

Figure 2005044959
Figure 2005044959

比較例1Comparative Example 1

脱硫接触分解ガソリンCを用いる代わりに、接触分解ガソリンAを用いた以外は、実施例1の無鉛ガソリン組成物Sの場合と全く同じ処方で、無鉛ガソリン組成物Wを調製した。無鉛ガソリン組成物Wの性状を表6に示す。   Instead of using desulfurized catalytic cracking gasoline C, an unleaded gasoline composition W was prepared with exactly the same formulation as the unleaded gasoline composition S of Example 1 except that catalytic cracking gasoline A was used. Table 6 shows the properties of the unleaded gasoline composition W.

比較例2Comparative Example 2

ガソリン基材の調製3記載の脱硫接触分解軽質ガソリンKを用いる代わりに、ガソリン基材の調製3記載の接触分解軽質ガソリンIを用いた以外は、実施例2の無鉛ガソリン組成物Tの場合と全く同じ処方で、無鉛ガソリン組成物Xを調製した。無鉛ガソリン組成物Xの性状を表6に示す。   In the case of the unleaded gasoline composition T of Example 2, except that the catalytically cracked light gasoline I described in Preparation 3 of the gasoline base was used instead of using the desulfurized catalytically cracked light gasoline K described in Preparation 3 of the gasoline base An unleaded gasoline composition X was prepared with exactly the same formulation. Table 6 shows the properties of the unleaded gasoline composition X.

表6によれば、本発明によって提供される無鉛ガソリン組成物Sは、従来技術によって提供される無鉛ガソリン組成物Wと比較して、他の性状をほとんど変えることなく、硫黄分を1質量ppm以下に低減できることが明らかである。また、本発明によって提供される無鉛ガソリン組成物Tも対応する無鉛ガソリン組成物Xと比較して、他の性状をほとんど変えることなく、硫黄分を1質量ppm以下に低減できる。本発明によって提供される無鉛ガソリン組成物U、Vも硫黄分を1質量ppm以下に低減できる。   According to Table 6, the unleaded gasoline composition S provided by the present invention has a sulfur content of 1 ppm by mass with almost no other change compared to the unleaded gasoline composition W provided by the prior art. It is clear that the following can be reduced. Moreover, compared with the corresponding unleaded gasoline composition X, the unleaded gasoline composition T provided by the present invention can reduce the sulfur content to 1 ppm by mass or less without changing other properties. The unleaded gasoline compositions U and V provided by the present invention can also reduce the sulfur content to 1 ppm by mass or less.

ガソリン基材の調製6
上記のガソリン基材の調製1とは異なるロットの中東系原油をガソリン基材の調製1と同様に処理して得られた接触分解ガソリンAAをスイートニング処理した後、軽質分と重質分に分留し、重質分を接触分解重質ガソリンBBとして得た。この接触分解重質ガソリンBBをコバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)を用い、反応温度220℃、反応圧力1.0MPa、LHSV4.0hr−1、H/Oil比307NL/Lの条件下にてジエン低減処理を行い、ジエンを除去してジエン価が0.6g/100gから0.1g/100g未満の接触分解重質ガソリンCCを得た。この、ジエン除去接触分解重質ガソリンCCを、H/Oil比を0.18NL/Lとした以外はガソリン基材の調製1と全く同じ方法、条件で脱硫し、硫黄分0.9質量ppmの脱硫接触分解重質ガソリンDDを得た。各ガソリン(接触分解ガソリンAA〜脱硫接触分解重質ガソリンDD)の性状を表7に示す。
Preparation of gasoline base 6
After sweetening the catalytically cracked gasoline AA obtained by treating Middle Eastern crude oil different from the above gasoline base preparation 1 in the same manner as gasoline base preparation 1, it is converted into light and heavy components. Fractionation was carried out to obtain a heavy component as catalytic cracked heavy gasoline BB. A catalyst (cobalt content 2.4 mass%, molybdenum content 9.4 mass%, phosphorus content 2.0 mass%) in which catalytic cracked heavy gasoline BB is supported on cobalt, molybdenum and phosphorus on alumina is used. Diene reduction treatment is carried out under conditions of a reaction temperature of 220 ° C., a reaction pressure of 1.0 MPa, LHSV of 4.0 hr −1 , and an H 2 / Oil ratio of 307 NL / L, and the diene is removed to reduce the diene number from 0.6 g / 100 g. A catalytically cracked heavy gasoline CC of less than 0.1 g / 100 g was obtained. This diene-removed catalytic cracked heavy gasoline CC was desulfurized in exactly the same manner and under the same conditions as in the gasoline base preparation 1 except that the H 2 / Oil ratio was 0.18 NL / L, and the sulfur content was 0.9 mass ppm. The desulfurization catalytic cracking heavy gasoline DD was obtained. Table 7 shows the properties of each gasoline (catalytic cracked gasoline AA to desulfurized catalytic cracked heavy gasoline DD).

ガソリン基材の調製7
前記のガソリン基材の調製6で用いた接触分解重質ガソリンBBを、ジエン低減処理を行うことなく、H/Oil比を0.18NL/Lとした以外はガソリン基材の調製1と全く同じ方法、条件で脱硫し、脱硫接触分解重質ガソリンEEを得た。脱硫接触分解重質ガソリンEEの性状を表7に示す。
Preparation of gasoline base material 7
The catalytically cracked heavy gasoline BB used in Preparation 6 of the gasoline base was completely the same as Preparation 1 of the gasoline base except that the H 2 / Oil ratio was changed to 0.18 NL / L without performing diene reduction treatment. Desulfurization was performed in the same manner and conditions to obtain desulfurized catalytic cracked heavy gasoline EE. Table 7 shows the properties of desulfurized catalytic cracked heavy gasoline EE.

Figure 2005044959
Figure 2005044959

脱硫直留ナフサNを10.0容量%、接触改質中質油Oを7.0容量%、接触改質重質油Pを5.0容量%、アルキレートガソリンQを6.0容量%と、ガソリン基材の調製3記載の脱硫接触分解軽質ガソリンKを37.0容量%、及びガソリン基材の調製6記載の脱硫接触分解重質ガソリンDDを35.0容量%配合し、無鉛ガソリン組成物Yを調製した。無鉛ガソリン組成物Yの性状を表6に示す。   Desulfurization straight-run naphtha N is 10.0% by volume, catalytic reforming medium oil O is 7.0% by volume, catalytic reforming heavy oil P is 5.0% by volume, alkylate gasoline Q is 6.0% by volume. And 37.0% by volume of desulfurized catalytically cracked light gasoline K described in Preparation 3 of the gasoline base material and 35.0% by volume of desulfurized catalytically cracked heavy gasoline DD described in Preparation 6 of the gasoline base material. Composition Y was prepared. Table 6 shows the properties of the unleaded gasoline composition Y.

比較例3Comparative Example 3

脱硫接触分解重質ガソリンDDの代わりにガソリン基材の調製7記載の脱硫接触分解重質ガソリンEEを用いた以外は、実施例5と全く同様にして無鉛ガソリン組成物Zを調製した。無鉛ガソリン組成物Zの性状を表6に示す。   An unleaded gasoline composition Z was prepared in exactly the same manner as in Example 5 except that the desulfurized catalytically cracked heavy gasoline EE described in Preparation 7 of the gasoline base material was used instead of the desulfurized catalytically cracked heavy gasoline DD. Table 6 shows the properties of the unleaded gasoline composition Z.

表7で、ガソリン基材の調製6の脱硫接触分解重質ガソリンDDとガソリン基材の調製7の脱硫接触分解重質ガソリンEEとを比較すると、高いジエン価、高い硫黄分のままで収着機能をもった脱硫剤によって脱硫しても硫黄分を1質量ppm以下とするのは非常に困難であることが分かる。したがって、ジエン低減処理を行った後に収着機能をもった脱硫剤によって脱硫した脱硫接触分解重質ガソリンDDを、その他の低硫黄のガソリン基材と共に用いて、硫黄分が1質量ppm以下で、十分な運転特性を保持した無鉛ガソリン組成物を容易に調製できることは、表6に無鉛ガソリン組成物Yとして示すとおりである。   In Table 7, when desulfurization catalytic cracking heavy gasoline DD of gasoline base preparation 6 and desulfurization catalytic cracking heavy gasoline EE of gasoline base preparation 7 are compared, sorption remains with a high diene number and high sulfur content. It can be seen that it is very difficult to reduce the sulfur content to 1 mass ppm or less even when desulfurization is performed with a desulfurizing agent having a function. Therefore, desulfurization catalytic cracking heavy gasoline DD desulfurized by a desulfurizing agent having a sorption function after performing diene reduction treatment is used together with other low sulfur gasoline base materials, and the sulfur content is 1 mass ppm or less. As shown in Table 6 as unleaded gasoline composition Y, an unleaded gasoline composition having sufficient operating characteristics can be easily prepared.

[参考例]
ガソリン基材の調製1に記したものと同じ銅亜鉛アルミニウム複合酸化物(銅含有量35質量%、亜鉛含有量35質量%、アルミニウム含有量5質量%)5cmを反応管に充填し、これに水素ガスを5cm/minの条件にて16hr流通させ、還元処理を行った。その後、この反応管にチオフェンを263質量ppm(硫黄分として100質量ppm)含むトルエン溶液を、反応温度100℃、反応圧力常圧、LHSV2.0hr−1、H/Oil比0.18NL/Lの条件のもと通油し、表8に示す生成物を得た。
[Reference example]
The reaction tube was filled with 5 cm 3 of the same copper zinc aluminum composite oxide (copper content 35 mass%, zinc content 35 mass%, aluminum content 5 mass%) as described in Preparation 1 of the gasoline base material. Then, hydrogen gas was circulated for 16 hr under the condition of 5 cm 3 / min to perform a reduction treatment. Thereafter, a toluene solution containing 263 ppm by mass of thiophene (100 ppm by mass as the sulfur content) in this reaction tube was reacted at a reaction temperature of 100 ° C., a normal pressure of reaction, LHSV of 2.0 hr −1 , and an H 2 / Oil ratio of 0.18 NL / L. The product shown in Table 8 was obtained.

Figure 2005044959
Figure 2005044959

表から、水素共存下で銅亜鉛アルミニウム複合酸化物を用いた処理によって、原料油中のチオフェンから硫黄が除去され、チオフェン中の硫黄原子以外の炭化水素残基に由来する炭化水素が生成物として得られる一方、硫化水素を生成しておらず、銅亜鉛アルミニウム複合酸化物が本発明の硫黄収着機能をもった多孔質脱硫剤として作用したことが明らかである。   From the table, sulfur is removed from thiophene in the feedstock by treatment with copper zinc aluminum composite oxide in the presence of hydrogen, and hydrocarbons derived from hydrocarbon residues other than sulfur atoms in thiophene are the products. On the other hand, no hydrogen sulfide was produced, and it is clear that the copper zinc aluminum composite oxide acted as a porous desulfurization agent having the sulfur sorption function of the present invention.

本発明は、分解ガソリン留分をジエン除去した後、わずかな水素共存の下、硫黄収着機能をもつ多孔質脱硫剤によって処理して、硫黄分を低減し、オレフィン分を残し、脱硫処理に伴うオクタン価ロスを回避して得た脱硫分解ナフサ留分と、硫黄分が10質量ppm以下の他のガソリン基材とを混合する硫黄分1質量ppm以下の無鉛ガソリン組成物である。よって、従来得られている無鉛ガソリン組成物から他の性状をほとんど変えることなく硫黄分だけを1質量ppm以下まで減じることができた。したがって、本発明の無鉛ガソリン組成物は、高い運転性能を維持するとともに、環境負荷の少ない自動車燃料として有用である。
In the present invention, after removing the diene from the cracked gasoline fraction, it is treated with a porous desulfurization agent having a sulfur sorption function in the presence of a slight amount of hydrogen to reduce the sulfur content and leave the olefin content. It is an unleaded gasoline composition having a sulfur content of 1 mass ppm or less, in which a desulfurization cracked naphtha fraction obtained by avoiding the accompanying octane number loss and another gasoline base material having a sulfur content of 10 mass ppm or less. Therefore, it was possible to reduce only the sulfur content to 1 ppm by mass or less without changing other properties from the previously obtained unleaded gasoline composition. Therefore, the unleaded gasoline composition of the present invention is useful as an automobile fuel having a low environmental load while maintaining high driving performance.

Claims (16)

5容量%留出温度が25℃以上、かつ95容量%留出温度が210℃以下、オレフィン分が5質量%以上、ジエン価が0.3g/100g以下である分解ナフサ留分を脱硫処理する脱硫工程と、及び得られた脱硫分解ナフサ留分を、他のガソリン基材と混合するブレンド工程とを含む、硫黄分が1質量ppm以下、かつリサーチ法オクタン価が89.0以上である無鉛ガソリン組成物の製造方法。   Desulfurization treatment is performed on a cracked naphtha fraction having a 5% by volume distillation temperature of 25 ° C. or more, a 95% by volume distillation temperature of 210 ° C. or less, an olefin content of 5% by mass or more, and a diene value of 0.3 g / 100 g or less. A lead-free gasoline having a sulfur content of 1 mass ppm or less and a research octane number of 89.0 or more, comprising a desulfurization step and a blending step of mixing the obtained desulfurization cracked naphtha fraction with another gasoline base material A method for producing the composition. 分解ナフサ留分の原料油に対し、予めジエン低減触媒を接触させてジエン低減処理を行う工程を含む請求項1に記載の無鉛ガソリン組成物の製造方法。   The manufacturing method of the lead-free gasoline composition of Claim 1 including the process of making a diene reduction catalyst contact a diene reduction catalyst previously with respect to the raw material oil of a cracked naphtha fraction. ジエン低減触媒が、周期律表第8族元素から選ばれる少なくとも1種の金属を含む請求項2に記載の無鉛ガソリン組成物の製造方法。   The method for producing an unleaded gasoline composition according to claim 2, wherein the diene reducing catalyst contains at least one metal selected from Group 8 elements of the Periodic Table. ジエン低減触媒に含まれる少なくとも1種の金属が、ニッケルまたはコバルトである請求項3に記載の無鉛ガソリン組成物の製造方法。   The method for producing an unleaded gasoline composition according to claim 3, wherein the at least one metal contained in the diene-reducing catalyst is nickel or cobalt. 脱硫処理が、硫黄収着機能をもった多孔質脱硫剤と分解ナフサ留分とを水素分圧1MPa以下の水素の共存下で接触させることである請求項1〜4のいずれかに記載の無鉛ガソリン組成物の製造方法。   The lead-free lead according to any one of claims 1 to 4, wherein the desulfurization treatment is a contact between a porous desulfurization agent having a sulfur sorption function and a cracked naphtha fraction in the presence of hydrogen having a hydrogen partial pressure of 1 MPa or less. A method for producing a gasoline composition. 多孔質脱硫剤が、銅、亜鉛、ニッケル及び鉄から選ばれる少なくとも1種を含むものである請求項5に記載の無鉛ガソリン組成物の製造方法。   The method for producing an unleaded gasoline composition according to claim 5, wherein the porous desulfurizing agent contains at least one selected from copper, zinc, nickel and iron. ブレンド工程において、10〜90容量%の脱硫分解ナフサ留分と90〜10容量%の他のガソリン基材とを混合する請求項1〜6のいずれかに記載の無鉛ガソリン組成物の製造方法。   The method for producing an unleaded gasoline composition according to any one of claims 1 to 6, wherein in the blending step, 10 to 90% by volume of the desulfurized cracked naphtha fraction and 90 to 10% by volume of another gasoline base are mixed. 分解ナフサ留分が、5容量%留出温度が25〜43℃、かつ95容量%留出温度が55〜100℃、オレフィン分が5質量%以上、ジエン価が0.3g/100g以下である軽質な分解ナフサ留分である請求項1〜7のいずれかに記載の無鉛ガソリン組成物の製造方法。   The cracked naphtha fraction has a 5% by volume distillation temperature of 25 to 43 ° C., a 95% by volume distillation temperature of 55 to 100 ° C., an olefin content of 5% by mass or more, and a diene number of 0.3 g / 100 g or less. It is a light cracked naphtha fraction, The manufacturing method of the lead-free gasoline composition in any one of Claims 1-7. 軽質な分解ナフサ留分が、当該分解ナフサ留分の原料油をジエン低減処理した後に分留して得たものであるか、あるいは前記分解ナフサ留分の原料油を分留した後にジエン低減処理して得たものであるか、あるいは前記分解ナフサ留分の原料油の分留とジエン低減処理を同時に行って得たものである請求項8に記載の無鉛ガソリン組成物の製造方法。   The light cracked naphtha fraction is obtained by distilling the raw material oil of the cracked naphtha fraction after diene reduction treatment, or the diene reduction treatment after fractionating the raw oil of the cracked naphtha fraction. The method for producing an unleaded gasoline composition according to claim 8, wherein the method is obtained by performing fractionation of the raw oil of the cracked naphtha fraction and diene reduction treatment at the same time. 軽質な分解ナフサ留分を得る分留を行う前に、あるいは分留と同時に分解ナフサ留分の原料油又はジエン低減処理した分解ナフサ留分の原料油に対し、含まれる硫黄化合物の分子量を大きくする前処理を行う請求項9に記載の無鉛ガソリン組成物の製造方法。   Increase the molecular weight of the sulfur compounds contained in the raw material oil of the cracked naphtha fraction or diene-reduced cracked naphtha fraction before fractionation to obtain a light cracked naphtha fraction or simultaneously with fractionation. The method for producing an unleaded gasoline composition according to claim 9, wherein the pretreatment is performed. ブレンド工程において、10〜60容量%の軽質な脱硫分解ナフサ留分と90〜40容量%の他のガソリン基材とを混合し、リサーチ法オクタン価が93.0以上である請求項8〜10のいずれかに記載の無鉛ガソリン組成物の製造方法。   In the blending step, 10 to 60% by volume of light desulfurization cracking naphtha fraction and 90 to 40% by volume of other gasoline base material are mixed, and the research octane number is 93.0 or more. The manufacturing method of the unleaded gasoline composition in any one. リサーチ法オクタン価が89.0以上、50容量%留出温度が105℃以下、オレフィン分が10容量%以上、全硫黄分が1質量ppm以下、全硫黄分に占めるチオフェン類硫黄化合物の割合が硫黄分として50質量%以上である無鉛ガソリン組成物。   Research method octane number is 89.0 or more, 50 vol% distillation temperature is 105 ° C or less, olefin content is 10 vol% or more, total sulfur content is 1 mass ppm or less, and the ratio of thiophene sulfur compounds in the total sulfur content is sulfur The unleaded gasoline composition which is 50 mass% or more as a part. リサーチ法オクタン価が93.0以上である請求項12に記載の無鉛ガソリン組成物。   The unleaded gasoline composition according to claim 12, which has a research octane number of 93.0 or more. 全オレフィン分に占める沸点範囲35〜100℃のオレフィン分が90容量%以上である請求項13に記載の無鉛ガソリン組成物。   The unleaded gasoline composition according to claim 13, wherein the olefin content in the boiling range of 35 to 100 ° C in the total olefin content is 90% by volume or more. 全硫黄分に占めるチオフェン及び2−メチルチオフェンの合計量の割合が硫黄分として50質量%以上である請求項13に記載の無鉛ガソリン組成物。   The unleaded gasoline composition according to claim 13, wherein the ratio of the total amount of thiophene and 2-methylthiophene in the total sulfur content is 50 mass% or more as the sulfur content. チオール類の含有量が硫黄分として0.1質量ppm以下である請求項12〜15のいずれかに記載の無鉛ガソリン組成物。
The unleaded gasoline composition according to any one of claims 12 to 15, wherein the thiol content is 0.1 mass ppm or less as a sulfur content.
JP2005515277A 2003-11-07 2004-10-29 Unleaded gasoline composition and method for producing the same Active JP4932257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515277A JP4932257B2 (en) 2003-11-07 2004-10-29 Unleaded gasoline composition and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003378503 2003-11-07
JP2003378503 2003-11-07
JP2004168365 2004-06-07
JP2004168365 2004-06-07
PCT/JP2004/016115 WO2005044959A1 (en) 2003-11-07 2004-10-29 Lead-free gasoline composition and method for production thereof
JP2005515277A JP4932257B2 (en) 2003-11-07 2004-10-29 Unleaded gasoline composition and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008039867A Division JP5024884B2 (en) 2003-11-07 2008-02-21 Unleaded gasoline composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2005044959A1 true JPWO2005044959A1 (en) 2007-05-17
JP4932257B2 JP4932257B2 (en) 2012-05-16

Family

ID=34575930

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005515277A Active JP4932257B2 (en) 2003-11-07 2004-10-29 Unleaded gasoline composition and method for producing the same
JP2008039867A Active JP5024884B2 (en) 2003-11-07 2008-02-21 Unleaded gasoline composition and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008039867A Active JP5024884B2 (en) 2003-11-07 2008-02-21 Unleaded gasoline composition and method for producing the same

Country Status (6)

Country Link
US (1) US20070068849A1 (en)
EP (1) EP1686166A4 (en)
JP (2) JP4932257B2 (en)
KR (1) KR101114742B1 (en)
CA (1) CA2543953C (en)
WO (1) WO2005044959A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067893A1 (en) * 2007-11-09 2009-06-04 Ranfeng Ding A system and a process for recombining catalytic hydrocarbon to produce high quality gasoline
US8142646B2 (en) * 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
CN104511283B (en) * 2013-09-30 2016-10-05 中国石油化工股份有限公司 A kind of desulphurization catalyst and preparation method thereof and the method for desulfurization of hydrocarbon oil
SG10201604013RA (en) * 2015-05-28 2016-12-29 Evonik Degussa Gmbh Hydrogen-assisted adsorption of sulphur compounds from olefin mixtures
WO2023049647A1 (en) * 2021-09-27 2023-03-30 ExxonMobil Technology and Engineering Company Method of refinery processing of renewable naphtha

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352354A (en) * 1991-08-15 1994-10-04 Mobil Oil Corporation Gasoline upgrading process
US5851382A (en) 1995-12-18 1998-12-22 Texaco Inc. Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts
FR2753717B1 (en) 1996-09-24 1998-10-30 PROCESS AND PLANT FOR THE PRODUCTION OF LOW SULFUR CATALYTIC CRACKING ESSENCES
WO2001044412A1 (en) * 1999-12-17 2001-06-21 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell, fuel oil composition and automobile driving system
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
JPWO2002031090A1 (en) * 2000-10-11 2004-02-19 新日本石油株式会社 Gasoline vehicle and fuel for fuel cell system, and storage and / or supply system thereof
US6444118B1 (en) 2001-02-16 2002-09-03 Catalytic Distillation Technologies Process for sulfur reduction in naphtha streams
JP5027971B2 (en) * 2001-09-06 2012-09-19 出光興産株式会社 Fuel oil composition
US6913688B2 (en) 2001-11-30 2005-07-05 Exxonmobil Research And Engineering Company Multi-stage hydrodesulfurization of cracked naphtha streams with interstage fractionation
JP2003277768A (en) 2002-03-27 2003-10-02 Cosmo Oil Co Ltd Method for reducing content of sulfur compound in hydrocarbon oil
JP3958103B2 (en) * 2002-04-12 2007-08-15 株式会社ジョモテクニカルリサーチセンター Environmentally friendly gasoline

Also Published As

Publication number Publication date
WO2005044959A1 (en) 2005-05-19
JP2008156663A (en) 2008-07-10
US20070068849A1 (en) 2007-03-29
KR20060113721A (en) 2006-11-02
JP4932257B2 (en) 2012-05-16
KR101114742B1 (en) 2012-02-29
CA2543953A1 (en) 2005-05-19
JP5024884B2 (en) 2012-09-12
EP1686166A4 (en) 2010-04-21
EP1686166A1 (en) 2006-08-02
CA2543953C (en) 2012-10-23

Similar Documents

Publication Publication Date Title
KR20080044768A (en) Process for deep desulphurization of cracking gasolines with a small loss of octane number
JP5219247B2 (en) Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
JP5024884B2 (en) Unleaded gasoline composition and method for producing the same
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4632738B2 (en) Unleaded gasoline composition and method for producing the same
JP4371937B2 (en) Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP2004269871A (en) Unleaded gasoline composition and preparation process thereof
JP5036074B2 (en) Environmentally friendly gasoline
JP5280624B2 (en) Unleaded gasoline composition
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP4633409B2 (en) Gasoline composition
JP2009263681A (en) Process for producing catalytically cracked gasoline base and unleaded gasoline composition using the same
JP4599545B2 (en) Method for producing unleaded gasoline composition
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JP4633411B2 (en) Gasoline composition
JP5280623B2 (en) Unleaded gasoline composition
JP4931052B2 (en) Method for producing gasoline base material
JP5280625B2 (en) Unleaded gasoline composition
JP4553352B2 (en) Gasoline composition
JP4633410B2 (en) Gasoline composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4932257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250