JPWO2005033216A1 - Highly filled coated magnesium oxide powder and resin composition containing the powder - Google Patents

Highly filled coated magnesium oxide powder and resin composition containing the powder Download PDF

Info

Publication number
JPWO2005033216A1
JPWO2005033216A1 JP2005509330A JP2005509330A JPWO2005033216A1 JP WO2005033216 A1 JPWO2005033216 A1 JP WO2005033216A1 JP 2005509330 A JP2005509330 A JP 2005509330A JP 2005509330 A JP2005509330 A JP 2005509330A JP WO2005033216 A1 JPWO2005033216 A1 JP WO2005033216A1
Authority
JP
Japan
Prior art keywords
magnesium oxide
powder
oxide powder
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005509330A
Other languages
Japanese (ja)
Other versions
JP4237182B2 (en
Inventor
清川 敏夫
敏夫 清川
山元 香織
香織 山元
正明 國重
正明 國重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Publication of JPWO2005033216A1 publication Critical patent/JPWO2005033216A1/en
Application granted granted Critical
Publication of JP4237182B2 publication Critical patent/JP4237182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Abstract

耐湿性に優れ、かつ樹脂への充填材として用いるとき、充填性及び流動性に優れた被覆酸化マグネシウム粉末として、表面が複酸化物で被覆され、安息角が55度以下、かつタップ密度が1.65g/ml以上であることを特徴とする被覆酸化マグネシウム粉末が提供される。また、この粉末を含む樹脂組成物、並びにその樹脂組成物を用いた電子デバイスが提供される。When used as a filler in a resin with excellent moisture resistance, the coated magnesium oxide powder is excellent in fillability and fluidity, the surface is coated with a double oxide, the angle of repose is 55 degrees or less, and the tap density is 1 A coated magnesium oxide powder characterized in that it is greater than or equal to .65 g / ml is provided. Moreover, the resin composition containing this powder and the electronic device using the resin composition are provided.

Description

本発明は、耐湿性に優れ、かつ充填材として用いるとき、充填性に優れた被覆酸化マグネシウム粉末及び該被覆酸化マグネシウム粉末を含む流動性に優れた樹脂組成物に関する。  The present invention relates to a coated magnesium oxide powder excellent in moisture resistance and excellent in filling properties when used as a filler, and a resin composition excellent in fluidity containing the coated magnesium oxide powder.

電子デバイスは、積層体、プリント配線板、多層配線板等の電子部品により構成されている。電子部品には、通常、樹脂組成物がプリプレグ、スペーサー、封止剤、接着性シート等に用いられており、樹脂組成物には、様々な性能又は特性が要求されている。例えば、最近の傾向として、電子デバイスにおける大容量パワー素子搭載、高密度な実装が見られ、それに伴い樹脂組成物及びその適用品に対し従来よりも更に優れた放熱性、耐湿性が要求されている。
半導体封止用の樹脂組成物に用いるフィラーは、従来、二酸化ケイ素(以下、シリカという)、酸化アルミニウム(以下、アルミナという)が用いられてきた。しかし、シリカの熱伝導性は低く、高集積化、高電力化、高速化等による発熱量の増大に対応する放熱が充分ではないため、半導体の安定動作等に問題が生じていた。一方、シリカより熱伝導性が高いアルミナを使用すると、放熱性は改善されるが、アルミナは硬度が高いために、混練機や成型機及び金型の摩耗が激しくなるという問題点があった。
そこで、シリカに比べて熱伝導率が1桁高く、アルミナと約同等の熱伝導率を有する酸化マグネシウムが半導体封止用樹脂フィラーの材料として検討されている。しかし、酸化マグネシウム粉末は、シリカ粉末に比べ、吸湿性が大きい。そのため、半導体の封止用樹脂フィラーとして酸化マグネシウム粉末を用いた場合、吸湿した水と酸化マグネシウムが水和して、フィラーの体積膨張によるクラックの発生、熱伝導性の低下等の問題が発生していた。このため半導体封止用樹脂フィラーとして用いる酸化マグネシウム粉末に耐湿性を付与することが、半導体の長期的な安定動作を保証する上で大きな課題となっていた。
酸化マグネシウム粉末の耐湿性を改善させる方法として、特開2003−34522号公報及び特開2003−34523号公報には、アルミニウム塩又はケイ素化合物と酸化マグネシウム粉末を混合し、固体分をろ別し、乾燥させて、焼成することにより、該酸化マグネシウム粉末の表面を、アルミニウム又はケイ素とマグネシウムの複酸化物を含む被覆層で被覆することを特徴とする被覆酸化マグネシウム粉末の製造方法が開示されている。
これらの方法により得られた被覆酸化マグネシウム粉末は耐湿性が改善されたものの、粉末粒子は角張った形状をしているため、樹脂への充填性が低く、さらに得られた樹脂組成物の流動性が低いという問題がある。
一方、特許第2590491号公報には、酸化マグネシウム粉末に対し、アルミナ及び/又はシリカ粒子を添加し、これをスプレードライヤーを用いて粒状化して球形顆粒物を得たのち、かかる粒状化状態を崩すことなく、前記造粒物の少なくとも一部を溶融し、次いでこれを急速に冷却する酸化マグネシウム系物質の製造方法も開示されている。
この方法は、酸化マグネシウム粒子の耐湿性を向上させることを目的としているが、スプレードライヤーを用いて粒状化するため、得られた球形顆粒物は粒子の集合体すなわち多孔質体であり、樹脂へ高充填することは困難であると予測できる。
本発明の目的は、上記の課題を解消し、耐湿性に優れ、かつ充填材として用いるとき、充填性に優れ、樹脂へ高充填することができる被覆酸化マグネシウム粉末を提供することである。本発明の他の目的は、この被覆酸化マグネシウム粉末を含む、耐湿性、熱伝導性及び流動性に優れた樹脂組成物、ならびにこの樹脂組成物を用いた電子デバイスを提供することである。
The electronic device is composed of electronic components such as a laminate, a printed wiring board, and a multilayer wiring board. In electronic parts, resin compositions are usually used for prepregs, spacers, sealants, adhesive sheets, and the like, and various performances or characteristics are required for resin compositions. For example, as a recent trend, high-capacity power element mounting and high-density mounting are seen in electronic devices, and accordingly, heat dissipation and moisture resistance superior to conventional ones are required for resin compositions and applied products. Yes.
Conventionally, silicon dioxide (hereinafter referred to as silica) and aluminum oxide (hereinafter referred to as alumina) have been used as fillers used in resin compositions for semiconductor encapsulation. However, the thermal conductivity of silica is low, and heat dissipation corresponding to an increase in the amount of heat generated due to high integration, high power, high speed, etc. is insufficient, causing problems in stable operation of the semiconductor. On the other hand, when alumina having higher thermal conductivity than silica is used, the heat dissipation is improved, but since alumina has a high hardness, there has been a problem that the wear of the kneader, the molding machine and the mold becomes severe.
Therefore, magnesium oxide having a thermal conductivity that is an order of magnitude higher than that of silica and about the same thermal conductivity as alumina has been studied as a material for resin fillers for semiconductor encapsulation. However, the magnesium oxide powder has higher hygroscopicity than the silica powder. For this reason, when magnesium oxide powder is used as a resin filler for semiconductor encapsulation, the absorbed water and magnesium oxide are hydrated, causing problems such as cracks due to volume expansion of the filler and reduced thermal conductivity. It was. For this reason, providing moisture resistance to the magnesium oxide powder used as the resin filler for semiconductor encapsulation has been a major issue in ensuring long-term stable operation of the semiconductor.
As a method for improving the moisture resistance of magnesium oxide powder, Japanese Patent Application Laid-Open No. 2003-34522 and Japanese Patent Application Laid-Open No. 2003-34523 include mixing an aluminum salt or a silicon compound and magnesium oxide powder, and filtering off a solid content. A method for producing a coated magnesium oxide powder is disclosed, wherein the surface of the magnesium oxide powder is coated with a coating layer containing aluminum or a double oxide of silicon and magnesium by drying and firing. .
Although the coated magnesium oxide powder obtained by these methods has improved moisture resistance, since the powder particles have an angular shape, the resin filling property is low, and the fluidity of the resulting resin composition There is a problem that is low.
On the other hand, in Japanese Patent No. 2590491, alumina particles and / or silica particles are added to a magnesium oxide powder and granulated using a spray dryer to obtain spherical granules, and then the granulated state is destroyed. There is also disclosed a method for producing a magnesium oxide-based material in which at least a part of the granulated material is melted and then rapidly cooled.
This method is intended to improve the moisture resistance of the magnesium oxide particles. However, since it is granulated using a spray dryer, the resulting spherical granule is an aggregate of particles, that is, a porous body, and is highly resistant to resin. It can be expected to be difficult to fill.
An object of the present invention is to provide a coated magnesium oxide powder that solves the above-mentioned problems, has excellent moisture resistance, has excellent filling properties when used as a filler, and can be highly filled into a resin. Another object of the present invention is to provide a resin composition excellent in moisture resistance, thermal conductivity and fluidity, containing the coated magnesium oxide powder, and an electronic device using the resin composition.

本発明者は、上記目的を達成すべく、種々検討を重ねる中で、粉体の流動性を示すパラメータとして安息角、並びに、充填性を示すパラメータとしてタップ密度に着目し、それぞれの値が特定の範囲内にあるときに、流動性及び充填性に優れた粉末を得ることができ、さらにその粉末を使用して流動性に優れた樹脂組成物を得ることができることを見出した。
すなわち、本発明によれば、表面が複酸化物で被覆され、安息角が55度以下、かつタップ密度が1.65g/ml以上であることを特徴とする被覆酸化マグネシウム粉末が提供される。
また、本発明によれば、充填材として、上記の被覆酸化マグネシウム粉末を含む樹脂組成物、及びその樹脂組成物を使用した電子デバイスが提供される。
In order to achieve the above object, the present inventor has made various studies, paying attention to the angle of repose as the parameter indicating the fluidity of the powder and the tap density as the parameter indicating the filling property, and specifying each value It was found that a powder excellent in fluidity and filling property can be obtained when the amount is within the range of the above, and a resin composition excellent in fluidity can be obtained using the powder.
That is, according to the present invention, there is provided a coated magnesium oxide powder having a surface coated with a double oxide, an angle of repose of 55 degrees or less, and a tap density of 1.65 g / ml or more.
Moreover, according to this invention, the electronic device using the resin composition containing said coating magnesium oxide powder as a filler and the resin composition is provided.

被覆酸化マグネシウム粉末
本発明における被覆酸化マグネシウム粉末は、その表面が複酸化物により被覆され、安息角が55度以下、かつタップ密度が1.65g/ml以上であるものである。
ここで、安息角は、R.L.Carrが提唱する粉体の流動性を総合的に評価する指標、いわゆるCarrの流動性指数を算出するための特性値の一つであり、この安息角により粉体の流動性を評価することができる。具体的には、粉体を漏斗を使用して水平な面に静かに落下させた時に形成される円錐体の母線と水平面のなす角度をいう。
この安息角を55度以下とすることにより、粉末の流動性が良好となり、その結果、この粉末を含有する樹脂組成物の流動性を向上することができる。この安息角は、50度以下であることが好ましい。
タップ密度は、粉末の充填性を評価する指標であり、粉末試料を体積が既知の容器に入れ、一定の高さから規定の回数タッピングした時の単位体積当たりの粉体質量をいう。このタッピング密度は、1.65g/ml以上であり、1.80g/ml以上であることがより好ましい。
本発明の被覆酸化マグネシウム粉末はその表面が複酸化物で被覆されている。この酸化マグネシウム粉末の表面を被覆する複酸化物は、アルミニウム、鉄、ケイ素及びチタンからなる群から選択される1以上の元素とマグネシウムとを含むものであることが好ましい。この複酸化物により表面を被覆することにより、酸化マグネシウム粉末の耐湿性が大幅に向上する。
複酸化物として、フォルステライト(MgSiO)、スピネル(AlMgO)、マグネシウムフェライト(FeMgO)、チタン酸マグネシウム(MgTiO)などをあげることができる。
本発明で用いる複酸化物の含有量、すなわち、1個の粒子に対する表面の複酸化物の割合は、5〜50mass%が好ましく、10〜40mass%がより好ましい。複酸化物の含有量が上記の範囲にあると、酸化マグネシウム粉末の表面が複酸化物により完全に被覆されて耐湿性が大幅に向上し、さらには、充填後の樹脂組成物の熱伝導率も高く、熱伝導性フィラーとして十分な効果を発揮することができる。
本発明の被覆酸化マグネシウム粉末の平均粒径は、5×10−6〜500×10−6mが好ましく、10×10−6〜100×10−mがより好ましい。またBET比表面積は、5.0×10/kg以下が好ましく、1×10/kg以下がより好ましい。
本発明の安息角が55度以下、かつタップ密度が1.65g/ml以上の被覆酸化マグネシウム粉末は、酸化マグネシウム粉末の表面に複酸化物を形成する化合物を存在させた状態で、高温で溶融することにより、被覆酸化マグネシウム粉末を球状化することにより製造することができる。例えば粉末を高温火炎中を通過させて溶融し、表面張力により球状化する。
また、酸化マグネシウム粉末の表面に、複酸化物を形成する化合物を存在させた状態で、被覆材の融点以下の焼成温度で焼成することにより製造することも可能である。この方法により得られた被覆酸化マグネシウム粉末は必ずしも球状であるとは限らないため、異なる粒径の粉末を混合することにより本発明の流動性指数及び吸油量を同時に満足する粉末を製造する。
複酸化物を形成するために使用される化合物は、アルミニウム化合物、鉄化合物、ケイ素化合物及びチタン化合物からなる群から選択される1以上の化合物であることが好ましい。化合物の形態は限定されないが、硝酸塩、硫酸塩、塩化物、オキシ硝酸塩、オキシ硫酸塩、オキシ塩化物、水酸化物、酸化物が用いられる。
酸化マグネシウム粉末に対するこれらの化合物の配合量は、最終的に得られる被覆酸化マグネシウム粉末の複酸化物の含有量が5〜50mass%となるように決定することが好ましい。
本発明で用いる酸化マグネシウム粉末の結晶子径は、50×10−9m以上であることが好ましい。結晶子径が50×10−9m以上の酸化マグネシウム粉末は、より微細な粉末に比して反応性が低く、酸化マグネシウム粉末の表面にケイ素化合物等を均一に吸着させることができるため、酸化マグネシウム粉末の表面を被覆する複酸化物が均一になり、耐水性が向上する。
本発明で使用する結晶子径は、X線回折法を用いて、Scherrer式で算出した値である。一般に、一つの粒子は複数の単結晶で構成された多結晶体であり、結晶子径は多結晶体中の単結晶の大きさの平均値を示している。
酸化マグネシウム粉末の純度は、特に限定されず、用途に応じて決定することが好ましい。例えば、電子部品の絶縁特性を満足するためには、純度90%以上であることが好ましく、純度95%以上であることがより好ましい。なお、本発明の特性を有する酸化マグネシウム粉末は、公知の方法、例えば、電融法、焼結法等を用いて製造することができる。
被覆酸化マグネシウム粉末を含む樹脂組成物
上記の製造方法により、耐湿性、熱伝導性を維持しながら、樹脂への高い充填性を有する被覆酸化マグネシウム粉末を低コストかつ容易に得ることができる。また、このようにして得られた被覆酸化マグネシウム粉末を充填した樹脂組成物は、良好な流動性を有し、成型性が改善される。
本発明の樹脂組成物は、樹脂に上記の被覆酸化マグネシウム粉末を含有させて得られたものである。
その場合、本発明の被覆酸化マグネシウム粉末は、必要に応じてシラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤で表面処理することができ、さらに充填性を向上することができる。
シラン系カップリング剤としては、ビニルトリクロルシラン、ビニルトリアルコキシシラン、グリシドキシプロピルトリアルコキシシラン、メタクロキシプロピルメチルジアルコキシシラン等があげられる。
チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート等があげられる。
本発明の樹脂組成物に用いる樹脂は、特に限定されず、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂やポリカーボネート樹脂、アクリル樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂等の熱可塑性樹脂等があげられる。これらのうち、エポキシ樹脂、シリコーン樹脂、ポリフェニレンサルファイド樹脂が好ましい。また、必要に応じて、硬化剤、硬化促進剤を配合することができる。
エポキシ樹脂としては、ビスフェノールAエポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールFエポキシ樹脂、臭素化エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、グリシジルエステル系樹脂、グリシジルアミン系樹脂、複素環式エポキシ樹脂等があげられる。
フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等があげられる。
シリコーン樹脂としては、ミラブル型シリコーンゴム、縮合型液状シリコーンゴム、付加型液状シリコーンゴム、UV硬化型シリコーンゴム等があげられ、付加型液状シリコーンゴムが好ましい。また、1液型及び2液型のシリコーンゴムのいずれでもよいが、2液型のシリコーンゴムが好ましい。
本発明の樹脂組成物には、上記の被覆酸化マグネシウム粉末の他に、充填材を配合することができる。充填材としては、特に限定されるものではなく、例えば、溶融シリカ、結晶シリカ等があげられる。また必要に応じて離型剤、難燃剤、着色剤、低応力付与剤等を適宜配合することができる。
本発明の電子デバイスは、上記樹脂組成物をその一部に用いたもので、優れた放熱性、耐湿性を有する。電子デバイスとしては、例えば、樹脂回路基板、金属ベース回路基板、金属張積層板、内層回路入り金属張積層板等があげられる。
本発明の樹脂組成物の上記の電子デバイスに対する用途としては、半導体封止剤、接着剤もしくは接着性シート、又は放熱シート、放熱スペーサーもしくは放熱グリース等があげられる。
本発明の樹脂組成物を用いて上記の基板等を製造するには、紙基材やガラス基材を本発明の樹脂組成物に浸漬し、加熱乾燥させてBステージまで硬化させて、プリプレグ(レジンクロス、レジンペーパー等)を製造する。
また、このプリプレグを用いて、樹脂回路基板、金属張積層板、内層回路入り金属張積層板等を製造することができる。例えば、金属張積層板は、プリプレグを基板厚さに応じて積み重ね、金属箔を置き、金型に挟みプレス機の熱盤間に挿入し、所定の加熱・加圧を行い積層板を成形し、更に成形した積層板の四辺を切断し、外観検査を行って製造する。
また、本発明の樹脂組成物を他の基材材料と混合して、ガラスエポキシ、テフロンエポキシ等のような複合材料の形態で、基材として用いることもできる。
本発明の樹脂組成物は、封止材として用いることができる。封止用樹脂とは、半導体チップを機械的、熱的ストレス、湿度などの外的要因から保護するためのパッケージングに用いられる樹脂材料のことであり、本発明の樹脂組成物により形成されたパッケージの性能は、樹脂硬化物の熱伝導率及び耐候性により示される。
本発明の樹脂組成物は、接着剤として用いることができる。接着剤は、二つの物体を張り合わせるために使用される物質をいい、被接着体の材質は特に限定されるものではない。接着剤は、被接着体の表面に塗布又は係合されたとき、一時的に流動性を付与され、接着後は流動性を失って固化するものである。例えば、溶剤接着剤、圧感接着剤、接着性シートのような熱感接着剤、反応接着剤があげられる。本発明の樹脂組成物を接着剤として用いた場合における接着後の熱伝導率及び耐候性は、樹脂硬化物の熱伝導率及び耐候性により示される。
また、本発明の樹脂組成物を接着剤として用い、金属ベース回路基板を製造することができる。金属ベース回路基板は、接着剤を金属板上に塗布し、接着剤がBステージ状態にあるときに金属箔を積層して、所定の加熱・加圧を行い、一体化して製造する。
また、本発明の樹脂組成物は、放熱材として用いることができる。放熱材としては、例えば、放熱シート、放熱スペーサー、放熱グリース等があげられる。放熱シートは、発熱性電子部品、電子デバイスから発生した熱を除去するための電気絶縁性の熱伝導性シートであり、シリコーンゴムに熱伝導性フィラーを充填して製造され、主として放熱フィン又は金属板に取り付けて用いられる。放熱グリースは、シリコーンゴムの代わりにシリコーンオイルを用いた以外は放熱シートと同じである。放熱スペーサーは、発熱性電子部品、電子デバイスから発生した熱を電子機器のケース等に直接伝熱するための、発熱性電子部品、電子デバイスとケースの間のスペースを埋める厚みを有したシリコーン固化物である。
Coated magnesium oxide powder The coated magnesium oxide powder in the present invention has a surface coated with a double oxide, an angle of repose of 55 degrees or less, and a tap density of 1.65 g / ml or more.
Here, the angle of repose is R.I. L. It is one of the characteristic values for calculating the flowability index of the powder proposed by Carr, that is, the so-called Carr's flowability index, and the flowability of the powder can be evaluated by the angle of repose. it can. Specifically, it refers to the angle formed between the generatrix and the horizontal plane formed when the powder is gently dropped onto a horizontal surface using a funnel.
By setting the angle of repose to 55 degrees or less, the fluidity of the powder is improved, and as a result, the fluidity of the resin composition containing the powder can be improved. The angle of repose is preferably 50 degrees or less.
The tap density is an index for evaluating the filling property of the powder, and means the powder mass per unit volume when a powder sample is put in a container having a known volume and tapped a predetermined number of times from a certain height. This tapping density is 1.65 g / ml or more, and more preferably 1.80 g / ml or more.
The surface of the coated magnesium oxide powder of the present invention is coated with a double oxide. The double oxide covering the surface of the magnesium oxide powder preferably contains one or more elements selected from the group consisting of aluminum, iron, silicon and titanium and magnesium. By covering the surface with this double oxide, the moisture resistance of the magnesium oxide powder is greatly improved.
Examples of the double oxide include forsterite (Mg 2 SiO 4 ), spinel (Al 2 MgO 4 ), magnesium ferrite (Fe 2 MgO 4 ), magnesium titanate (MgTiO 3 ), and the like.
The content of the double oxide used in the present invention, that is, the ratio of the surface double oxide to one particle is preferably 5 to 50 mass%, more preferably 10 to 40 mass%. When the content of the double oxide is in the above range, the surface of the magnesium oxide powder is completely covered with the double oxide, and the moisture resistance is greatly improved. Furthermore, the thermal conductivity of the resin composition after filling is further improved. In other words, it can exhibit a sufficient effect as a thermally conductive filler.
The average particle diameter of the coated magnesium oxide powder of the present invention is preferably 5 × 10 -6 ~500 × 10 -6 m, more preferably 10 × 10 -6 ~100 × 10- 6 m. Further, the BET specific surface area is preferably 5.0 × 10 3 m 2 / kg or less, and more preferably 1 × 10 3 m 2 / kg or less.
The coated magnesium oxide powder having an angle of repose of 55 degrees or less and a tap density of 1.65 g / ml or more according to the present invention is melted at a high temperature in the presence of a compound that forms a double oxide on the surface of the magnesium oxide powder. Thus, the coated magnesium oxide powder can be produced by spheronizing. For example, the powder is melted by passing through a high-temperature flame and spheroidized by surface tension.
Moreover, it is also possible to manufacture by firing at a firing temperature not higher than the melting point of the coating material in a state where a compound that forms a double oxide is present on the surface of the magnesium oxide powder. Since the coated magnesium oxide powder obtained by this method is not necessarily spherical, a powder satisfying the fluidity index and the oil absorption amount of the present invention is produced by mixing powders having different particle sizes.
The compound used to form the double oxide is preferably one or more compounds selected from the group consisting of aluminum compounds, iron compounds, silicon compounds and titanium compounds. The form of the compound is not limited, but nitrate, sulfate, chloride, oxynitrate, oxysulfate, oxychloride, hydroxide, and oxide are used.
The compounding amount of these compounds with respect to the magnesium oxide powder is preferably determined such that the content of the double oxide in the finally obtained coated magnesium oxide powder is 5 to 50 mass%.
The crystallite diameter of the magnesium oxide powder used in the present invention is preferably 50 × 10 −9 m or more. Magnesium oxide powder having a crystallite size of 50 × 10 −9 m or more is less reactive than finer powder and can uniformly adsorb silicon compounds and the like on the surface of magnesium oxide powder. The double oxide covering the surface of the magnesium powder becomes uniform, and the water resistance is improved.
The crystallite diameter used in the present invention is a value calculated by the Scherrer equation using the X-ray diffraction method. In general, one particle is a polycrystal composed of a plurality of single crystals, and the crystallite diameter indicates an average value of the sizes of the single crystals in the polycrystal.
The purity of the magnesium oxide powder is not particularly limited, and is preferably determined according to the application. For example, in order to satisfy the insulation characteristics of the electronic component, the purity is preferably 90% or more, and more preferably 95% or more. The magnesium oxide powder having the characteristics of the present invention can be produced using a known method such as an electrofusion method or a sintering method.
Resin Composition Containing Coated Magnesium Oxide Powder By the above production method, a coated magnesium oxide powder having a high filling property to the resin can be easily obtained at low cost while maintaining moisture resistance and thermal conductivity. Moreover, the resin composition filled with the coated magnesium oxide powder thus obtained has good fluidity and improved moldability.
The resin composition of the present invention is obtained by containing the above-mentioned coated magnesium oxide powder in a resin.
In that case, the coated magnesium oxide powder of the present invention can be surface-treated with a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent, if necessary, to further improve the filling property. it can.
Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrialkoxysilane, glycidoxypropyltrialkoxysilane, methacryloxypropylmethyl dialkoxysilane, and the like.
Examples of titanate coupling agents include isopropyl triisostearoyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, and the like.
The resin used in the resin composition of the present invention is not particularly limited, and is a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, or a silicone resin, a polycarbonate resin, an acrylic resin, a polyphenylene sulfide resin, a fluorine resin, or the like. And other thermoplastic resins. Of these, epoxy resins, silicone resins, and polyphenylene sulfide resins are preferred. Moreover, a hardening | curing agent and a hardening accelerator can be mix | blended as needed.
Examples of the epoxy resin include bisphenol A epoxy resin, novolak type epoxy resin, bisphenol F epoxy resin, brominated epoxy resin, orthocresol novolak type epoxy resin, glycidyl ester resin, glycidyl amine resin, heterocyclic epoxy resin, and the like. It is done.
Examples of the phenol resin include novolac type phenol resins and resol type phenol resins.
Examples of the silicone resin include millable type silicone rubber, condensation type liquid silicone rubber, addition type liquid silicone rubber, UV curable type silicone rubber, and the like, and addition type liquid silicone rubber is preferable. Either one-pack type or two-pack type silicone rubber may be used, but two-pack type silicone rubber is preferred.
In addition to the above-mentioned coated magnesium oxide powder, a filler can be blended in the resin composition of the present invention. The filler is not particularly limited, and examples thereof include fused silica and crystalline silica. Moreover, a mold release agent, a flame retardant, a coloring agent, a low stress imparting agent, etc. can be suitably mix | blended as needed.
The electronic device of the present invention uses the above resin composition as a part thereof, and has excellent heat dissipation and moisture resistance. Examples of the electronic device include a resin circuit board, a metal base circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, and the like.
Examples of the use of the resin composition of the present invention for the above-described electronic device include a semiconductor sealing agent, an adhesive or an adhesive sheet, a heat dissipation sheet, a heat dissipation spacer, or a heat dissipation grease.
In order to produce the above-mentioned substrate or the like using the resin composition of the present invention, a paper base material or a glass base material is immersed in the resin composition of the present invention, dried by heating and cured to the B stage, and a prepreg ( Resin cloth, resin paper, etc.).
Moreover, a resin circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, etc. can be produced using this prepreg. For example, for metal-clad laminates, prepregs are stacked according to the substrate thickness, metal foil is placed, sandwiched between molds, inserted between the hot plates of a press machine, and the laminates are formed by predetermined heating and pressing. Further, the four sides of the formed laminated board are cut and manufactured by performing an appearance inspection.
In addition, the resin composition of the present invention can be mixed with other base material and used as a base material in the form of a composite material such as glass epoxy and Teflon epoxy.
The resin composition of the present invention can be used as a sealing material. The sealing resin is a resin material used for packaging to protect a semiconductor chip from external factors such as mechanical, thermal stress, humidity, etc., and is formed by the resin composition of the present invention. The performance of the package is indicated by the thermal conductivity and weather resistance of the cured resin.
The resin composition of the present invention can be used as an adhesive. The adhesive refers to a substance used for bonding two objects together, and the material of the adherend is not particularly limited. The adhesive is temporarily given fluidity when applied or engaged with the surface of the adherend, and loses fluidity and solidifies after adhesion. Examples thereof include solvent adhesives, pressure sensitive adhesives, heat sensitive adhesives such as adhesive sheets, and reactive adhesives. When the resin composition of the present invention is used as an adhesive, the thermal conductivity and weather resistance after adhesion are indicated by the thermal conductivity and weather resistance of the resin cured product.
Moreover, a metal base circuit board can be manufactured using the resin composition of this invention as an adhesive agent. The metal base circuit board is manufactured by applying an adhesive on a metal plate, laminating a metal foil when the adhesive is in a B-stage state, performing predetermined heating and pressing, and integrating them.
Moreover, the resin composition of this invention can be used as a heat dissipation material. Examples of the heat radiating material include a heat radiating sheet, a heat radiating spacer, and a heat radiating grease. A heat dissipation sheet is an electrically insulating heat conductive sheet for removing heat generated from heat-generating electronic components and electronic devices, and is manufactured by filling a silicone rubber with a heat conductive filler. Used by attaching to a plate. The heat dissipating grease is the same as the heat dissipating sheet except that silicone oil is used instead of silicone rubber. The heat dissipation spacer is a solidified silicone with a thickness that fills the space between the exothermic electronic component and the electronic device to transfer the heat generated from the exothermic electronic component and electronic device directly to the case of the electronic device. It is a thing.

本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
1.被覆酸化マグネシウム粉末
合成例1
結晶子径が58.3×10−9mの単結晶の集合体である酸化マグネシウム粉末(タテホ化学工業株式会社製KMAO−H)を、衝撃式粉砕機を用いて、粒径100×10−6m以下に粉砕した。ヒュームドシリカ(純度99.9%以上、比表面積200±20m/g)を、酸化マグネシウムに対して混合比が10mass%になるように湿式添加し、400〜500rpmで600s撹拌混合した。撹拌混合後、ろ過、脱水して得られたケーキを、乾燥機を用いて、423Kで一晩乾燥した。乾燥したケーキをサンプルミルで解砕して、原料の酸化マグネシウム粉末と同程度の粒径に調整し、被覆酸化マグネシウム粉末を得た。
合成例2
結晶子径が58.3×10−9mの単結晶の集合体である酸化マグネシウム粉末(タテホ化学工業株式会社製KMAO−H)を、衝撃式粉砕機を用いて、粒径7×10−6m以下に粉砕した。ヒュームドシリカ(純度99.9%以上、比表面積200±20m/g)を、酸化マグネシウムに対して混合比が10mass%になるように湿式添加し、400〜500rpmで600s撹拌混合した。撹拌混合後、ろ過、脱水して得られたケーキを、乾燥機を用いて、423Kで一晩乾燥した。乾燥したケーキをサンプルミルで解砕して、原料の酸化マグネシウム粉末と同程度の粒径に調整し、被覆酸化マグネシウム粉末を得た。
合成例3
ヒュームドシリカの混合比を3mass%とした以外は上記合成例1と同様にして被覆酸化マグネシウム粉末を得た。
合成例4
ヒュームドシリカの混合比を30mass%とした以外は上記合成例1と同様にして被覆酸化マグネシウム粉末を得た。
合成例5
結晶子径が58.3×10−9mの単結晶の集合体である酸化マグネシウム粉末(タテホ化学工業株式会社製KMAO−H)を、衝撃式粉砕機を用いて、粒径100×10−6m以下に粉砕した。4%硝酸アルミニウム水溶液(関東化学株式会社製特級試薬)を、Alに換算して、酸化マグネシウムに対して混合比が10mass%になるように湿式添加し、400〜500rpmで600s撹拌混合した。撹拌混合後、ろ過し、ケーキができ始めたところで、残留硝酸アルミニウムを除去するため、十分に水洗し、脱水して得られたケーキを、乾燥機を用いて、423Kで一晩乾燥した。乾燥したケーキをサンプルミルで解砕して、原料の酸化マグネシウム粉末と同程度の粒径に調整し、被覆酸化マグネシウム粉末を得た。
合成例6
硝酸アルミニウムに代えて、硝酸鉄水溶液を、Feに換算して、酸化マグネシウムに対して混合比が15mass%となるように配合した以外は、上記合成例4と同様にして、被覆酸化マグネシウム粉末を得た。
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
1. Coated magnesium oxide powder synthesis example 1
Magnesium oxide powder (KMAO-H manufactured by Tateho Chemical Industry Co., Ltd.), which is an aggregate of single crystals having a crystallite size of 58.3 × 10 −9 m, was used in an impact pulverizer to obtain a particle size of 100 × 10 It grind | pulverized to 6 m or less. Fumed silica (purity 99.9% or more, specific surface area 200 ± 20 m 2 / g) was wet-added so that the mixing ratio was 10 mass% with respect to magnesium oxide, and stirred and mixed at 400 to 500 rpm for 600 s. After stirring and mixing, the cake obtained by filtration and dehydration was dried overnight at 423 K using a dryer. The dried cake was crushed with a sample mill and adjusted to a particle size comparable to that of the raw material magnesium oxide powder to obtain a coated magnesium oxide powder.
Synthesis example 2
Magnesium oxide powder (KMAO-H, manufactured by Tateho Chemical Industry Co., Ltd.), which is an aggregate of single crystals having a crystallite size of 58.3 × 10 −9 m, was used in an impact pulverizer to obtain a particle size of 7 × 10 It grind | pulverized to 6 m or less. Fumed silica (purity 99.9% or more, specific surface area 200 ± 20 m 2 / g) was wet-added so that the mixing ratio was 10 mass% with respect to magnesium oxide, and stirred and mixed at 400 to 500 rpm for 600 s. After stirring and mixing, the cake obtained by filtration and dehydration was dried overnight at 423 K using a dryer. The dried cake was crushed with a sample mill and adjusted to a particle size comparable to that of the raw material magnesium oxide powder to obtain a coated magnesium oxide powder.
Synthesis example 3
A coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of fumed silica was changed to 3 mass%.
Synthesis example 4
A coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of fumed silica was changed to 30 mass%.
Synthesis example 5
Magnesium oxide powder (KMAO-H manufactured by Tateho Chemical Industry Co., Ltd.), which is an aggregate of single crystals having a crystallite size of 58.3 × 10 −9 m, was used in an impact pulverizer to obtain a particle size of 100 × 10 It grind | pulverized to 6 m or less. 4% aluminum nitrate aqueous solution (special grade reagent manufactured by Kanto Chemical Co., Inc.) is added in a wet manner so that the mixing ratio is 10 mass% with respect to magnesium oxide in terms of Al 2 O 3, and is stirred and mixed at 400 to 500 rpm for 600 s. did. After stirring and mixing, the mixture was filtered and a cake started to be formed. To remove residual aluminum nitrate, the cake was sufficiently washed with water and dehydrated, and dried at 423 K overnight using a dryer. The dried cake was crushed with a sample mill and adjusted to a particle size comparable to that of the raw material magnesium oxide powder to obtain a coated magnesium oxide powder.
Synthesis Example 6
In place of aluminum nitrate, an iron nitrate aqueous solution was converted into Fe 2 O 3 , and was mixed in the same manner as in Synthesis Example 4 except that the mixing ratio was 15 mass% with respect to magnesium oxide. Magnesium powder was obtained.

合成例1で作製した粉末を、液化プロパンガスと酸素との燃焼により形成した高温火炎中に供給し、溶融・球状化処理を行い、フォルステライト(MgSiO)で被覆した球状の被覆酸化マグネシウム粉末を得た。The powder produced in Synthesis Example 1 is supplied into a high-temperature flame formed by burning liquefied propane gas and oxygen, melted and spheroidized, and coated with forsterite (Mg 2 SiO 4 ). Magnesium powder was obtained.

合成例1で作製した粉末を、空気中で1723Kで3600s焼成した後、再度サンプルミルにて解砕して、原料の酸化マグネシウム粉末と同程度の粒径に調整し、フォルステライト(MgSiO)で被覆した被覆酸化マグネシウム粉末を得た。
一方、合成例2で作製した粉末を、上記と同様の処理を行って、原料の酸化マグネシウム粉末と同程度の粒径に調整し、フォルステライト(MgSiO)で被覆した被覆酸化マグネシウム粉末を得た。
上記合成例1から得られた被覆酸化マグネシウム粉末と、合成例2から得られた被覆酸化マグネシウム粉末とを質量比で、7:3となるように混合した。
The powder produced in Synthesis Example 1 was fired in air at 1723 K for 3600 s, then pulverized again with a sample mill, adjusted to a particle size comparable to that of the raw material magnesium oxide powder, and forsterite (Mg 2 SiO 2 A coated magnesium oxide powder coated with 4 ) was obtained.
On the other hand, the powder produced in Synthesis Example 2 was treated in the same manner as described above to adjust the particle size to the same level as that of the raw material magnesium oxide powder and coated with forsterite (Mg 2 SiO 4 ). Got.
The coated magnesium oxide powder obtained from Synthesis Example 1 and the coated magnesium oxide powder obtained from Synthesis Example 2 were mixed at a mass ratio of 7: 3.

合成例3で作製した粉末を使用したこと以外は上記実施例1と同様にして溶融・球状化処理を行い、フォルステライト(MgSiO)で被覆した球状の被覆酸化マグネシウム粉末を得た。A spherical coated magnesium oxide powder coated with forsterite (Mg 2 SiO 4 ) was obtained in the same manner as in Example 1 except that the powder prepared in Synthesis Example 3 was used.

合成例4で作製した粉末を使用したこと以外は上記実施例1と同様にして溶融・球状化処理を行い、フォルステライト(MgSiO)で被覆した球状の被覆酸化マグネシウム粉末を得た。A spherical coated magnesium oxide powder coated with forsterite (Mg 2 SiO 4 ) was obtained in the same manner as in Example 1 except that the powder produced in Synthesis Example 4 was used.

合成例5で作製した粉末を使用したこと以外は上記実施例1と同様にして溶融・球状化処理を行い、スピネル(AlMgO)で被覆した球状の被覆酸化マグネシウム粉末を得た。A spherical coated magnesium oxide powder coated with spinel (Al 2 MgO 4 ) was obtained in the same manner as in Example 1 except that the powder prepared in Synthesis Example 5 was used.

合成例6で作製した粉末を使用したこと以外は上記実施例1と同様にして溶融・球状化処理を行い、マグネシウムフェライト(FeMgO)で被覆した球状の被覆酸化マグネシウム粉末を得た。
比較例1
合成例1で得られた粉末を、空気中で1723Kで3600s焼成した後、再度、サンプルミルにて解砕して、原料の酸化マグネシウム粉末と同程度の粒径に調整し、フォルステライト(MgSiO)で被覆した被覆酸化マグネシウム粉末を得た。
比較例2
酸化マグネシウム粉末を、液化プロパンガスと酸素との燃焼により形成した高温火炎中に供給し、表面が被覆されていない酸化マグネシウム粉末を得た。
評価試験
上記各実施例1〜6及び比較例1、2で得られた被覆酸化マグネシウム粉末試料の被覆複酸化物の含有量、安息角、タップ密度、BET比表面積、平均粒径及び耐湿性の各項目を測定し、結果を表1に示した。なお、各項目の測定方法を下記に示す。
粉末表面の複酸化物の含有量:走査型蛍光X線分析装置「ZSX−100e」(理学電機工業株式会社製)を用いて、粉末試料に含まれる元素の含有量を測定し、複酸化物の含有量に換算した。
安息角:粉体物性測定装置「パウダテスタPT−N」(ホソカワミクロン株式会社製)を用いて、標準篩(目開き710μm)を振動させ、粉末試料をロートを通じ落下させる、注入法により安息角(度)を測定した。
タップ密度:粉体物性測定装置「パウダテスタPT−N」(ホソカワミクロン株式会社製)を用いて、100mlの容器に粉末試料を入れ、一定の高さから180回タッピングさせ、タッピングの衝撃で固めた後、タッピング密度(g/ml)を測定した。
BET比表面積:ガス吸着法により、流動式比表面積測定装置「フローソーブII2300」(島津製作所株式会社製)を用いて、粉末試料の比表面積を測定した。
平均粒径:レーザー回折・散乱法により粒度分布測定装置「マイクロトラックHRA」(日機装株式会社製)を用いて、粉末試料の体積平均粒径を測定した。
耐湿性試験:得られた試料5×10−3kgを、温度373Kの沸騰水100×10−6中で2時間攪拌し、質量増加率を測定して、耐湿性を評価した。

Figure 2005033216
2.樹脂組成物A spherical coated magnesium oxide powder coated with magnesium ferrite (Fe 2 MgO 4 ) was obtained in the same manner as in Example 1 except that the powder prepared in Synthesis Example 6 was used.
Comparative Example 1
The powder obtained in Synthesis Example 1 was calcined in air at 1723 K for 3600 s, and then pulverized again with a sample mill to adjust the particle size to the same level as that of the raw material magnesium oxide powder. A coated magnesium oxide powder coated with 2 SiO 4 ) was obtained.
Comparative Example 2
Magnesium oxide powder was supplied into a high-temperature flame formed by combustion of liquefied propane gas and oxygen to obtain a magnesium oxide powder whose surface was not coated.
Evaluation Test Content of coated double oxide, angle of repose, tap density, BET specific surface area, average particle diameter and moisture resistance of the coated magnesium oxide powder samples obtained in the above Examples 1 to 6 and Comparative Examples 1 and 2 Each item was measured and the results are shown in Table 1. In addition, the measuring method of each item is shown below.
Content of double oxide on powder surface: Using a scanning X-ray fluorescence analyzer “ZSX-100e” (manufactured by Rigaku Denki Kogyo Co., Ltd.), the content of elements contained in the powder sample was measured, and the double oxide was measured. It converted into content of.
Angle of repose: Using a powder physical property measuring device “Powder Tester PT-N” (manufactured by Hosokawa Micron Corporation), a standard sieve (mesh 710 μm) is vibrated, and a powder sample is dropped through a funnel. ) Was measured.
Tap density: After using a powder physical property measuring apparatus “Powder Tester PT-N” (manufactured by Hosokawa Micron Corporation), a powder sample is put into a 100 ml container, tapped 180 times from a certain height, and hardened by impact of tapping. The tapping density (g / ml) was measured.
BET specific surface area: The specific surface area of the powder sample was measured by a gas adsorption method using a flow-type specific surface area measuring apparatus “Flowsorb II2300” (manufactured by Shimadzu Corporation).
Average particle diameter: The volume average particle diameter of the powder sample was measured by a particle size distribution measuring apparatus “Microtrac HRA” (manufactured by Nikkiso Co., Ltd.) by a laser diffraction / scattering method.
Moisture resistance test: The obtained sample 5 × 10 −3 kg was stirred in boiling water 100 × 10 −6 m 3 at a temperature of 373 K for 2 hours, and the mass increase rate was measured to evaluate the moisture resistance.
Figure 2005033216
2. Resin composition

実施例1で作製した試料粉末に、エポキシシランを1.0mass%添加し、600s撹拌混合して粉末を表面処理し、次いで423Kで7200s乾燥させた。得られた試料560重量部を、オルソクレゾールノボラック型エポキシ樹脂63重量部、ノボラック型フェノール樹脂34重量部、トリフェニルホスフィン1重量部及びカルナバワックス2重量部と、擂潰機を用いて、600s混合粉砕した。その後、混合物を二本ロールを用いて、373Kで300s混練し、次いでこの混練物を10メッシュ以下に更に粉砕し、φ38mm×t15mmのペレットを作製した。このペレットを、7MPa、448Kで180s間、トランスファー成型し、スパイラルフローを測定した。
また、このペレットを448Kで180s、7MPaでトランスファー成型し、次いで453Kで18×10s間ポストキュアを行い、φ50mm×t3mmの成型体を得た。
To the sample powder prepared in Example 1, 1.0 mass% of epoxysilane was added, and the powder was surface-treated by stirring and mixing for 600 s, and then dried at 423 K for 7200 s. 560 parts by weight of the obtained sample was mixed with 63 parts by weight of an orthocresol novolac type epoxy resin, 34 parts by weight of a novolac type phenolic resin, 1 part by weight of triphenylphosphine and 2 parts by weight of carnauba wax using a crusher for 600 s. Crushed. Thereafter, the mixture was kneaded at 373 K for 300 s using a two-roll, and then this kneaded material was further pulverized to 10 mesh or less to produce φ38 mm × t15 mm pellets. This pellet was transfer-molded at 7 MPa and 448 K for 180 s, and the spiral flow was measured.
Further, this pellet was transfer-molded at 448K for 180 s and 7 MPa, and then post-cured for 18 × 10 3 s at 453K to obtain a molded body of φ50 mm × t3 mm.

実施例2で作製した粒径の異なる被覆酸化マグネシウム粉末の混合粉末を使用したこと以外は上記実施例7と同様にして、スパイラルフローを測定し、成型体を得た。  Spiral flow was measured in the same manner as in Example 7 except that a mixed powder of coated magnesium oxide powders having different particle diameters produced in Example 2 was used to obtain a molded body.

実施例3で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上記実施例6と同様にして、スパイラルフローを測定し、成型体を得た。  Except that the spherical coated magnesium oxide powder produced in Example 3 was used, spiral flow was measured in the same manner as in Example 6 to obtain a molded body.

実施例4で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上記実施例6と同様にしてスパイラルフローを測定し、成型体を得た。  Except that the spherical coated magnesium oxide powder produced in Example 4 was used, spiral flow was measured in the same manner as in Example 6 to obtain a molded body.

実施例5で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上記実施例6と同様にして、スパイラルフローを測定し、成型体を得た。  Except that the spherical coated magnesium oxide powder prepared in Example 5 was used, spiral flow was measured in the same manner as in Example 6 to obtain a molded body.

実施例6で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上記実施例6と同様にして、スパイラルフローを測定し、成型体を得た。
比較例3
比較例1で作製した試料を用いた以外は、実施例7と同様にして、スパイラルフローを測定し、成型体を得た。
比較例4
酸化マグネシウム粉末に代えて、アルミナ粉末を用いたこと以外は、実施例7と同様にして、スパイラルフローを測定し、成型体を得た。
Except that the spherical coated magnesium oxide powder produced in Example 6 was used, spiral flow was measured in the same manner as in Example 6 to obtain a molded body.
Comparative Example 3
Except that the sample prepared in Comparative Example 1 was used, spiral flow was measured in the same manner as in Example 7 to obtain a molded body.
Comparative Example 4
A spiral flow was measured in the same manner as in Example 7 except that alumina powder was used in place of the magnesium oxide powder to obtain a molded body.

実施例1で作製した試料粉末に、ビニルトリメトキシシランを1.0mass%添加し、600s撹拌混合して粉末を表面処理し、次いで423Kで7200s乾燥させた。得られた試料451重量部を、二液型RTVシリコーンゴム100重量部と、二本ロールを用いて300s混練した。次いで、白金触媒5重量部を添加し、二本ロールを用いて600s混練して、コンパウンドを作製し、下記に示す条件で粘度を測定した。これを393Kで600s、5MPaでプレス成型し、φ50mm×t3mmの成型体を得た。  1.0 mass% of vinyltrimethoxysilane was added to the sample powder prepared in Example 1, and the powder was surface-treated by stirring and mixing for 600 s, and then dried at 423 K for 7200 s. 451 parts by weight of the obtained sample was kneaded for 300 s using 100 parts by weight of a two-component RTV silicone rubber and two rolls. Next, 5 parts by weight of a platinum catalyst was added and kneaded for 600 s using a two-roll, to prepare a compound, and the viscosity was measured under the following conditions. This was press-molded at 393 K for 600 s and 5 MPa to obtain a molded body of φ50 mm × t3 mm.

実施例2で作製した混合試料粉末を使用したことを除いては、実施例13と同様にして、粘度を測定し、成型体を得た。
比較例5
比較例1で作製した試料粉末を用いた以外は、実施例13と同様にして、粘度を測定し、成型体を得た。
比較例6
酸化マグネシウム粉末に代えて、アルミナ粉末を用いた以外は、実施例13と同様にして、粘度を測定し、成型体を得た。
評価試験
上記各実施例7〜14及び比較例3〜6で得られた樹脂組成物のスパイラルフロー又は粘度(常温での樹脂の状態により適切な測定方法を選択した。)、ならびに、これらの樹脂組成物の成型体の熱伝導率、耐湿性及び耐湿性試験後の外観を測定し、結果を表2に示した。なお、上記各項目の評価方法は以下の通りである。
スパイラルフロー:EMMI−I−66に準じて、測定した。
粘度:レオメータ「VAR−50」(REOLOGICA社製)を用いて、粘度を測定し、Shear rateが1s−1の値とした。
熱伝導率:レーザーフラッシュ法により、熱定数測定装置「TC−3000」(真空理工株式会社製)を用いて、成型体の熱伝導率を測定した。
耐湿性試験:成型体を温度358K、湿度85%に設定した恒温恒湿器に7日間保管し、吸湿率を測定した。また外観を目視により観察した。

Figure 2005033216
以上の結果から明らかなように、本発明の安息角及びタップ密度を共に満足する被覆酸化マグネシウム粉末は、球状化処理を施したもの(表1、実施例1、3〜6)及び焼成により得られた粉末を混合して得られたもの(表1、実施例2)共に、耐湿性に優れている。そして、これらの粉末を充填してなる樹脂組成物(表2、実施例7〜14)は、流動性に優れており、さらに、その成型体は高い熱伝導率を有し、耐湿性に優れていることが確認された。
一方、比較例1の粉末は、耐湿性は優れていたが、タップ密度が本発明の範囲を下回っている。これをエポキシ樹脂に充填した場合(表2、比較例3)、及びシリコーンゴムに充填した場合(表2、比較例5)共に、流動性が低い値となった。
比較例2の粉末は複酸化物で被覆されていないので、表1に示したように耐湿性が非常に低いものであった
また、酸化マグネシウム粉末に代えて、従来のアルミナ粉末を充填して得られた樹脂組成物(表2、比較例4,6)は、流動性及び耐湿性は優れているものの、熱伝導性に劣っていた。Except for using the mixed sample powder prepared in Example 2, the viscosity was measured in the same manner as in Example 13 to obtain a molded body.
Comparative Example 5
Except for using the sample powder prepared in Comparative Example 1, the viscosity was measured in the same manner as in Example 13 to obtain a molded body.
Comparative Example 6
Viscosity was measured in the same manner as in Example 13 except that alumina powder was used instead of magnesium oxide powder to obtain a molded body.
Evaluation Test Spiral flow or viscosity of resin compositions obtained in the above Examples 7 to 14 and Comparative Examples 3 to 6 (an appropriate measurement method was selected depending on the state of the resin at room temperature), and these resins The appearance of the molded body of the composition after the thermal conductivity, moisture resistance and moisture resistance test was measured, and the results are shown in Table 2. In addition, the evaluation method of said each item is as follows.
Spiral flow: Measured according to EMMI-I-66.
Viscosity: The viscosity was measured using a rheometer “VAR-50” (manufactured by REOLOGICA), and the shear rate was 1 s −1 .
Thermal conductivity: The thermal conductivity of the molded body was measured by a laser flash method using a thermal constant measuring device “TC-3000” (manufactured by Vacuum Riko Co., Ltd.).
Humidity resistance test: The molded body was stored for 7 days in a thermo-hygrostat set to a temperature of 358K and a humidity of 85%, and the moisture absorption rate was measured. The appearance was visually observed.
Figure 2005033216
As is clear from the above results, the coated magnesium oxide powder satisfying both the angle of repose and the tap density of the present invention was obtained by spheroidizing treatment (Table 1, Examples 1 and 3 to 6) and firing. Both those obtained by mixing the obtained powder (Table 1, Example 2) are excellent in moisture resistance. And the resin composition (Table 2, Examples 7-14) formed by filling these powders is excellent in fluidity | liquidity, Furthermore, the molded object has high heat conductivity, and is excellent in moisture resistance. It was confirmed that
On the other hand, the powder of Comparative Example 1 was excellent in moisture resistance, but the tap density was below the range of the present invention. When the epoxy resin was filled (Table 2, Comparative Example 3) and when the silicone rubber was filled (Table 2, Comparative Example 5), the fluidity was low.
Since the powder of Comparative Example 2 was not coated with the double oxide, the moisture resistance was very low as shown in Table 1. Also, instead of the magnesium oxide powder, the conventional alumina powder was filled. Although the obtained resin composition (Table 2, Comparative Examples 4 and 6) was excellent in fluidity and moisture resistance, it was inferior in thermal conductivity.

以上詳細に説明したように、本発明の被覆酸化マグネシウム粉末は、耐湿性に優れ、かつ充填材として用いるとき、充填性に優れ、樹脂へ高充填することができ、熱伝導性フィラーとして有用である。
また、この被覆酸化マグネシウム粉末を充填して得られた樹脂組成物は、流動性に優れており、その成型体は高い放熱性及び耐湿性を有するため、様々な電子デバイスの封止材又はスペーサー、接着剤又は接着性シート、あるいは樹脂回路基板、金属ベース回路基板、金属張積層板、内層回路入り金属張積層板等の構成部材として非常に有用であり、その工業的価値は極めて高い。
As described above in detail, the coated magnesium oxide powder of the present invention is excellent in moisture resistance and, when used as a filler, is excellent in filling properties, can be highly filled into a resin, and is useful as a heat conductive filler. is there.
In addition, the resin composition obtained by filling this coated magnesium oxide powder has excellent fluidity, and the molded body has high heat dissipation and moisture resistance, so that it can be used as a sealing material or spacer for various electronic devices. It is very useful as a component such as an adhesive or an adhesive sheet, or a resin circuit board, a metal base circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, and its industrial value is extremely high.

Claims (8)

表面が複酸化物で被覆され、安息角が55度以下、かつタップ密度が1.65g/ml以上であることを特徴とする被覆酸化マグネシウム粉末。A coated magnesium oxide powder having a surface coated with a double oxide, an angle of repose of 55 degrees or less, and a tap density of 1.65 g / ml or more. 複酸化物が、アルミニウム、鉄、ケイ素及びチタンからなる群から選択される1以上の元素とマグネシウムとを含む、請求の範囲1記載の被覆酸化マグネシウム粉末。The coated magnesium oxide powder according to claim 1, wherein the double oxide contains one or more elements selected from the group consisting of aluminum, iron, silicon, and titanium and magnesium. 複酸化物を5〜50mass%を含む、請求の範囲1又は2記載の被覆酸化マグネシウム粉末。The coated magnesium oxide powder according to claim 1 or 2, wherein the mixed oxide contains 5 to 50 mass%. 平均粒径が5×10−6〜500×10−6mであり、BET比表面積が5×10/kg以下である、請求の範囲1〜3のいずれか1項記載の被覆酸化マグネシウム粉末。The coating oxidation according to any one of claims 1 to 3, wherein the average particle diameter is 5 x 10 -6 to 500 x 10 -6 m and the BET specific surface area is 5 x 10 3 m 2 / kg or less. Magnesium powder. 請求の範囲1〜4のいずれか1項記載の被覆酸化マグネシウム粉末を含む樹脂組成物。The resin composition containing the covering magnesium oxide powder of any one of Claims 1-4. 樹脂組成物の樹脂がエポキシ樹脂である、請求の範囲5記載の樹脂組成物。The resin composition according to claim 5, wherein the resin of the resin composition is an epoxy resin. 樹脂組成物の樹脂がシリコーンゴムである、請求の範囲5項記載の樹脂組成物。The resin composition according to claim 5, wherein the resin of the resin composition is silicone rubber. 請求の範囲5〜7のいずれか1項記載の樹脂組成物を用いた電子デバイス。The electronic device using the resin composition of any one of Claims 5-7.
JP2005509330A 2003-10-03 2003-12-12 Highly filled coated magnesium oxide powder and resin composition containing the powder Expired - Lifetime JP4237182B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003346085 2003-10-03
JP2003346085 2003-10-03
PCT/JP2003/015954 WO2005033216A1 (en) 2003-10-03 2003-12-12 Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder

Publications (2)

Publication Number Publication Date
JPWO2005033216A1 true JPWO2005033216A1 (en) 2006-12-14
JP4237182B2 JP4237182B2 (en) 2009-03-11

Family

ID=34419492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005509330A Expired - Lifetime JP4237182B2 (en) 2003-10-03 2003-12-12 Highly filled coated magnesium oxide powder and resin composition containing the powder

Country Status (4)

Country Link
JP (1) JP4237182B2 (en)
AU (1) AU2003289060A1 (en)
TW (1) TWI262897B (en)
WO (1) WO2005033216A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744911B2 (en) * 2005-03-31 2011-08-10 ポリプラスチックス株式会社 High thermal conductive resin composition
JP4747926B2 (en) * 2005-05-25 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
JP4747731B2 (en) * 2005-08-12 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
JP4747730B2 (en) * 2005-08-12 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
JP4747918B2 (en) 2005-11-04 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
JP4747931B2 (en) * 2006-04-25 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
JP2007291300A (en) * 2006-04-27 2007-11-08 Tosoh Corp Polyarylene sulfide composition
EP2456815B1 (en) * 2009-07-24 2014-07-16 Ticona LLC Thermally conductive polymer compositions and articles made therefrom
JP5803403B2 (en) * 2011-08-09 2015-11-04 東ソー株式会社 Polyarylene sulfide resin composition and composite comprising the same
WO2013161844A1 (en) * 2012-04-27 2013-10-31 ポリプラスチックス株式会社 Resin composition having high thermal conductivity
JP6685068B2 (en) * 2016-03-03 2020-04-22 株式会社大豊化成 Heat conductive composite filler, method for manufacturing heat conductive composite filler, heat conductive resin, and method for manufacturing heat conductive resin
WO2018056349A1 (en) * 2016-09-21 2018-03-29 Dic株式会社 Surface-treated spinel particles, method for producing same, resin composition and molded article
CN108017073B (en) * 2017-12-27 2019-08-23 淮阴工学院 A method of magnesia aeroge is prepared by raw material of bischofite

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345117A (en) * 1986-08-08 1988-02-26 Ube Ind Ltd Production of magnesia powder resistant to hydration
JP2786191B2 (en) * 1987-08-14 1998-08-13 旭硝子株式会社 Method for producing magnesium oxide powder
JP2731854B2 (en) * 1989-02-10 1998-03-25 協和化学工業株式会社 Method for producing high hydration resistant and high fluidity magnesium oxide
JP2538724B2 (en) * 1991-06-14 1996-10-02 日立電線株式会社 Filler for DC power cable insulation
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JP2001031887A (en) * 1999-07-21 2001-02-06 Toyota Motor Corp Highly conductive powder and its production
AU6183900A (en) * 1999-08-06 2001-03-05 Kyowa Chemical Industry Co., Ltd. Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP2003034522A (en) * 2001-07-24 2003-02-07 Tateho Chem Ind Co Ltd Method for manufacturing coated magnesium oxide powder
JP4046491B2 (en) * 2001-07-24 2008-02-13 タテホ化学工業株式会社 Method for producing double oxide-coated magnesium oxide
JP4412879B2 (en) * 2002-03-11 2010-02-10 メルク株式会社 Extender pigment and method for producing the same

Also Published As

Publication number Publication date
AU2003289060A1 (en) 2005-04-21
TW200513437A (en) 2005-04-16
TWI262897B (en) 2006-10-01
WO2005033216A1 (en) 2005-04-14
JP4237182B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4302690B2 (en) Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
JP3850371B2 (en) Resin composition containing magnesium oxide powder
JP4237182B2 (en) Highly filled coated magnesium oxide powder and resin composition containing the powder
KR100799042B1 (en) Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
KR101070505B1 (en) Ceramic powder and applications thereof
JP5972179B2 (en) Coated magnesium oxide powder and method for producing the same
KR101133309B1 (en) Ceramic powder and method of using the same
JP6441525B2 (en) Filler for resin composition, slurry composition containing filler, and resin composition containing filler
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JPH10237311A (en) Alumina-charged resin or rubber composition
JP5410095B2 (en) Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
JP4237181B2 (en) High fluidity coated magnesium oxide powder and resin composition containing the powder
JP5606740B2 (en) Siliceous powder, production method and use thereof
JP2015193493A (en) High density alumina and manufacturing method thereof
WO2019142353A1 (en) Powder and uses thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4237182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term