JP2001303070A - Fuel oil composition and driving system of automobile - Google Patents

Fuel oil composition and driving system of automobile

Info

Publication number
JP2001303070A
JP2001303070A JP2000122277A JP2000122277A JP2001303070A JP 2001303070 A JP2001303070 A JP 2001303070A JP 2000122277 A JP2000122277 A JP 2000122277A JP 2000122277 A JP2000122277 A JP 2000122277A JP 2001303070 A JP2001303070 A JP 2001303070A
Authority
JP
Japan
Prior art keywords
oil composition
fuel oil
fuel
weight
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000122277A
Other languages
Japanese (ja)
Inventor
Yasushi Akimoto
恭志 秋元
Hiroshi Hirano
浩 平野
Tadashi Iizuka
正 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000122277A priority Critical patent/JP2001303070A/en
Priority to PCT/JP2000/008946 priority patent/WO2001044412A1/en
Priority to EP00981792A priority patent/EP1243636A1/en
Priority to US10/168,086 priority patent/US20030023120A1/en
Priority to AU18931/01A priority patent/AU1893101A/en
Publication of JP2001303070A publication Critical patent/JP2001303070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fuel Cell (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low sulfur fuel oil composition usable for both of a hybrid engine and a fuel cell, and to provide a driving system of an automobile carrying the hybrid engine using the fuel composition. SOLUTION: This fuel oil composition comprises a deeply desulfurized light naphtha, and can be usable for both of the hybrid engine and the fuel cell. The driving system of the automobile carries out the driving in a high load region mainly by a motor, and the driving in a low load region mainly by an internal combustion engine, by using the fuel oil composition as the fuel in the automobile carrying the hybrid engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料油組成物及び
自動車の駆動システムに関する。さらに詳しくは、本発
明は、ハイブリッドエンジン及び燃料電池に共用し得る
硫黄分濃度の低い燃料油組成物、及びこの燃料油組成物
を燃料とするハイブリッドエンジンを搭載した自動車の
駆動システムに関するものである。
The present invention relates to a fuel oil composition and an automobile drive system. More specifically, the present invention relates to a fuel oil composition having a low sulfur content that can be used for a hybrid engine and a fuel cell, and to a drive system of a vehicle equipped with a hybrid engine using the fuel oil composition as a fuel. .

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のナフ
サや灯油などの石油系炭化水素油の使用が研究されてい
る。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
Hydrogen sources include liquefied natural gas mainly composed of methanol and methane; city gas mainly composed of natural gas; synthetic liquid fuel composed of natural gas as raw material; and petroleum-based carbon such as petroleum-based naphtha and kerosene. The use of hydrogen oil has been studied.

【0003】すなわち、燃料電池の燃料として水素を直
接使用する場合、水素は気体であるために取り扱いが困
難であるので、上記水素源を、改質触媒の存在下に水蒸
気改質又は部分酸化改質処理して水素を取り出す方法が
積極的に研究されている。この場合、水素源としてのメ
タノールはエネルギー密度が低く、かつ供給システムが
整備されていないという問題がある。これに対し、石油
系炭化水素油は常温常圧で液状であって、保管及び取扱
いが容易である上、エネルギー密度が高く、かつガソリ
ンスタンドや販売店など、供給システムが整備されてい
ることから、水素源として有利である。
That is, when hydrogen is directly used as a fuel for a fuel cell, it is difficult to handle hydrogen because it is a gas. Therefore, the hydrogen source is subjected to steam reforming or partial oxidation reforming in the presence of a reforming catalyst. Methods for removing hydrogen by quality treatment are being actively researched. In this case, there is a problem that methanol as a hydrogen source has a low energy density and a supply system is not provided. Petroleum hydrocarbon oils, on the other hand, are liquid at normal temperature and pressure, are easy to store and handle, have a high energy density, and are well-equipped with supply systems such as gas stations and dealers. , And is advantageous as a hydrogen source.

【0004】しかしながら、石油系炭化水素油は、メタ
ノールや天然ガス系のものに比べて、硫黄分の含有量が
多いという問題がある。上記改質処理において用いられ
る改質触媒は、炭化水素油中の硫黄分により被毒するた
め、触媒寿命の点から、硫黄分含有量を、好ましくは
0.5重量ppm以下、特に好ましくは0.1重量pp
m以下にすることが肝要である。一方、自動車の内燃機
関エンジンを一度にすべて燃料電池エンジンに切り替え
るのは困難であることから、両者に共用できる燃料が過
渡期には望まれる。特に、近年、燃費向上を目指した直
噴ガソリンエンジンやハイブリッドエンジンが注目を集
めており、これらのエンジン用燃料と燃料電池用燃料を
共用できる燃料が望まれている。
[0004] However, petroleum hydrocarbon oils have a problem that they have a higher sulfur content than methanol and natural gas oils. Since the reforming catalyst used in the above-mentioned reforming treatment is poisoned by the sulfur content in the hydrocarbon oil, the sulfur content is preferably 0.5 ppm by weight or less, particularly preferably 0 ppm by weight, from the viewpoint of the catalyst life. .1 weight pp
It is important to keep it below m. On the other hand, since it is difficult to switch all the internal combustion engine of the automobile to the fuel cell engine at a time, a fuel that can be shared by both is desired in the transition period. In particular, in recent years, direct injection gasoline engines and hybrid engines aiming at improving fuel efficiency have attracted attention, and fuels that can share fuel for these engines and fuel for fuel cells are desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、ハイブリッドエンジン及び燃料電池に共用し
得る硫黄分濃度の低い燃料油組成物、及びこの燃料油組
成物を燃料とするハイブリッドエンジンを搭載した自動
車の駆動システムを提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention provides a fuel oil composition having a low sulfur content that can be used in a hybrid engine and a fuel cell under such circumstances, and a hybrid fueled by the fuel oil composition. It is an object of the present invention to provide a drive system of an automobile equipped with an engine.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、深度脱硫軽質
ナフサを含み、好ましくは硫黄分濃度が1重量ppm以
下、特に好ましくは0.5重量ppm以下の燃料油組成
物が、その目的に適合し得ること、そしてハイブリッド
エンジンを搭載した自動車において、上記燃料油組成物
を燃料として用い、高負荷領域での駆動を主にモーター
で行い、低負荷領域での駆動を主に内燃機関で行うこと
により、低い燃費で効率よく駆動し得ることを見出し
た。本発明は、かかる知見に基づいて完成したものであ
る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, the present invention contains deep desulfurized light naphtha, and preferably has a sulfur content of 1 ppm by weight or less, particularly preferably 0.5% by weight or less of a fuel oil composition is suitable for the purpose, and in an automobile equipped with a hybrid engine, the above-described fuel oil composition is used as a fuel, and the motor is mainly driven in a high load region. And that the driving in the low load region is mainly performed by the internal combustion engine, thereby enabling efficient driving with low fuel consumption. The present invention has been completed based on such findings.

【0007】すなわち、本発明は、深度脱硫軽質ナフサ
を含み、かつハイブリッドエンジン及び燃料電池に共用
し得ることを特徴とする燃料油組成物、好ましくは硫黄
分濃度が1重量ppm以下、より好ましくは0.5重量
ppm以下の燃料油組成物を提供するものである。本発
明はまた、ハイブリッドエンジンを搭載した自動車にお
いて、上記燃料油組成物を燃料として用い、高負荷領域
での駆動を主にモーターで行い、低負荷領域での駆動を
主に内燃機関で行うことを特徴とする自動車の駆動シス
テムをも提供するものである。
That is, the present invention provides a fuel oil composition containing deep desulfurized light naphtha and which can be commonly used for hybrid engines and fuel cells, preferably having a sulfur concentration of 1 ppm by weight or less, more preferably It is intended to provide a fuel oil composition of 0.5 ppm by weight or less. The present invention also provides an automobile equipped with a hybrid engine, wherein the fuel oil composition is used as fuel, and driving in a high load region is mainly performed by a motor, and driving in a low load region is mainly performed by an internal combustion engine. The present invention also provides a vehicle drive system characterized by the following.

【0008】[0008]

【発明の実施の形態】本発明の燃料油組成物は、ハイブ
リッドエンジン及び燃料電池に共用することができ、か
つ深度脱硫軽質ナフサを含むものである。上記深度脱硫
軽質ナフサは、軽質ナフサを従来公知の方法、例えば水
素化精製法により脱硫処理したのち、さらに必要に応
じ、ニッケル系吸着脱硫剤などにより、硫黄分濃度が、
通常0.5重量ppm以下、好ましくは0.1重量pp
m以下、さらに好ましくは0.05重量ppm以下、特
に好ましくは0.02重量ppm以下になるように脱硫
処理したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel oil composition of the present invention can be used for a hybrid engine and a fuel cell, and contains deep desulfurized light naphtha. The deep desulfurized light naphtha is obtained by subjecting light naphtha to desulfurization treatment by a conventionally known method, for example, hydrorefining, and further, if necessary, a nickel-based adsorptive desulfurizing agent, etc.
Usually 0.5 ppm by weight or less, preferably 0.1% by weight pp
m, preferably 0.05% by weight or less, particularly preferably 0.02% by weight or less.

【0009】上記水素化精製法においては、脱硫触媒と
して、通常ニッケル、コバルト、モリブデン、タングス
テンなどの遷移金属を適当な割合で混合したものを金
属、酸化物、硫化物などの形態でアルミナを主成分とす
る担体に担持させたものが用いられる。反応条件は、例
えば反応温度250〜400℃、圧力2〜10MPa・
G、水素/油モル比2〜10、液時空間速度(LHS
V)1〜5h-1などの条件が用いられる。
In the above-mentioned hydrorefining method, as a desulfurization catalyst, a mixture of transition metals such as nickel, cobalt, molybdenum and tungsten in an appropriate ratio is usually used, and alumina is mainly used in the form of metals, oxides and sulfides. What is carried on a carrier as a component is used. The reaction conditions are, for example, a reaction temperature of 250 to 400 ° C. and a pressure of 2 to 10 MPa ·
G, hydrogen / oil molar ratio 2-10, liquid hourly space velocity (LHS
V) Conditions such as 1-5 h -1 are used.

【0010】一方、ニッケル系吸着脱硫剤としては、適
当な担体上に、ニッケルが金属ニッケルとして、脱硫剤
全量に基づき、通常30重量%以上、好ましくは50〜
70重量%の範囲で担持されたものが用いられる。ま
た、担体としては、多孔質担体が好ましく、特に多孔質
の無機酸化物が好ましい。このようなものとしては、例
えばシリカ、アルミナ、シリカ−アルミナ、チタニア、
ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪
藻土などを挙げることができる。これらは単独で用いて
もよく、二種以上を組み合わせて用いてもよい。これら
の中で、特にシリカ−アルミナが好適である。
On the other hand, as a nickel-based adsorptive desulfurizing agent, nickel is usually 30% by weight or more, preferably 50 to 50% by weight, based on the total amount of the desulfurizing agent.
What is carried in the range of 70% by weight is used. As the carrier, a porous carrier is preferable, and a porous inorganic oxide is particularly preferable. Such include, for example, silica, alumina, silica-alumina, titania,
Zirconia, magnesia, zinc oxide, clay, clay, diatomaceous earth and the like can be mentioned. These may be used alone or in combination of two or more. Among these, silica-alumina is particularly preferred.

【0011】また、この吸着脱硫剤においては、ニッケ
ルに、必要に応じ、銅、コバルト、鉄、マンガン、クロ
ムなどの他の金属を少量混在させてもよい。上記ニッケ
ル系吸着脱硫剤を用いて、軽質ナフサを脱硫処理する方
法としては、例えば以下に示す方法を用いることができ
る。まず、該ニッケル系吸着脱硫剤が充填された脱硫塔
に、予め水素を供給し、150〜400℃程度の温度に
おいて、ニッケル系吸着脱硫剤の還元処理を行う。次
に、軽質ナフサを、脱硫塔中を上向き又は下向きの流れ
で通過させ、温度:常温〜400℃程度、圧力:常圧〜
1MPa・G程度、液時空間速度(LHSV):0.0
2〜10h-1程度の条件で脱硫処理する。この際、必要
により、少量の水素を共存させてもよい。
Further, in this adsorptive desulfurizing agent, a small amount of other metals such as copper, cobalt, iron, manganese and chromium may be mixed with nickel, if necessary. As a method for desulfurizing light naphtha using the nickel-based adsorptive desulfurizing agent, for example, the following method can be used. First, hydrogen is supplied in advance to a desulfurization tower filled with the nickel-based adsorptive desulfurizing agent, and the nickel-based adsorptive desulfurizing agent is reduced at a temperature of about 150 to 400 ° C. Next, the light naphtha is passed through the desulfurization tower in an upward or downward flow, and the temperature is from ordinary temperature to about 400 ° C., and the pressure is from ordinary pressure to
About 1 MPa · G, liquid hourly space velocity (LHSV): 0.0
The desulfurization treatment is performed under the conditions of about 2 to 10 h -1 . At this time, if necessary, a small amount of hydrogen may be allowed to coexist.

【0012】この深度脱硫軽質ナフサは、沸点が、通常
40〜100℃程度であり、そして、炭素数4〜7のイ
ソパラフィン、ノルマルパラフィン、ナフテンなどを主
要成分とするものである。本発明の燃料油組成物におい
ては、基材として、上記深度脱硫軽質ナフサを、好まし
くは10容量%以上、より好ましくは50容量%以上、
さらに好ましくは80容量%以上含有するものを用いる
ことが有利である。
This deep desulfurized light naphtha generally has a boiling point of about 40 to 100 ° C. and mainly contains isoparaffin, normal paraffin, naphthene and the like having 4 to 7 carbon atoms. In the fuel oil composition of the present invention, the above-mentioned deep desulfurized light naphtha is used as a base material, preferably at least 10% by volume, more preferably at least 50% by volume,
More preferably, it is advantageous to use one containing 80% by volume or more.

【0013】また、この深度脱硫軽質ナフサと混合し得
る他の基材としては、例えばアルキレート、メチル−t
ert−ブチルエーテル、イソペンタン、深度脱硫処理
していない通常の脱硫軽質ナフサ、深度脱硫重質ナフ
サ、深度脱硫処理していない通常の脱硫重質ナフサなど
の中から選ばれる少なくとも一種を挙げることができ
る。本発明の燃料油組成物においては、硫黄分濃度は1
重量ppm以下が好ましい。この濃度が1重量ppmを
超えると、燃料電池用の燃料として用いた場合に、改質
触媒を被毒させ、触媒寿命の低下をもたらす原因とな
る。より好ましい硫黄分濃度は0.5重量ppm以下で
あり、特に0.1重量ppm以下が好適である。
Other base materials which can be mixed with this deep desulfurized light naphtha include, for example, alkylate, methyl-t
Examples thereof include at least one selected from tert-butyl ether, isopentane, ordinary desulfurized light naphtha not subjected to deep desulfurization treatment, deep desulfurized heavy naphtha, ordinary desulfurized heavy naphtha not subjected to deep desulfurization treatment, and the like. In the fuel oil composition of the present invention, the sulfur concentration is 1
It is preferably at most ppm by weight. If the concentration exceeds 1 ppm by weight, when used as a fuel for a fuel cell, the reforming catalyst is poisoned, which causes a reduction in catalyst life. A more preferred sulfur content is 0.5 ppm by weight or less, and particularly preferably 0.1 ppm by weight or less.

【0014】また、本発明の燃料油組成物は、ハイブリ
ッドエンジン用としても用いられるので、清浄分散剤を
含むものが好ましい。この清浄分散剤の含有量は、10
〜1000重量ppmの範囲が好ましい。この量が10
重量ppm未満では清浄分散剤を添加した効果が充分に
発揮されないおそれがあり、一方、1000重量ppm
を超えると燃料電池用として用いた場合に改質触媒に悪
影響を及ぼす原因となる。清浄分散剤の添加効果及び改
質触媒に対する影響などを考慮すると、この清浄分散剤
のより好ましい含有量は50〜500重量ppmの範囲
である。
Since the fuel oil composition of the present invention is also used for a hybrid engine, it preferably contains a detergent and dispersant. The content of this detergent / dispersant is 10
The range of -1000 ppm by weight is preferred. If this amount is 10
If the amount is less than ppm by weight, the effect of adding the detergent / dispersant may not be sufficiently exerted.
Exceeding the limit causes a bad influence on the reforming catalyst when used for a fuel cell. In consideration of the effect of adding the detergent dispersant and the effect on the reforming catalyst, the more preferable content of the detergent dispersant is in the range of 50 to 500 ppm by weight.

【0015】上記清浄分散剤としては、燃料油組成物を
燃料電池用として用いた場合に、改質触媒や燃料電池電
極に悪影響を及ぼさないものを用いることが肝要であ
る。このような清浄分散剤としては、効果及び該改質触
媒や燃料電池電極に悪影響を及ぼさない点から、特にポ
リエーテルアミンが好適である。本発明の燃料油組成物
には、従来ガソリンエンジン用燃料油に慣用されている
他の各種添加剤、例えば酸化防止剤、表面着火防止剤、
氷結防止剤、助燃剤、帯電防止剤、防錆剤、識別剤、着
臭剤、着色剤などを、燃料電池における改質触媒や燃料
電池電極に悪影響を与えない範囲で、所望により添加す
ることができる。
It is important to use a detergent / dispersant that does not adversely affect the reforming catalyst or the fuel cell electrode when the fuel oil composition is used for a fuel cell. As such a detergent / dispersant, polyetheramine is particularly preferred in view of its effect and not adversely affecting the reforming catalyst and the fuel cell electrode. In the fuel oil composition of the present invention, various other additives conventionally used in fuel oils for gasoline engines, for example, antioxidants, surface ignition inhibitors,
Add an anti-freezing agent, an auxiliary agent, an antistatic agent, an antirust agent, a discriminating agent, an odorant, a coloring agent, and the like as desired within a range that does not adversely affect the reforming catalyst in the fuel cell or the fuel cell electrode. Can be.

【0016】本発明の燃料油組成物を燃料電池用の燃料
として用い、水素を製造する場合、水蒸気改質法と部分
酸化改質法のいずれも用いることができる。水蒸気改質
触媒としては、例えば適当な担体に、ニッケルやジルコ
ニウム、あるいはルテニウム、ロジウム、白金などの貴
金属を担持したものを挙げることができる。上記担持金
属は一種担持させてもよく、二種以上を組み合わせて担
持させてもよい。これらの触媒の中で、ルテニウムを担
持させたもの(以下、ルテニウム系触媒と称す。)が好
ましい。
When the fuel oil composition of the present invention is used as a fuel for a fuel cell to produce hydrogen, either a steam reforming method or a partial oxidation reforming method can be used. Examples of the steam reforming catalyst include one obtained by supporting a noble metal such as nickel, zirconium, ruthenium, rhodium, and platinum on a suitable carrier. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable.

【0017】このルテニウム系触媒の場合、ルテニウム
の担持量は、担体基準で0.05〜20重量%の範囲が
好ましく、より好ましくは0.05〜15重量%、特に
好ましくは0.1〜2重量%の範囲である。このルテニ
ウムを担持する場合、所望により、他の金属と組み合わ
せて担持することができる。ここで他の金属としては、
例えばジルコニウム、コバルト、マグネシウムなどが挙
げられる。
In the case of this ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, particularly preferably 0.1 to 2% by weight, based on the carrier. % By weight. When the ruthenium is supported, it can be supported in combination with another metal, if desired. Here, as other metals,
For example, zirconium, cobalt, magnesium and the like can be mentioned.

【0018】一方、担体としては、無機酸化物が好まし
く、具体的にはアルミナ、シリカ、ジルコニア、マグネ
シア及びこれらの混合物などが挙げられる。これらの中
で、特にアルミナ及びジルコニアが好適である。水蒸気
改質処理における反応条件としては、水蒸気(S)と燃
料油に由来する炭素(C)との比S/C(モル比)は、
通常2〜5、好ましくは2〜4、より好ましくは2〜3
の範囲で選定される。
On the other hand, the carrier is preferably an inorganic oxide, and specific examples thereof include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred. As the reaction conditions in the steam reforming process, the ratio S / C (molar ratio) between steam (S) and carbon (C) derived from fuel oil is as follows:
Usually 2-5, preferably 2-4, more preferably 2-3
Is selected in the range.

【0019】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。なお、触媒層出口温度は特に制限は
ないが、650〜800℃の範囲が好ましい。反応圧力
は、通常常圧〜3MPa、好ましくは常圧〜1MPaの
範囲であり、また、LHSVは、通常0.1〜100h
-1、好ましくは0.2〜50h-1の範囲である。このよ
うにして、燃料電池用水素を効率よく製造することがで
きる。
The inlet temperature of the steam reforming catalyst layer is 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. The reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to 1 MPa, and the LHSV is usually 0.1 to 100 h.
-1 , preferably in the range of 0.2 to 50 h -1 . In this way, hydrogen for a fuel cell can be efficiently produced.

【0020】一方、本発明の燃料油組成物をハイブリッ
ドエンジンの燃料として用いる場合、ハイブリッドエン
ジンにおける内燃機関としては、直噴ガソリンエンジン
が好適である。この直噴ガソリンエンジンとは、シリン
ダー内に燃料が直接噴射されるエンジンのことである。
この燃焼方式によると、空燃比を大きく、すなわちガソ
リン混合気を希薄にすることで燃費を向上させることが
できる。
On the other hand, when the fuel oil composition of the present invention is used as a fuel for a hybrid engine, a direct injection gasoline engine is preferable as the internal combustion engine in the hybrid engine. The direct injection gasoline engine is an engine in which fuel is directly injected into a cylinder.
According to this combustion system, fuel efficiency can be improved by increasing the air-fuel ratio, that is, by making the gasoline mixture lean.

【0021】本発明の自動車の駆動方式によると、上記
のハイブリッドエンジンを搭載した自動車において、前
述の本発明の燃料油組成物を燃料として用い、高負荷領
域での駆動を主にモーターで行い、低負荷領域での駆動
を主に内燃機関で行う方式が用いられる。そして、内燃
機関は、主に当該モーターの充電のために使用するのが
好ましい。
According to the vehicle driving system of the present invention, in a vehicle equipped with the above-mentioned hybrid engine, the fuel oil composition of the present invention is used as fuel, and driving in a high load region is mainly performed by a motor. A system in which driving in a low load region is mainly performed by an internal combustion engine is used. The internal combustion engine is preferably used mainly for charging the motor.

【0022】[0022]

【実施例】次に、本発明を実施例により、さらに詳しく
説明するが、本発明は、これらの例によってなんら限定
されるものではない。 実施例1〜3及び比較例1 第1表に示す性状の燃料油組成物を調製し、下記の方法
に従って性能を評価した。 (1)燃料電池用の燃料として使用した場合の改質触媒
の寿命 (イ)改質触媒の調製 α−アルミナ粉末に水20重量%を加え、ニーダーで混
合したのち、圧縮成形し、直径5mm、長さ5mmの円
柱状成形体とした。これを200℃で3時間乾燥したの
ち、1280℃で26時間焼成することにより、アルミ
ナ担体を得た。ジルコニウムオキシ塩化物〔ZrO(O
H)Cl〕の水溶液(ZrO2 として、2.5g)に、
三塩化ルテニウム水和物(RuCl3 ・nH2 O、Ru
38重量%含有)0.66g、硝酸コバルト水和物〔C
o(NO3)2 ・36H2 O〕2.47g、硝酸マグネシ
ウム水和物〔Mg(NO3)2 ・26H2 O〕6.36g
を加え、溶解するまで撹拌した。この際の総容量は10
ミリリットルであった。この溶液を上記アルミナ担体5
0gに、ポアフィリング法で含浸させたのち、120℃
で5時間乾燥後、500℃で2時間焼成処理し、さらに
16〜32メッシュに粒径調整することにより、改質触
媒を調製した。この改質触媒は、担体基準でRuが0.
5重量%、Coが1.0重量%、Zrがジルコニアとし
て5重量%、Mgがマグネシアとして2重量%担持され
ていた。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 3 and Comparative Example 1 Fuel oil compositions having the properties shown in Table 1 were prepared, and the performance was evaluated according to the following methods. (1) Life of reforming catalyst when used as fuel for fuel cell (a) Preparation of reforming catalyst 20% by weight of water was added to α-alumina powder, mixed with a kneader, compression-molded, and 5 mm in diameter And a 5 mm long columnar molded body. After drying this at 200 ° C. for 3 hours, it was baked at 1280 ° C. for 26 hours to obtain an alumina carrier. Zirconium oxychloride [ZrO (O
H) Cl] aqueous solution (2.5 g as ZrO 2 )
Ruthenium trichloride hydrate (RuCl 3 .nH 2 O, Ru
0.66 g of cobalt nitrate hydrate [C
o (NO 3 ) 2 .36H 2 O] 2.47 g, magnesium nitrate hydrate [Mg (NO 3 ) 2 .26H 2 O] 6.36 g
Was added and stirred until dissolved. The total capacity at this time is 10
Milliliters. This solution is mixed with the above alumina carrier 5
0 g, impregnated by pore filling method,
After drying for 5 hours at 500 ° C., the mixture was calcined at 500 ° C. for 2 hours, and the particle size was adjusted to 16 to 32 mesh to prepare a reforming catalyst. This reforming catalyst has a Ru of 0.
5% by weight, 1.0% by weight of Co, 5% by weight of Zr as zirconia, and 2% by weight of Mg as magnesia.

【0023】(ロ)改質触媒の寿命評価 反応管に上記(イ)で調製した改質触媒を充填し、大気
圧下、水蒸気/炭素モル比2.5、LHSV3h-1、触
媒層入口温度500℃、出口温度750℃の条件で、前
記各燃料油組成物の水蒸気改質処理を行った。以下に示
す転化率が100%を下回った時点までの時間を求め、
触媒の寿命を評価した。結果を第1表に示す。
(B) Life evaluation of the reforming catalyst A reaction tube was filled with the reforming catalyst prepared in the above (a), and a steam / carbon molar ratio of 2.5, LHSV of 3 h -1 , and a catalyst layer inlet temperature under atmospheric pressure were used. Each fuel oil composition was subjected to steam reforming at 500 ° C. and an outlet temperature of 750 ° C. The time until the conversion shown below falls below 100% is determined,
The life of the catalyst was evaluated. The results are shown in Table 1.

【0024】<転化率> 転化率(%)=100×B/A 〔ただし、Aは時間当たりの供給燃料油組成物中の全炭
素量(モル)、Bは時間当たりの改質器出口ガス中の全
炭素量(モル)でB=CO+CO2 +CH4 である。〕
によって算出した値である。なお、分析はガスクロマト
グラフィー法による。
<Conversion rate> Conversion rate (%) = 100 × B / A [where A is the total amount of carbon in the supplied fuel oil composition (mol), and B is the reformer outlet gas per hour. B = CO + CO 2 + CH 4 in the total amount of carbon (mol) therein. ]
It is a value calculated by: The analysis is based on a gas chromatography method.

【0025】(2)ハイブリッドエンジン用の燃料とし
て使用した場合のノズルの清浄性 ノズルの清浄性は、吸気ボードで燃料を噴射するガソリ
ンエンジンにおけるノズルのデポジット評価方法である
CRC(Coordinating Reseach Council) レポートNo.6
65に基いて行った。結果を第1表に示す。
(2) Nozzle cleanliness when used as fuel for hybrid engine Nozzle cleanliness is measured by a CRC (Coordinating Reseach Council) report, which is a method of evaluating nozzle deposits in a gasoline engine that injects fuel with an intake board. No.6
I went based on 65. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の燃料油組成物は、ハイブリッド
エンジン及び燃料電池に共用し得る、深度脱硫軽質ナフ
サを含むものであって、燃料電池用の燃料として用いた
場合、水素の製造における改質触媒の寿命が長く、かつ
燃料電池電極に対して悪影響を及ぼすことがない。ま
た、自動車のハイブリッドエンジン用の燃料として用い
た場合に、走行性能を損なうことがない。
Industrial Applicability The fuel oil composition of the present invention contains a deep desulfurized light naphtha which can be used in a hybrid engine and a fuel cell. The catalyst has a long life and does not adversely affect the fuel cell electrode. Further, when used as fuel for a hybrid engine of an automobile, the running performance is not impaired.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/06 H01M 8/06 Z // B60K 6/02 ZHV C10L 1/22 B C10L 1/22 B60K 9/00 ZHVC ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/06 H01M 8/06 Z // B60K 6/02 ZHV C10L 1/22 B C10L 1/22 B60K 9 / 00 ZHVC

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 深度脱硫軽質ナフサを含み、かつハイブ
リッドエンジン及び燃料電池に共用し得ることを特徴と
する燃料油組成物。
Claims 1. A fuel oil composition comprising deep desulfurized light naphtha and usable for a hybrid engine and a fuel cell.
【請求項2】 硫黄分濃度が、1重量ppm以下である
請求項1記載の燃料油組成物。
2. The fuel oil composition according to claim 1, wherein the sulfur content is 1 ppm by weight or less.
【請求項3】 硫黄分濃度が、0.5重量ppm以下で
ある請求項2記載の燃料油組成物。
3. The fuel oil composition according to claim 2, wherein the sulfur concentration is 0.5 ppm by weight or less.
【請求項4】 さらに、清浄分散剤を含む請求項1記載
の燃料油組成物。
4. The fuel oil composition according to claim 1, further comprising a detergent and dispersant.
【請求項5】 清浄分散剤の含有量が、10〜1000
重量ppmである請求項4記載の燃料油組成物。
5. The content of the detergent / dispersant is 10 to 1000.
5. The fuel oil composition according to claim 4, which is in ppm by weight.
【請求項6】 基材として、深度脱硫軽質ナフサ10容
量%以上を含むものを用いてなる請求項1記載の燃料油
組成物。
6. The fuel oil composition according to claim 1, wherein the base material contains 10% by volume or more of deep desulfurized light naphtha.
【請求項7】 基材として、深度脱硫軽質ナフサのみを
用いてなる請求項6記載の燃料油組成物。
7. The fuel oil composition according to claim 6, wherein only the deep desulfurized light naphtha is used as the base material.
【請求項8】 ハイブリッドエンジンを搭載した自動車
において、請求項1ないし7のいずれかに記載の燃料油
組成物を燃料として用い、高負荷領域での駆動を主にモ
ーターで行い、低負荷領域での駆動を主に内燃機関で行
うことを特徴とする自動車の駆動システム。
8. An automobile equipped with a hybrid engine, wherein the fuel oil composition according to any one of claims 1 to 7 is used as fuel, and driving in a high load region is mainly performed by a motor, and in a low load region, An automobile drive system characterized in that the vehicle is driven mainly by an internal combustion engine.
【請求項9】 駆動をモーターで行い、内燃機関は主に
当該モーターの充電のために使用する請求項8記載の自
動車の駆動システム。
9. The vehicle drive system according to claim 8, wherein the drive is performed by a motor, and the internal combustion engine is used mainly for charging the motor.
【請求項10】 内燃機関が、直噴ガソリンエンジンで
ある請求項8記載の自動車の駆動システム。
10. The vehicle driving system according to claim 8, wherein the internal combustion engine is a direct injection gasoline engine.
JP2000122277A 1999-12-17 2000-04-24 Fuel oil composition and driving system of automobile Pending JP2001303070A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000122277A JP2001303070A (en) 2000-04-24 2000-04-24 Fuel oil composition and driving system of automobile
PCT/JP2000/008946 WO2001044412A1 (en) 1999-12-17 2000-12-18 Fuel oil for fuel cell, fuel oil composition and automobile driving system
EP00981792A EP1243636A1 (en) 1999-12-17 2000-12-18 Fuel oil for fuel cell, fuel oil composition and automobile driving system
US10/168,086 US20030023120A1 (en) 1999-12-17 2000-12-18 Fuel oil for fuel cell, fuel oil composition, and automobile driving system
AU18931/01A AU1893101A (en) 1999-12-17 2000-12-18 Fuel oil for fuel cell, fuel oil composition and automobile driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122277A JP2001303070A (en) 2000-04-24 2000-04-24 Fuel oil composition and driving system of automobile

Publications (1)

Publication Number Publication Date
JP2001303070A true JP2001303070A (en) 2001-10-31

Family

ID=18632774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122277A Pending JP2001303070A (en) 1999-12-17 2000-04-24 Fuel oil composition and driving system of automobile

Country Status (1)

Country Link
JP (1) JP2001303070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044959A1 (en) * 2003-11-07 2005-05-19 Japan Energy Corporation Lead-free gasoline composition and method for production thereof
JP2005527082A (en) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー Method for suppressing deposit in fuel reformer of fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH0680972A (en) * 1992-07-17 1994-03-22 Sekiyu Sangyo Kasseika Center Depth desulfurization of light-to-middle oil
JPH0979063A (en) * 1995-09-11 1997-03-25 Toyota Motor Corp Control device for internal combustion engine power-assisted by electric motor
JPH09208971A (en) * 1996-02-06 1997-08-12 Idemitsu Kosan Co Ltd Additive for fuel oil
JPH09286992A (en) * 1996-02-21 1997-11-04 Idemitsu Kosan Co Ltd Lead-free gasoline composition
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH0680972A (en) * 1992-07-17 1994-03-22 Sekiyu Sangyo Kasseika Center Depth desulfurization of light-to-middle oil
JPH0979063A (en) * 1995-09-11 1997-03-25 Toyota Motor Corp Control device for internal combustion engine power-assisted by electric motor
JPH09208971A (en) * 1996-02-06 1997-08-12 Idemitsu Kosan Co Ltd Additive for fuel oil
JPH09286992A (en) * 1996-02-21 1997-11-04 Idemitsu Kosan Co Ltd Lead-free gasoline composition
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527082A (en) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー Method for suppressing deposit in fuel reformer of fuel cell system
WO2005044959A1 (en) * 2003-11-07 2005-05-19 Japan Energy Corporation Lead-free gasoline composition and method for production thereof
JP2008156663A (en) * 2003-11-07 2008-07-10 Japan Energy Corp Unleaded gasoline composition and process for producing it
JP4932257B2 (en) * 2003-11-07 2012-05-16 Jx日鉱日石エネルギー株式会社 Unleaded gasoline composition and method for producing the same

Similar Documents

Publication Publication Date Title
US20030023120A1 (en) Fuel oil for fuel cell, fuel oil composition, and automobile driving system
KR100793509B1 (en) Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
CN102365348A (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfuri
JP2001262163A (en) Fuel oil combinedly useful for internal combustion engine and fuel cell
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
WO2002031090A1 (en) Dual purpose fuel for gasoline-driven automobile and fuel cell system, and system for storage and/or supply thereof
JP5027971B2 (en) Fuel oil composition
KR101218840B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4803790B2 (en) Clean gasoline composition
JP2004277457A (en) Fuel oil composition
JP4598892B2 (en) Fuel for fuel cell system
JP2001303070A (en) Fuel oil composition and driving system of automobile
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2004319400A (en) Fuel for fuel cell system and fuel cell system
JP2001172651A (en) Fuel oil for fuel cell
JP4426039B2 (en) Fuel oil for fuel cell and method for producing the same
EP1526166A1 (en) Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
EP1273651A1 (en) Fuel for use in fuel cell system
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2001303071A (en) Fuel oil composition
JP4804769B2 (en) Carbon dioxide low emission gasoline composition
JPWO2001077263A1 (en) Fuel for fuel cell system
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
WO2001077260A1 (en) Fuel for use in fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831