JPWO2005036705A1 - Optical semiconductor substrate - Google Patents

Optical semiconductor substrate Download PDF

Info

Publication number
JPWO2005036705A1
JPWO2005036705A1 JP2005514546A JP2005514546A JPWO2005036705A1 JP WO2005036705 A1 JPWO2005036705 A1 JP WO2005036705A1 JP 2005514546 A JP2005514546 A JP 2005514546A JP 2005514546 A JP2005514546 A JP 2005514546A JP WO2005036705 A1 JPWO2005036705 A1 JP WO2005036705A1
Authority
JP
Japan
Prior art keywords
optical semiconductor
layer
substrate
solder layer
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005514546A
Other languages
Japanese (ja)
Inventor
白井 隆雄
隆雄 白井
美保 中村
美保 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Publication of JPWO2005036705A1 publication Critical patent/JPWO2005036705A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Ceramic Products (AREA)

Abstract

本発明の光半導体用基板は、絶縁性セラミックス基板と、前記絶縁性セラミックス基板上に設けられた金属層と、前記金属層上に設けられ、Sn単体またはSnを50重量%以上含み残部が実質的にAuからなるはんだ層と、前記はんだ層上に設けられ、厚さが0.01μm以上、1μm以下であるAuまたはAgからなる保護層とを具備するものである。このような光半導体用基板とすることにより、僅かな応力により結晶欠陥が発生しやすい光半導体を接合する際あるいはその後の使用時に、光半導体に加わる応力を極力少なくし、結晶欠陥の発生を抑制し寿命を延ばすことができる。The substrate for optical semiconductors of the present invention comprises an insulating ceramic substrate, a metal layer provided on the insulating ceramic substrate, and provided on the metal layer, and the balance is substantially 50 wt% or more of Sn alone or Sn. In particular, a solder layer made of Au, and a protective layer made of Au or Ag provided on the solder layer and having a thickness of 0.01 μm or more and 1 μm or less. By using such an optical semiconductor substrate, the stress applied to the optical semiconductor is reduced as much as possible when bonding optical semiconductors that are prone to crystal defects due to slight stress or during subsequent use, thereby suppressing the occurrence of crystal defects. Can extend the service life.

Description

本発明は光半導体を搭載するために用いられる光半導体用基板に係り、特に光半導体との接合性に優れ、また光半導体の接合時あるいは使用時に光半導体に加わる応力を緩和し、僅かな応力によっても損傷する光半導体の損傷を抑制し、その寿命を延ばすことが可能な光半導体用基板に関する。  The present invention relates to an optical semiconductor substrate used for mounting an optical semiconductor, and particularly has excellent bonding properties with an optical semiconductor, and relaxes the stress applied to the optical semiconductor when the optical semiconductor is bonded or used. The present invention relates to an optical semiconductor substrate capable of suppressing damage to an optical semiconductor that is also damaged by the above and extending its lifetime.

光半導体用基板は、例えばCD(Compact Disc)やDVD(Digital Video Disk)用光ピックアップLD等の光半導体を搭載させて半導体レーザ素子として用いられている。図1は、半導体レーザ素子の構成例を示したものである。  An optical semiconductor substrate is used as a semiconductor laser element by mounting an optical semiconductor such as an optical pickup LD for CD (Compact Disc) or DVD (Digital Video Disk). FIG. 1 shows a configuration example of a semiconductor laser element.

半導体レーザ素子1は、レーザダイオード等の光半導体2が光半導体用基板3上に搭載された構造となっている。光半導体用基板3は光半導体2の放熱性向上および位置決め等のために用いられるものである。光半導体用基板3の他方の面には、例えば光半導体2に発生した熱を効率的に外部へ放出するため、熱伝導性が良好な銅等からなるヒートシンク4が接合されている(例えば特許文献1参照)。  The semiconductor laser element 1 has a structure in which an optical semiconductor 2 such as a laser diode is mounted on an optical semiconductor substrate 3. The optical semiconductor substrate 3 is used for improving the heat dissipation and positioning of the optical semiconductor 2. A heat sink 4 made of copper or the like having good thermal conductivity is joined to the other surface of the optical semiconductor substrate 3 in order to efficiently release, for example, heat generated in the optical semiconductor 2 to the outside (for example, a patent) Reference 1).

光半導体用基板3は、例えば絶縁性セラミックス基板5と、その上にスパッタリング法等により形成された金属層6と、さらにその上に形成されたはんだ層7とからなり、光半導体2はこのはんだ層7を利用して光半導体用基板3上に接合されている(例えば、特許文献2参照)。  The optical semiconductor substrate 3 comprises, for example, an insulating ceramic substrate 5, a metal layer 6 formed thereon by a sputtering method or the like, and a solder layer 7 formed thereon, and the optical semiconductor 2 is composed of this solder. The layer 7 is used for bonding onto the optical semiconductor substrate 3 (see, for example, Patent Document 2).

図2は、光半導体2の電流と光出力との一般的な関係を示したものである。光出力がPthに達するまでは自然放出光がでており、Pthを超えるとレーザ発振(誘導放出)が起こる。このレーザ発振を開始するときの電流値がしきい値電流Ithであり、具体的には発振状態の電流−光出力直線の延長線がX軸と交わる電流値をしきい値電流Ithとすることができる。また、規定の光出力Poが得られるときの順方向の電流の値が、動作電流Iopである。  FIG. 2 shows a general relationship between the current of the optical semiconductor 2 and the optical output. Spontaneously emitted light is emitted until the light output reaches Pth, and laser oscillation (stimulated emission) occurs when the light output exceeds Pth. The current value at the start of laser oscillation is the threshold current Ith. Specifically, the current value at which the extension line of the current-light output line in the oscillation state intersects the X axis is the threshold current Ith. Can do. Further, the value of the forward current when the prescribed optical output Po is obtained is the operating current Iop.

一般に、トランジスタ等に使用されるシリコンチップと異なり、光半導体2は光半導体用基板3への接合時や使用時における僅かな応力により結晶欠陥が発生する。光半導体2の結晶が整っている場合には発光再結合により誘導放出が起こり、光半導体2に動作電流Iopを加えることにより長期にわたって規定の光出力Poを得ることができる。これに対し、光半導体2に僅かでも結晶欠陥があるとその部分で非発光再結合が起こり、光を放出せずに多量の熱が発生する。この熱により光半導体2にはさらに結晶欠陥が発生し、非発光再結合が起こる。この繰り返しにより、光半導体2は短期間で規定の光出力Poが得られなくなり、最終的に発光しなくなる。  In general, unlike a silicon chip used for a transistor or the like, a crystal defect occurs in the optical semiconductor 2 due to a slight stress at the time of bonding to the optical semiconductor substrate 3 or at the time of use. When the crystal of the optical semiconductor 2 is prepared, stimulated emission occurs due to light emission recombination, and by applying an operating current Iop to the optical semiconductor 2, a prescribed optical output Po can be obtained over a long period of time. On the other hand, if there is even a slight crystal defect in the optical semiconductor 2, non-radiative recombination occurs at that portion, and a large amount of heat is generated without emitting light. This heat causes further crystal defects in the optical semiconductor 2 and causes non-radiative recombination. By repeating this process, the optical semiconductor 2 cannot obtain the prescribed optical output Po in a short period of time, and eventually does not emit light.

応力による損傷に関して具体的に説明すれば、例えばアルミナ基板上にシリコンチップが接合された一般のトランジスタ等は、アルミナの熱膨張係数が約7×10−6/℃、シリコンチップの熱膨張係数が約3×10−6/℃であり、熱膨張係数の差が大きいにもかかわらず損傷せずに使用可能である。また、銅からなるリードフレーム上にシリコンチップを接合したようなものでは、銅からなるリードフレームの熱膨張係数が約17×10−6/℃と熱膨張係数の差が非常に大きくなるにもかかわらず使用可能なものもある。Specifically, the damage due to stress is described. For example, in a general transistor in which a silicon chip is bonded to an alumina substrate, the thermal expansion coefficient of alumina is about 7 × 10 −6 / ° C., and the thermal expansion coefficient of the silicon chip is It is about 3 × 10 −6 / ° C., and it can be used without being damaged despite a large difference in thermal expansion coefficient. In addition, in the case where a silicon chip is bonded to a lead frame made of copper, the difference between the thermal expansion coefficients of the lead frame made of copper is about 17 × 10 −6 / ° C., which is very large. Some can be used regardless.

これに対して、一般的な半導体レーザ素子1、例えばシリコン基板上にレーザダイオードを接合したようなものは、シリコン基板の熱膨張係数が約3×10−6/℃、光半導体の熱膨張係数が約4.2×10−6/℃であり、それらの熱膨張係数の差が小さく僅かな応力しか発生しないにもかかわらず、その応力によりレーザダイオードに結晶欠陥が発生し、寿命が短くなってしまう。また、レーザダイオードの熱膨張係数にほぼ等しい熱膨張係数である4.6×10−6/℃程度の窒化アルミニウム基板を用いた場合であっても、その僅かな熱膨張係数の違いにより発生する応力によってレーザダイオードに結晶欠陥が発生し、寿命が短くなってしまうことがある。On the other hand, in a general semiconductor laser element 1, for example, a laser diode bonded on a silicon substrate, the thermal expansion coefficient of the silicon substrate is about 3 × 10 −6 / ° C., and the thermal expansion coefficient of the optical semiconductor. Is about 4.2 × 10 −6 / ° C., and even though the difference in thermal expansion coefficient is small and only a small amount of stress is generated, crystal stress is generated in the laser diode due to the stress and the life is shortened. End up. Further, even when an aluminum nitride substrate having a thermal expansion coefficient of approximately 4.6 × 10 −6 / ° C., which is substantially equal to the thermal expansion coefficient of the laser diode, is used, it is generated due to a slight difference in thermal expansion coefficient. The stress may cause crystal defects in the laser diode and shorten the lifetime.

特に、近年においては機器の性能を向上させるために光半導体2の高出力化が進み、光半導体2の端面での光密度が過大になることで多量の熱が生じ、過大な応力がかかり損傷しやすくなっており、その損傷を防ぐことが重要な課題となっている。
特開平6−37403号公報(第11図等) 特開2002−100826号公報
In particular, in recent years, the output of the optical semiconductor 2 has been increased in order to improve the performance of the device, and the light density at the end face of the optical semiconductor 2 has become excessive, generating a large amount of heat, causing excessive stress and damage. Therefore, it is important to prevent the damage.
JP-A-6-37403 (FIG. 11 etc.) Japanese Patent Laid-Open No. 2002-1000082

上述したように、光半導体は僅かな応力によっても結晶欠陥が発生し、寿命が短くなってしまう。このため、これを搭載する光半導体用基板においては光半導体を接合する際あるいはその後の使用時に光半導体へ加わる応力が少なく、光半導体に結晶欠陥が発生しにくいものであることが求められる。本発明はこのような課題を解決するためになされたものであって、光半導体を接合する際あるいはその後の使用時に光半導体に加わる応力を抑制し、光半導体の結晶欠陥の発生を抑制し、寿命を延ばすことができる光半導体用基板を提供することを目的としている。  As described above, crystal defects are generated in the optical semiconductor even by a slight stress, and the lifetime is shortened. For this reason, an optical semiconductor substrate on which the optical semiconductor is mounted is required to have a low stress applied to the optical semiconductor when the optical semiconductor is bonded or used thereafter, and to prevent crystal defects from being generated in the optical semiconductor. The present invention was made to solve such a problem, and suppresses the stress applied to the optical semiconductor when joining the optical semiconductor or during subsequent use, suppresses the occurrence of crystal defects in the optical semiconductor, An object of the present invention is to provide an optical semiconductor substrate capable of extending the lifetime.

本発明者らは光半導体の寿命を短くする結晶欠陥の発生を抑制するべく光半導体用基板についての研究を進めた結果、従来の一般的なAu(金)−Sn(スズ)はんだはシリコンチップのように多少の応力が加わっても損傷しにくいものの接合には十分使用できるものの、光半導体のように僅かな応力によっても結晶欠陥が発生し寿命が短くなるものの接合には硬すぎるため光半導体の接合時や使用時に発生する応力を十分に緩和できず、光半導体に結晶欠陥が発生し寿命が短くなることを見いだした。  As a result of studying the substrate for optical semiconductors to suppress the generation of crystal defects that shorten the lifetime of optical semiconductors, the present inventors have found that conventional general Au (gold) -Sn (tin) solder is a silicon chip. Although it is difficult to damage even if a little stress is applied like this, it can be used enough for bonding, but even if it is a slight stress like an optical semiconductor, crystal defects occur and its life is shortened, but it is too hard to join, so an optical semiconductor It has been found that the stress generated during bonding and use cannot be sufficiently relaxed, and crystal defects occur in the optical semiconductor, resulting in a shortened life.

そこで、本発明者らは光半導体用基板のはんだ層を構成するはんだの材質、組成の研究を行った。その結果、一般的なAu−SnはんだはAuを80重量%程度と多く含むために硬くなっており、このため光半導体の接合時や使用時に発生する応力を十分に緩和できず、光半導体に結晶欠陥が発生し寿命が短くなることを見いだした。そこで、Au−SnはんだにおけるSn含有量を増加させた結果、Au−Snはんだの硬さを効果的に低減できることを見いだした。  Accordingly, the present inventors have studied the material and composition of the solder constituting the solder layer of the optical semiconductor substrate. As a result, a general Au—Sn solder is hard because it contains a large amount of Au at about 80% by weight. Therefore, stress generated at the time of joining or using an optical semiconductor cannot be sufficiently relaxed, and the optical semiconductor is It was found that crystal defects occurred and the lifetime was shortened. Then, as a result of increasing the Sn content in the Au—Sn solder, it was found that the hardness of the Au—Sn solder can be effectively reduced.

しかしながら、はんだ層としてSnを多く含むAu−Snはんだを用いた場合、はんだ付け性が低下することがわかった。半導体レーザ素子の製造では生産性向上のために光半導体用基板への光半導体の接合時間の短縮が求められており、このようなはんだ付け性の低下は生産性向上にとって障害となる。さらに、はんだ付け性が低下すると熱抵抗が高くなり、光半導体から光半導体用基板への熱の移動が十分に行われず、これにより応力が発生し光半導体に結晶欠陥が発生し寿命が短くなることがわかった。  However, it was found that when Au—Sn solder containing a large amount of Sn is used as the solder layer, the solderability is lowered. In the manufacture of a semiconductor laser device, it is required to shorten the bonding time of the optical semiconductor to the optical semiconductor substrate in order to improve the productivity. Such a decrease in solderability becomes an obstacle to improving the productivity. Furthermore, when the solderability is reduced, the thermal resistance is increased, and the heat transfer from the optical semiconductor to the optical semiconductor substrate is not sufficiently performed, which causes stress and causes crystal defects in the optical semiconductor, thereby shortening the life. I understood it.

本発明者らは、このようなはんだ付け性の低下について研究を重ねた結果、はんだ付け性の低下ははんだ層であるAu−Snはんだの表面に形成された酸化膜によるはんだ濡れ性の低下によるものであることがわかり、さらにこの酸化膜の形成ははんだ層を構成するAu−Snはんだが酸化されやすいSnを多く含むことによるものであることがわかった。  As a result of repeated studies on such a decrease in solderability, the present inventors have found that the decrease in solderability is due to a decrease in solder wettability due to an oxide film formed on the surface of the Au-Sn solder that is the solder layer. Further, it was found that the formation of this oxide film is due to the fact that the Au—Sn solder constituting the solder layer contains a large amount of Sn that is easily oxidized.

本発明者らはこのような酸化膜の形成によるはんだ付け性の低下を改善すべく研究を進めた結果、酸化されず、他に悪影響が発生しないものではんだ層であるAu−Snはんだ表面を覆うことが有効であり、このようなものとしてAu(金)またはAg(銀)からなる保護層(以下、単に保護層と呼ぶ。)を表面に形成することが有効であることを見いだした。すなわち、AuおよびAgは酸化されず、電気抵抗も低く、またはんだ層の成分であるSnと共晶を形成でき、悪影響も発生させにくいため、はんだ層であるAu−Snはんだ表面を覆う保護層の形成に好適なものであることを見いだした。さらに、はんだ層の表面にこのような保護層を形成することにより、必ずしもはんだ層にAuを含ませなくてもよいこともわかった。  As a result of researches to improve the decrease in solderability due to the formation of such an oxide film, the present inventors have found that the Au—Sn solder surface, which is a solder layer, is not oxidized and does not cause other adverse effects. It has been found that covering is effective, and as such, it is effective to form a protective layer made of Au (gold) or Ag (silver) (hereinafter simply referred to as a protective layer) on the surface. That is, Au and Ag are not oxidized, have a low electrical resistance, or can form a eutectic with Sn, which is a component of the solder layer, and hardly cause adverse effects. Therefore, the protective layer that covers the surface of the Au—Sn solder that is a solder layer It was found to be suitable for the formation of. It has also been found that by forming such a protective layer on the surface of the solder layer, it is not always necessary to include Au in the solder layer.

また、保護層の厚さがはんだ層表面の酸化、はんだ付け性に与える影響を検討したところ、その厚さによりはんだ層表面の酸化、はんだ付け性が急激に変化することがわかった。すなわち、保護層の厚さが0.01μm未満であるとはんだ層の表面が十分に覆われていない部分が発生し、この部分が酸化されてできた酸化膜により光半導体の接合が困難となり、また光半導体を接合したときにはこの部分の熱抵抗が高くなり応力を発生させ、光半導体に結晶欠陥が発生し寿命が短くなることがわかった。  In addition, when the influence of the thickness of the protective layer on the oxidation and solderability of the solder layer surface was examined, it was found that the oxidation and solderability of the solder layer surface changed abruptly depending on the thickness. That is, when the thickness of the protective layer is less than 0.01 μm, a portion where the surface of the solder layer is not sufficiently covered occurs, and it becomes difficult to join the optical semiconductor due to the oxide film formed by oxidizing this portion, In addition, it was found that when the optical semiconductor was joined, the thermal resistance of this portion was increased and stress was generated, crystal defects were generated in the optical semiconductor, and the lifetime was shortened.

一方、保護層の厚さが1μmを超えると、光半導体を接合するための熱処理の際に保護層とはんだ層とが完全に混ざり合わないために保護層が残ったままとなり、またAuやAgの濃度が高い部分が発生したりするために光半導体の接合が困難となり、さらに接合後においてはAuやAgの濃度が高い部分が硬いために応力が十分に緩和されず、光半導体に結晶欠陥が発生し寿命が短くなることがわかった。  On the other hand, if the thickness of the protective layer exceeds 1 μm, the protective layer and the solder layer are not completely mixed during the heat treatment for bonding the optical semiconductor, so that the protective layer remains, and Au or Ag As a result, a high-concentration portion is generated, which makes it difficult to join the optical semiconductor. Further, after joining, the high-concentration portion of Au or Ag is hard, so the stress is not sufficiently relaxed, and crystal defects occur in the optical semiconductor. It was found that the lifetime was shortened.

本発明者らは以上のような知見に基づき、本発明を完成させたものである。すなわち、本発明の光半導体用基板は、絶縁性セラミックス基板と、前記絶縁性セラミックス基板上に設けられた金属層と、前記金属層上に設けられ、Sn単体またはSnを50重量%以上含み残部が実質的にAuからなるはんだ層と、前記はんだ層上に設けられ、厚さが0.01μm以上、1μm以下であるAuまたはAgからなる保護層とを具備するものである。  The present inventors have completed the present invention based on the above findings. That is, the substrate for optical semiconductors of the present invention includes an insulating ceramic substrate, a metal layer provided on the insulating ceramic substrate, and provided on the metal layer, and contains the balance of Sn alone or Sn at 50% by weight or more. Comprises a solder layer substantially made of Au and a protective layer made of Au or Ag provided on the solder layer and having a thickness of 0.01 μm or more and 1 μm or less.

[図1]一般的な半導体レーザ素子の一例を示した断面図。
[図2]一般的な半導体レーザ素子の電流−光出力特性の関係を示した図。
[図3]本発明の光半導体用基板の一例を示した断面図。
FIG. 1 is a sectional view showing an example of a general semiconductor laser element.
FIG. 2 is a diagram showing a relationship between current-light output characteristics of a general semiconductor laser element.
FIG. 3 is a cross-sectional view showing an example of an optical semiconductor substrate of the present invention.

以下、本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.

図3は、本発明の光半導体用基板3の構造を示した断面図である。本発明の光半導体用基板3は、絶縁性セラミックス基板5上に、金属層6、はんだ層7、および、Au(金)またはAg(銀)からなる保護層8が順に形成されたものである。  FIG. 3 is a sectional view showing the structure of the optical semiconductor substrate 3 of the present invention. The substrate for optical semiconductor 3 of the present invention is obtained by sequentially forming a metal layer 6, a solder layer 7, and a protective layer 8 made of Au (gold) or Ag (silver) on an insulating ceramic substrate 5. .

本発明に用いられる絶縁性セラミックス基板5は、例えば窒化アルミニウム、窒化珪素、炭化珪素、酸化ベリリウムおよびダイヤモンドの中から選択される1種を主成分とするものである。絶縁性セラミックス基板5の熱伝導率は、レーザダイオード等の光半導体を搭載した場合の放熱性を向上させ、応力の発生を抑制し、光半導体への結晶欠陥の発生を抑制する観点から、80W/m・K以上であることが好ましく、190W/m・K以上であればなお好ましい。  The insulating ceramic substrate 5 used in the present invention is mainly composed of, for example, one selected from aluminum nitride, silicon nitride, silicon carbide, beryllium oxide and diamond. The thermal conductivity of the insulating ceramic substrate 5 is 80 W from the viewpoint of improving heat dissipation when an optical semiconductor such as a laser diode is mounted, suppressing the generation of stress, and suppressing the generation of crystal defects in the optical semiconductor. / M · K or higher, preferably 190 W / m · K or higher.

絶縁性セラミックス基板5の厚さは特に制限されるものではなく、絶縁性セラミックス基板5の熱伝導率、強度等を勘案して適宜調整することができるが、例えば0.1mm以上、1.5mm以下の範囲とすることが好ましい。  The thickness of the insulating ceramic substrate 5 is not particularly limited, and can be appropriately adjusted in consideration of the thermal conductivity, strength, etc. of the insulating ceramic substrate 5, but for example, 0.1 mm or more, 1.5 mm The following range is preferable.

また、熱伝導率との関係から、絶縁性セラミックス基板5の熱伝導率をK(W/m・K)、絶縁性セラミックス基板5の厚さをt(mm)としたとき、それらの比(K/t)が700以上となるものが好ましい。すなわち、熱伝導率Kを高くし、板厚tを薄くすることによって光半導体用基板3の放熱性をさらに向上させることが可能になる。  Further, from the relationship with the thermal conductivity, when the thermal conductivity of the insulating ceramic substrate 5 is K (W / m · K) and the thickness of the insulating ceramic substrate 5 is t (mm), the ratio ( K / t) is preferably 700 or more. That is, it is possible to further improve the heat dissipation of the optical semiconductor substrate 3 by increasing the thermal conductivity K and decreasing the plate thickness t.

例えば、熱伝導率が200W/m・Kの窒化アルミニウム基板を使用する場合には、その厚さtは0.286mm以下とすることが好ましく、また熱伝導率が170W/m・Kの窒化アルミニウム基板を使用する場合には、その厚さtは0.243mm以下とすることが好ましい。  For example, when an aluminum nitride substrate having a thermal conductivity of 200 W / m · K is used, its thickness t is preferably 0.286 mm or less, and aluminum nitride having a thermal conductivity of 170 W / m · K. When a substrate is used, the thickness t is preferably 0.243 mm or less.

このような絶縁性セラミックス基板5は、例えば上述したような窒化アルミニウム等の原料粉末に焼結助剤を添加し、さらにバインダ等を加えて混合した後、所定の基板形状に成形し、この成形体を焼結することにより得られる。焼結助剤としては各種の金属化合物を用いることができるが、希土類酸化物が好適に用いられる。  Such an insulating ceramic substrate 5 is formed, for example, by adding a sintering aid to a raw material powder such as aluminum nitride as described above, adding a binder or the like, mixing, and then forming the substrate into a predetermined substrate shape. It is obtained by sintering the body. Various metal compounds can be used as the sintering aid, but rare earth oxides are preferably used.

希土類酸化物としては、例えばY(酸化イットリウム)、Er(酸化エルビウム)、Yb(酸化イッテルビウム)、等が挙げられ、これらの中でも特にYが好適に用いられる。Examples of rare earth oxides include Y 2 O 3 (yttrium oxide), Er 2 O 3 (erbium oxide), Yb 2 O 3 (ytterbium oxide), and among these, Y 2 O 3 is particularly preferable. Used.

また、希土類酸化物に加えて、Ca、Ba、Sr等のアルカリ土類金属元素の酸化物、SiO、Si等のSi化合物、B、BC、TiB、LaB等の硼素化合物等を併用してもよい。なお、希土類酸化物やアルカリ土類金属酸化物等は、焼成時に酸化物となる炭酸塩、シュウ酸塩、硝酸塩、フッ化物等として配合してもよい。In addition to rare earth oxides, oxides of alkaline earth metal elements such as Ca, Ba and Sr, Si compounds such as SiO 2 and Si 3 N 4 , B 2 O 3 , B 4 C, TiB 2 and LaB A boron compound such as 6 may be used in combination. In addition, you may mix | blend rare earth oxide, an alkaline-earth metal oxide, etc. as carbonate, oxalate, nitrate, fluoride etc. which become an oxide at the time of baking.

さらに、例えば窒化アルミニウムのように焼結体が透光性を有するものついては、レーザ光の再反射による特性変化を抑制するために、W、Ti、Zr、Hf、Cr、Mo、Sr等の着色化材を添加してもよい。  Further, for a sintered body having translucency such as aluminum nitride, for example, coloring of W, Ti, Zr, Hf, Cr, Mo, Sr, etc. in order to suppress the characteristic change due to re-reflection of the laser beam. Chemicals may be added.

この場合、着色化材は窒化アルミニウム原料粉末等に対して5.0重量%以下の割合で添加することが好ましい。着色化材の添加量が5.0重量%を超えるように過大になると、焼結体の熱伝導率が低下し易くなり、光半導体用基板3の放熱性が損なわれる。  In this case, the coloring material is preferably added in a proportion of 5.0% by weight or less with respect to the aluminum nitride raw material powder or the like. If the added amount of the coloring material is too large so as to exceed 5.0% by weight, the thermal conductivity of the sintered body tends to be lowered, and the heat dissipation of the optical semiconductor substrate 3 is impaired.

なお、上記着色化材を添加する形態としては、上記各種元素の酸化物、窒化物、フッ化物として添加し含有させることが好ましく、その形態は絶縁性セラミックス基板5の放熱性、強度等の特性に対する影響を勘案して任意に選択することが好ましい。  The colorant is preferably added as an oxide, nitride, or fluoride of the above various elements, and the form is a characteristic of the insulating ceramic substrate 5 such as heat dissipation and strength. It is preferable to select arbitrarily in consideration of the influence on

上述したような絶縁性セラミックス基板5上には金属層6が設けられる。金属層6は、例えば絶縁性セラミックス基板5側からTi層、Pt層、Au層の順に積層される。金属層6には回路を形成してもよいし、回路を形成しなくてもよい。このようなTi層、Pt層およびAu層等からなる金属層6の全体の厚さは3μm以下とすることが好ましい。  A metal layer 6 is provided on the insulating ceramic substrate 5 as described above. For example, the metal layer 6 is laminated in the order of a Ti layer, a Pt layer, and an Au layer from the insulating ceramic substrate 5 side. A circuit may be formed on the metal layer 6 or a circuit may not be formed. The total thickness of the metal layer 6 made of such a Ti layer, Pt layer, Au layer or the like is preferably 3 μm or less.

絶縁性セラミックス基板5上へのTi層、Pt層およびAu層の形成は、スパッタ法、真空蒸着法、分子線エピタキシ(MBE)法、イオンプレーティング法およびレーザデポジション法等のPVD(Physical Vapor Deposition:物理的蒸着)法、場合によっては熱CVD法、プラズマCVD法、光CVD法等のCVD(Chemical Vapor Deposition:化学的気相成長)法等の薄膜形成法を適用して行うことが好ましい。  The Ti layer, the Pt layer, and the Au layer are formed on the insulating ceramic substrate 5 by PVD (Physical Vapor) such as sputtering, vacuum deposition, molecular beam epitaxy (MBE), ion plating, and laser deposition. It is preferable to apply a thin film formation method such as a CVD (Chemical Vapor Deposition) method such as a deposition (physical vapor deposition) method, or a CVD method such as a thermal CVD method, a plasma CVD method, or a photo CVD method. .

この金属層6上にははんだ層7が形成される。このはんだ層7は、Sn単体からなるもの、または、Snを50重量%以上含み残部が実質的にAuであるAu−Sn合金あるいはAu−Sn混合物からなるものである。  A solder layer 7 is formed on the metal layer 6. The solder layer 7 is made of Sn alone, or made of an Au—Sn alloy or Au—Sn mixture containing 50% by weight or more of Sn and the balance being substantially Au.

はんだ層7をSnを50重量%以上含むものとすることで、はんだ層7の硬さを有効に低下させることができる。これにより、光半導体を接合する際あるいはその後の使用時に、主として絶縁性セラミックス基板5と光半導体との熱膨張係数の違いにより発生する応力を十分に緩和し、僅かな応力によっても結晶欠陥が発生し寿命が短くなる光半導体における結晶欠陥の発生を抑制しその寿命を長くすることができる。  By including 50% by weight or more of Sn in the solder layer 7, the hardness of the solder layer 7 can be effectively reduced. This sufficiently relaxes the stress generated mainly by the difference in thermal expansion coefficient between the insulating ceramic substrate 5 and the optical semiconductor when bonding the optical semiconductor or during subsequent use, and crystal defects are generated even by a slight stress. Then, the generation of crystal defects in the optical semiconductor whose lifetime is shortened can be suppressed and the lifetime can be increased.

はんだ層7は、より好ましくはSn単体またはSnを60重量%以上含み残部がAuからなるものであり、さらに好ましくはSn単体またはSnを70重量%以上含み残部がAuからなるものである。そして、はんだ層7の融点は210℃以上、500℃以下が好ましく、210℃以上、400℃以下であればより好ましい。  The solder layer 7 is more preferably a single substance of Sn or 60% by weight or more of Sn and the balance is made of Au, and more preferably a simple substance of Sn or 70% or more of Sn of the balance is made of Au. The melting point of the solder layer 7 is preferably 210 ° C. or higher and 500 ° C. or lower, and more preferably 210 ° C. or higher and 400 ° C. or lower.

このようにSnの含有量を多くすることにより、はんだ層7の硬さを一層有効に低下させることができ、光半導体を接合する際あるいはその後の使用時に光半導体に加わる応力を十分に緩和し、僅かな応力によっても結晶欠陥が発生し寿命が短くなる光半導体における結晶欠陥の発生を抑制しその寿命を長くすることができる。  By increasing the Sn content in this way, the hardness of the solder layer 7 can be reduced more effectively, and the stress applied to the optical semiconductor can be sufficiently relaxed when the optical semiconductor is joined or during subsequent use. Even when a slight stress is applied, crystal defects are generated and the lifetime is shortened, so that the generation of crystal defects in the optical semiconductor can be suppressed and the lifetime can be extended.

金属層6上へのはんだ層7の形成は、例えばAu、Snの真空蒸着もしくはスパッタ等の手法により、あるいは、上述したような組成のはんだペーストをスクリーン印刷法等を用いて塗布する手法により行うことができる。はんだ層7の厚さは2μm以上、5μm以下とすることが好ましい。  The solder layer 7 is formed on the metal layer 6 by, for example, a technique such as vacuum deposition or sputtering of Au or Sn, or by a technique of applying a solder paste having the above-described composition using a screen printing method or the like. be able to. The thickness of the solder layer 7 is preferably 2 μm or more and 5 μm or less.

はんだ層7の厚さが2μm以下であると、はんだ層7の厚さが薄すぎるため光半導体と絶縁性セラミックス基板5との熱膨張係数の違いにより発生する応力を十分に緩和できず、光半導体における結晶欠陥の発生を抑制し寿命を長くすることが困難となるおそれがある。また、はんだ層7の厚さは5μm程度まであれば十分に緩衝効果を得ることができ、それ以上設けることは生産性等の観点から好ましくなく、またかえって光半導体における結晶欠陥の発生を抑制する効果が低くなり寿命を短くしてしまうおそれもあり好ましくない。  If the thickness of the solder layer 7 is 2 μm or less, since the thickness of the solder layer 7 is too thin, the stress generated due to the difference in thermal expansion coefficient between the optical semiconductor and the insulating ceramic substrate 5 cannot be sufficiently relaxed. There is a possibility that it is difficult to suppress the generation of crystal defects in the semiconductor and extend the life. Further, if the thickness of the solder layer 7 is about 5 μm, a sufficient buffering effect can be obtained, and providing more than that is not preferable from the viewpoint of productivity and the like, and on the other hand, suppressing the generation of crystal defects in the optical semiconductor. It is not preferable because the effect may be reduced and the life may be shortened.

上述したようなはんだ層7上にはAuまたはAgからなる保護層(以下、単に保護層と呼ぶ。)8が形成される。この保護層8ははんだ層7の表面に酸化膜が形成されることを防止するために設けられるものである。本発明におけるはんだ層7は、光半導体を接合する際あるいはその後の使用時に光半導体に加わる応力を極力少なくし、その結晶欠陥の発生を抑制し寿命を長くするために、Snを50重量%以上含ませることによりその硬さを低減させている。  A protective layer (hereinafter simply referred to as a protective layer) 8 made of Au or Ag is formed on the solder layer 7 as described above. This protective layer 8 is provided in order to prevent an oxide film from being formed on the surface of the solder layer 7. The solder layer 7 according to the present invention has a Sn content of 50% by weight or more in order to minimize the stress applied to the optical semiconductor when joining the optical semiconductor or during subsequent use, to suppress the generation of crystal defects and to prolong the life. The hardness is reduced by including.

しかし、酸化されやすいSnの含有量が多いためにその表面には酸化膜が形成されやすくなっている。この酸化膜ははんだ濡れ性を低下させ光半導体の接合を困難とし、また光半導体を接合した後においては、熱抵抗が高いために光半導体から絶縁性セラミックス基板5への熱の移動を妨げ、光半導体に結晶欠陥を発生させ寿命を短くする。  However, since the content of Sn that is easily oxidized is large, an oxide film is easily formed on the surface. This oxide film reduces the solder wettability and makes it difficult to join the optical semiconductor. Also, after joining the optical semiconductor, the thermal resistance is high, so that the heat transfer from the optical semiconductor to the insulating ceramic substrate 5 is hindered. Crystal defects are generated in the optical semiconductor to shorten the lifetime.

そこで、本発明ではこのようなはんだ層7における酸化膜の形成を防ぐものとしてAuまたはAgからなる保護層8を設けることとした。この保護層8は酸化されにくい金属であるAuまたはAgからなるため、上述したような酸化膜が形成されやすいはんだ層における酸化膜の形成を抑制し、はんだ濡れ性の低下を抑制することができる。また、保護層8を構成するAuまたはAgははんだ層の成分であるSnと共晶を形成できるため、光半導体の接合時にはんだ層7に容易に混ざり合い、また悪影響も発生させにくい。  Therefore, in the present invention, the protective layer 8 made of Au or Ag is provided to prevent the formation of the oxide film in the solder layer 7. Since the protective layer 8 is made of Au or Ag, which is a metal that is difficult to oxidize, the formation of the oxide film in the solder layer on which the oxide film is easily formed as described above can be suppressed, and the decrease in solder wettability can be suppressed. . In addition, Au or Ag constituting the protective layer 8 can form a eutectic with Sn, which is a component of the solder layer, so that it easily mixes with the solder layer 7 at the time of joining the optical semiconductor and hardly causes adverse effects.

このような保護層8の厚さは0.01μm以上、1μm以下である。保護層8の厚さが0.01μm未満であると、はんだ層7の表面が保護層8により十分に覆われていない部分が発生し、この覆われていない部分が酸化されて酸化膜となり光半導体の接合を困難とする。また、光半導体を接合した後においては、この酸化膜の熱抵抗が高いために光半導体から絶縁性セラミックス基板5への熱の移動が妨げられ、光半導体に結晶欠陥が発生し寿命が短くなる。  The thickness of such a protective layer 8 is 0.01 μm or more and 1 μm or less. When the thickness of the protective layer 8 is less than 0.01 μm, a portion where the surface of the solder layer 7 is not sufficiently covered by the protective layer 8 is generated, and this uncovered portion is oxidized to become an oxide film. Difficult to join semiconductors. In addition, after the optical semiconductor is bonded, the heat resistance of the oxide film is high, so that the heat transfer from the optical semiconductor to the insulating ceramic substrate 5 is hindered, crystal defects occur in the optical semiconductor, and the lifetime is shortened. .

また、保護層8の厚さが1μmを超えると、光半導体を接合するための熱処理の際に保護層8とはんだ層7とが完全に混じり合わず保護層8が残存し、またAuやAgの濃度が高い部分が生じることがあり、光半導体の接合が困難となる。また、光半導体の接合後は、このような保護層8が残存した部分やAuやAgの濃度が高い部分が硬いために応力が十分に緩和されず、光半導体に結晶欠陥が発生し寿命が短くなる。  If the thickness of the protective layer 8 exceeds 1 μm, the protective layer 8 and the solder layer 7 are not completely mixed during the heat treatment for bonding the optical semiconductor, and the protective layer 8 remains, and Au or Ag In some cases, a portion having a high concentration of is produced, and it becomes difficult to join the optical semiconductor. Further, after bonding of the optical semiconductor, the portion where the protective layer 8 remains or the portion where the concentration of Au or Ag is high is hard, so that the stress is not sufficiently relieved, crystal defects occur in the optical semiconductor, and the lifetime is increased. Shorter.

保護層8の厚さは、より好ましくは0.01μm以上、0.2μm以下である。保護層8の厚さを0.2μm以下とすることにより、光半導体を接合するための熱処理の際に保護層8をはんだ層7に容易に混ぜ合わせることができ、またAuやAgの濃度が部分的に高くなることも抑制でき、応力の緩和を十分に行うことにより光半導体における結晶欠陥の発生を抑制し寿命を延ばすことができる。  The thickness of the protective layer 8 is more preferably 0.01 μm or more and 0.2 μm or less. By setting the thickness of the protective layer 8 to 0.2 μm or less, the protective layer 8 can be easily mixed with the solder layer 7 during the heat treatment for bonding the optical semiconductor, and the concentration of Au or Ag is also reduced. It is possible to suppress a partial increase, and by sufficiently relaxing the stress, generation of crystal defects in the optical semiconductor can be suppressed and the life can be extended.

このようなAuまたはAgからなる保護層8は、スパッタ法、真空蒸着法、分子線エピタキシ(MBE)法、イオンプレーティング法およびレーザデポジション法等のPVD(Physical Vapor Deposition:物理的蒸着)法、場合によっては熱CVD法、プラズマCVD法、光CVD法等のCVD(Chemical Vapor Deposition:化学的気相成長)法等の薄膜形成法を用いて形成してもよいし、ペースト法を用いて形成してもよい。  Such a protective layer 8 made of Au or Ag is formed by PVD (Physical Vapor Deposition) methods such as sputtering, vacuum deposition, molecular beam epitaxy (MBE), ion plating, and laser deposition. In some cases, it may be formed by using a thin film forming method such as a CVD (Chemical Vapor Deposition) method such as a thermal CVD method, a plasma CVD method, a photo CVD method, or a paste method. It may be formed.

このような本発明の光半導体用基板3は、光半導体を接合することにより半導体レーザ素子として用いられる。光半導体用基板3と光半導体との接合は、はんだ層7の溶融温度以上、例えば250℃以上、400℃以下で、10秒以上、5分以下程度の熱処理を行うことが好ましい。本発明の光半導体用基板3は、特に高出力タイプの光半導体を接合するために好適に用いられる。高出力タイプの光半導体を接合した場合、その使用時に光半導体の端面での光密度が過大になるために多量の熱が生じやすく、光半導体に過大な応力がかかりやすい。この応力は光半導体に結晶欠陥を発生させ寿命を短くする。このため本発明の光半導体用基板3はこのような高出力タイプの光半導体を接合することで、従来に比べ寿命を大きく延ばすことが可能となる。  Such an optical semiconductor substrate 3 of the present invention is used as a semiconductor laser element by bonding an optical semiconductor. The optical semiconductor substrate 3 and the optical semiconductor are preferably joined at a temperature higher than the melting temperature of the solder layer 7, for example, 250 ° C. or higher and 400 ° C. or lower for 10 seconds or longer and 5 minutes or shorter. The substrate 3 for optical semiconductors of the present invention is suitably used particularly for bonding high-output type optical semiconductors. When a high-output type optical semiconductor is bonded, the light density at the end face of the optical semiconductor becomes excessive during use, so that a large amount of heat is likely to be generated, and excessive stress is easily applied to the optical semiconductor. This stress causes crystal defects in the optical semiconductor and shortens the lifetime. For this reason, the optical semiconductor substrate 3 of the present invention can greatly extend the life compared to the prior art by bonding such a high output type optical semiconductor.

次に、本発明を実施例を参照してさらに詳細に説明する。  The present invention will now be described in more detail with reference to examples.

縦1.0mm、横1.0mm、厚さ0.2mmの窒化アルミニウム基板上に、真空蒸着法を用いてTi、Pt、Auの膜を順に形成して全体で厚さ0.6μmの金属層とし、この金属層上にSn単体またはSnおよびAuからなるはんだ層を形成し、さらにこのはんだ層上に真空蒸着法を用いて保護層としてのAu層を形成して光半導体用基板とした。  A Ti, Pt, Au film is sequentially formed on an aluminum nitride substrate having a length of 1.0 mm, a width of 1.0 mm, and a thickness of 0.2 mm by using a vacuum evaporation method to form a metal layer having a thickness of 0.6 μm as a whole. A solder layer made of Sn alone or Sn and Au was formed on the metal layer, and an Au layer as a protective layer was further formed on the solder layer using a vacuum deposition method to obtain an optical semiconductor substrate.

なお、表1に示すように、光半導体用基板ははんだ層のAu−Sn組成を変化させると共に、はんだ層上に形成するAu層の厚さを0.008〜1.2の範囲で変化させて複数種類を製造した。  As shown in Table 1, the optical semiconductor substrate changes the Au—Sn composition of the solder layer and changes the thickness of the Au layer formed on the solder layer in the range of 0.008 to 1.2. Several types were manufactured.

また、窒化アルミニウム基板の熱伝導率の違いによる影響を調べるために、はんだ層の組成がAu10重量%、Sn90重量%のものについて、窒化アルミニウム基板の熱伝導率を70、170、200、250(W/m・K)と変えて同様の実験を行った。  Further, in order to investigate the influence of the difference in thermal conductivity of the aluminum nitride substrate, the thermal conductivity of the aluminum nitride substrate is 70, 170, 200, 250 (with the solder layer composition of Au 10 wt% and Sn 90 wt%). W / m · K) and the same experiment was conducted.

さらに、はんだ層の厚さの違いによる影響を調べるために、はんだ層の組成がAu10重量%、Sn90重量%、窒化アルミニウム基板の熱伝導率が200(W/m・K)、Au層の厚さが0.1μmのものについて、はんだ層の厚さを1μm〜6μmの範囲で変化させて実験を行った。  Furthermore, in order to investigate the influence of the difference in the thickness of the solder layer, the composition of the solder layer is 10 wt% Au, 90 wt% Sn, the thermal conductivity of the aluminum nitride substrate is 200 (W / m · K), the thickness of the Au layer An experiment was conducted with a thickness of 0.1 μm by changing the thickness of the solder layer in the range of 1 μm to 6 μm.

また、保護層としてのAg層の有効性を調べるために、はんだ層の組成がAu10重量%、Sn90重量%、窒化アルミニウム基板の熱伝導率が200(W/m・K)、はんだ層の厚さが3μmのものについて、保護層としてのAg層の厚さを変えて実験を行った。  In order to examine the effectiveness of the Ag layer as a protective layer, the composition of the solder layer is Au 10 wt%, Sn 90 wt%, the thermal conductivity of the aluminum nitride substrate is 200 (W / m · K), the thickness of the solder layer An experiment was conducted with a thickness of 3 μm by changing the thickness of the Ag layer as the protective layer.

なお表1中、「*」がついているものは、本発明の範囲内となるものであり、はんだ層におけるSn含有量が50重量%以上、Au層またはAg層の厚さが0.01μm以上、1μm以下のものである。  In Table 1, those marked with “*” are within the scope of the present invention, the Sn content in the solder layer is 50% by weight or more, and the thickness of the Au layer or Ag layer is 0.01 μm or more. 1 μm or less.

次に、この光半導体用基板上に縦1.0mm、横1.0mm、厚さ0.2mmのレーザダイオードを配置して400℃で1分間の熱処理を行うことにより接合し、半導体レーザ素子を作製した。そして、はんだ層の組成およびはんだ層上に形成された保護層としてのAu層またはAg層の厚さ等の効果を調べるため、熱抵抗比およびIopライフを測定した。表1に、熱抵抗比およびIopライフの測定結果を示す。  Next, a laser diode having a length of 1.0 mm, a width of 1.0 mm, and a thickness of 0.2 mm is placed on the optical semiconductor substrate and bonded by performing a heat treatment at 400 ° C. for 1 minute. Produced. Then, in order to examine effects such as the composition of the solder layer and the thickness of the Au layer or Ag layer as a protective layer formed on the solder layer, the thermal resistance ratio and the Iop life were measured. Table 1 shows the measurement results of the thermal resistance ratio and the Iop life.

なお、熱抵抗比は、パルス時間を1sとした際の熱抵抗を測定し、結果ははんだ層の組成がAu20重量%、Sn80重量%、Au層の厚さが0.1μmの場合の熱抵抗を基準である100%とし、これに対する比率(%)で表した。熱抵抗比ははんだ付け性の評価に関わり、熱抵抗比が高いものははんだ層表面に酸化が発生している部分があり、またはんだ層に保護層としてのAu層またはAg層が完全に溶け込んでいない部分があることを表す。  The thermal resistance ratio was measured by measuring the thermal resistance when the pulse time was 1 s, and the result was the thermal resistance when the composition of the solder layer was 20 wt% Au, 80 wt% Sn, and the thickness of the Au layer was 0.1 μm. Was expressed as a ratio (%). The thermal resistance ratio is related to the evaluation of solderability, and those with a high thermal resistance ratio have a portion where oxidation occurs on the surface of the solder layer, or the Au layer or Ag layer as a protective layer completely dissolves in the solder layer. Indicates that there is a part that is not.

また、Iopライフの測定は、半導体レーザ素子を80℃の恒温槽に入れた状態で30mAの電流を流して発光させ、その後発光しなくなるまでの時間を測定した。Iopライフの長いものほど、レーザダイオードに加わる応力が緩和され、またはんだ付けが良好に行われていることを表す。

Figure 2005036705
Figure 2005036705
Figure 2005036705
The Iop life was measured by emitting a current of 30 mA in a state where the semiconductor laser element was placed in a constant temperature bath at 80 ° C. to emit light, and then measuring the time until no light was emitted. The longer the Iop life, the more the stress applied to the laser diode is relaxed or the better the soldering.
Figure 2005036705
Figure 2005036705
Figure 2005036705

表1、2から明らかなように、はんだ層におけるSn含有量を50重量%以上、保護層としてのAu層の厚さを0.01μm以上、1μm以下としたものは、いずれもIopライフが1500時間を超え、レーザダイオードに加わる応力が緩和され、レーザダイオードにおける結晶欠陥の発生が抑制されていることが確認された。また、はんだ層におけるSn含有量を60重量%以上、さらには70重量%以上とすることで、Iopライフをより向上できることが確認された。  As is apparent from Tables 1 and 2, the Sn content in the solder layer is 50% by weight or more, and the thickness of the Au layer as the protective layer is 0.01 μm or more and 1 μm or less. It was confirmed that the stress applied to the laser diode was relaxed over time, and the generation of crystal defects in the laser diode was suppressed. Moreover, it was confirmed that the Iop life can be further improved by setting the Sn content in the solder layer to 60 wt% or more, and further to 70 wt% or more.

さらに、これらの中でも保護層としてのAu層の厚さが0.01μm以上、0.2μm以下であるものはIopライフが長くなり、また窒化アルミニウム基板として熱伝導率が80W/m・K以上、さらには190W/m・K以上のものを用いたものはIopライフがより一層長くなることが確認された。また、保護層としてAg層を用いた場合についても、Au層と同様の効果が得られることが確認された。  Furthermore, among these, the Au layer having a thickness of 0.01 μm or more and 0.2 μm or less as the protective layer has a long Iop life, and the aluminum nitride substrate has a thermal conductivity of 80 W / m · K or more, Furthermore, it was confirmed that those using 190 W / m · K or more have a longer Iop life. Further, it was confirmed that the same effect as that of the Au layer can be obtained when the Ag layer is used as the protective layer.

本発明は、光半導体を接合して半導体レーザ素子を製造する業務に適用できる。  The present invention can be applied to the business of manufacturing a semiconductor laser element by joining optical semiconductors.

Claims (4)

絶縁性セラミックス基板と、
前記絶縁性セラミックス基板上に設けられた金属層と、
前記金属層上に設けられ、Sn単体またはSnを50重量%以上含み残部が実質的にAuからなるはんだ層と、
前記はんだ層上に設けられ、厚さが0.01μm以上、1μm以下であるAuまたはAgからなる保護層と
を具備する光半導体用基板。
An insulating ceramic substrate;
A metal layer provided on the insulating ceramic substrate;
A solder layer which is provided on the metal layer and contains Sn alone or Sn in an amount of 50% by weight or more, with the balance being substantially Au;
An optical semiconductor substrate comprising: a protective layer made of Au or Ag having a thickness of 0.01 μm or more and 1 μm or less provided on the solder layer.
請求項1記載の光半導体用基板において、
前記はんだ層の厚さが2μm以上、5μm以下である光半導体用基板。
The optical semiconductor substrate according to claim 1,
An optical semiconductor substrate, wherein the solder layer has a thickness of 2 μm or more and 5 μm or less.
請求項1記載の光半導体用基板において、
前記絶縁性セラミックス基板が、窒化アルミニウム、窒化珪素、炭化珪素、酸化ベリリウムおよびダイヤモンドの中から選択される1種を主成分とするものである光半導体用基板。
The optical semiconductor substrate according to claim 1,
A substrate for an optical semiconductor, wherein the insulating ceramic substrate is mainly composed of one selected from aluminum nitride, silicon nitride, silicon carbide, beryllium oxide and diamond.
請求項3記載の光半導体用基板において、
前記絶縁性セラミックス基板の熱伝導率が80W/m・K以上である光半導体用基板。
The substrate for optical semiconductors according to claim 3,
An optical semiconductor substrate, wherein the insulating ceramic substrate has a thermal conductivity of 80 W / m · K or more.
JP2005514546A 2003-09-22 2004-09-21 Optical semiconductor substrate Pending JPWO2005036705A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003329563 2003-09-22
JP2003329563 2003-09-22
PCT/JP2004/013766 WO2005036705A1 (en) 2003-09-22 2004-09-21 Substrate for optical semiconductor

Publications (1)

Publication Number Publication Date
JPWO2005036705A1 true JPWO2005036705A1 (en) 2006-12-28

Family

ID=34430927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514546A Pending JPWO2005036705A1 (en) 2003-09-22 2004-09-21 Optical semiconductor substrate

Country Status (5)

Country Link
US (2) US20060269698A1 (en)
JP (1) JPWO2005036705A1 (en)
KR (1) KR100781859B1 (en)
TW (1) TWI256756B (en)
WO (1) WO2005036705A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923922A1 (en) * 2006-11-15 2008-05-21 Lemnis Lighting IP GmbH Improved led lighting assembly
US7816155B2 (en) * 2007-07-06 2010-10-19 Jds Uniphase Corporation Mounted semiconductor device and a method for making the same
CN101465516B (en) * 2009-01-09 2010-12-01 西安炬光科技有限公司 High-power semiconductor laser and preparation method thereof
JP5846408B2 (en) * 2010-05-26 2016-01-20 東芝ライテック株式会社 Light emitting device and lighting device
CN102412361B (en) * 2010-09-21 2016-06-08 佳胜科技股份有限公司 Laminated heat dissipation substrate and electronic assembly structure using same
CN103166103A (en) * 2013-03-18 2013-06-19 中国工程物理研究院应用电子学研究所 Method for packaging hydroelectric insulation semiconductor laser array
KR102311677B1 (en) 2014-08-13 2021-10-12 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US10763639B2 (en) * 2018-02-12 2020-09-01 Lumentum Operations Llc Emitter-on-sub-mount device
CN114401933B (en) * 2019-08-15 2023-11-24 万腾荣公司 beryllium oxide base

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951048A (en) * 1995-08-09 1997-02-18 Kyocera Corp Package for housing optical semiconductor element
JPH1174620A (en) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd Semiconductor laser and laser light emitting apparatus employing it
JP2002373960A (en) * 2001-06-14 2002-12-26 Tokuyama Corp Element bonding substrate and its forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138777A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Submount for optical semiconductor element
JPH022646A (en) * 1988-06-15 1990-01-08 Matsushita Electric Ind Co Ltd Formation of electrode
JPH0888393A (en) * 1994-09-19 1996-04-02 Fujitsu Ltd Semiconductor photodetection device and its manufacture
JP3509809B2 (en) * 2002-04-30 2004-03-22 住友電気工業株式会社 Submount and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951048A (en) * 1995-08-09 1997-02-18 Kyocera Corp Package for housing optical semiconductor element
JPH1174620A (en) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd Semiconductor laser and laser light emitting apparatus employing it
JP2002373960A (en) * 2001-06-14 2002-12-26 Tokuyama Corp Element bonding substrate and its forming method

Also Published As

Publication number Publication date
WO2005036705A1 (en) 2005-04-21
TW200515659A (en) 2005-05-01
US20080298408A1 (en) 2008-12-04
US20060269698A1 (en) 2006-11-30
KR20050107450A (en) 2005-11-11
TWI256756B (en) 2006-06-11
KR100781859B1 (en) 2007-12-03

Similar Documents

Publication Publication Date Title
US20080298408A1 (en) Substrate for optical semiconductor
JP5139005B2 (en) Semiconductor light emitting device and semiconductor light emitting device
US7800126B2 (en) III-V group compound semiconductor light emitting device and manufacturing method thereof
KR101007164B1 (en) Semiconductor device
US6479325B2 (en) Method of stacking semiconductor laser devices in a sub-mount and heatsink
JP2007103814A (en) Nitride semiconductor light emitting device and its manufacturing method
JP2009076730A (en) Nitride semiconductor laser device
JP2006344743A (en) Semiconductor laser device
JP6020631B2 (en) Fluorescent light source device
JPWO2006061937A1 (en) Heat sink material, manufacturing method thereof, and semiconductor laser device
JPH09260539A (en) Sub-mounter and semiconductor device as well as manufacture thereof
JP2001230498A (en) Group iii nitride-base compound semiconductor laser
JP4969087B2 (en) Eutectic bonding light emitting device and manufacturing method thereof
JP2002299744A (en) Semiconductor laser assembly
JP2004349595A (en) Nitride semiconductor laser device and its manufacturing method
JP4036658B2 (en) Nitride-based compound semiconductor laser device and manufacturing method thereof
JPWO2008081566A1 (en) Electrode structure, semiconductor element, and manufacturing method thereof
JP4216011B2 (en) Nitride semiconductor laser device chip and laser device including the same
JP2002100826A (en) Submount material
JP2004221493A (en) Electrode structure for nitride semiconductor and method for manufacturing same
JP5886899B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JPS60157284A (en) Semiconductor device
JP2005050863A (en) Thermoelectric module
JP5563031B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JPH04278593A (en) Photoelectric device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928