JP2003034522A - Method for manufacturing coated magnesium oxide powder - Google Patents

Method for manufacturing coated magnesium oxide powder

Info

Publication number
JP2003034522A
JP2003034522A JP2001222634A JP2001222634A JP2003034522A JP 2003034522 A JP2003034522 A JP 2003034522A JP 2001222634 A JP2001222634 A JP 2001222634A JP 2001222634 A JP2001222634 A JP 2001222634A JP 2003034522 A JP2003034522 A JP 2003034522A
Authority
JP
Japan
Prior art keywords
magnesium oxide
aluminum
magnesia
oxide powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222634A
Other languages
Japanese (ja)
Inventor
Toshio Kiyokawa
敏夫 清川
Kaori Yamamoto
香織 山元
Yutaka Hiratsu
豊 平津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP2001222634A priority Critical patent/JP2003034522A/en
Publication of JP2003034522A publication Critical patent/JP2003034522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesia powder having superior durability, moisture resistance, and dispersability into resins. SOLUTION: The manufacturing method is characterized in that, by mixing an aluminum salt aqueous solution and magnesium oxide powders, filtering solid components, washing it with water, drying it, and firing it, the surface of magnesium oxide powder is coated with a coating layer containing aluminum magnesium composite oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性フィラー
の製造に関し、特に、酸化マグネシウム粉末の耐水和性
を改良した放熱特性に優れる熱伝導性フィラーの製造に
関する。
TECHNICAL FIELD The present invention relates to the production of a heat conductive filler, and more particularly to the production of a heat conductive filler having improved hydration resistance of magnesium oxide powder and excellent in heat dissipation characteristics.

【0002】[0002]

【従来の技術】従来、半導体封止用樹脂等のフィラーの
材料として、二酸化ケイ素(以下、シリカという)粉末
等が使用されていた。近年、半導体素子の高集積化及び
高電力化に伴って、素子の発熱量が増大してきた。その
ため、シリカの熱伝導性効率は、放熱するのに充分では
ないため、半導体の安定動作等に問題が生じていた。
2. Description of the Related Art Conventionally, silicon dioxide (hereinafter referred to as silica) powder or the like has been used as a material for a filler such as a resin for semiconductor encapsulation. 2. Description of the Related Art In recent years, the amount of heat generated by semiconductor elements has increased with the high integration and high power consumption of semiconductor elements. Therefore, the thermal conductivity efficiency of silica is not sufficient to dissipate heat, which causes a problem in stable operation of semiconductors.

【0003】そこで、シリカに代わり、熱伝導率が1桁
高い酸化マグネシウム(以下、マグネシアという)が半
導体封止用樹脂フィラーの材料として用いられている。
しかし、マグネシア粉末は、シリカ粉末に比べ、吸湿性
が大きい。そのため、半導体の封止用樹脂フィラーとし
てマグネシア粉末を用いた場合、吸湿した水とマグネシ
アが水和して、フィラーの体積膨張によりクラックが発
生する、熱伝導性が低下する等の問題が発生していた。
こうして、半導体封止用樹脂フィラーとして用いるマグ
ネシア粉末に耐湿性を付与することが、半導体の長期的
な安定動作を保証する上で大きな課題となっていた。
Therefore, instead of silica, magnesium oxide (hereinafter referred to as magnesia) having a heat conductivity higher by one digit is used as a material for a resin filler for semiconductor encapsulation.
However, magnesia powder has greater hygroscopicity than silica powder. Therefore, when magnesia powder is used as the resin filler for sealing the semiconductor, the absorbed water and magnesia are hydrated, and cracks occur due to volume expansion of the filler, which causes problems such as reduced thermal conductivity. Was there.
Thus, imparting moisture resistance to the magnesia powder used as the resin filler for semiconductor encapsulation has been a major problem in ensuring long-term stable operation of the semiconductor.

【0004】マグネシア粉末の耐湿性を改善させる方法
には、シラン等の無機系カップリング剤により表面処理
を施すことが開示されている。しかし、樹脂との混錬作
業工程で、マグネシア粉末表面から表面処理した処理剤
が剥離しやすく、機械的強度に欠けていた。そのため、
耐湿性が充分ではなく、フィラー原料のマグネシア粉末
は水和反応して、水酸化マグネシウムMg(OH)2に変
化して白化現象が生じ、実用的なレベルには至っていな
かった。
As a method for improving the moisture resistance of magnesia powder, it has been disclosed to perform surface treatment with an inorganic coupling agent such as silane. However, during the kneading process with the resin, the surface-treated treatment agent was easily peeled off from the surface of the magnesia powder, resulting in lack of mechanical strength. for that reason,
Moisture resistance was not sufficient, and the magnesia powder as a filler raw material was hydrated to change to magnesium hydroxide Mg (OH) 2 and a whitening phenomenon occurred, which was not at a practical level.

【0005】また、マグネシア粒子を、アルコキシド
法、均一沈殿法等により、化学的に安定な化合物で被覆
処理する方法が検討されている。アルコキシド法では、
被覆する粒子(芯粒子)を、アルコール中にアルコキシ
ドを溶解した溶液に、分散させて混合した後、蒸留水を
添加し、アルコキシドを加水分解して、生成した金属水
酸化物で芯粒子を被覆処理する。しかしながら、蒸留水
を添加したとき、溶液中でアルコキシドの加水分解反応
が均一に進行しないため、芯粒子の表面に均一な金属水
酸化物被覆層を形成することは困難であった。
Further, a method of coating magnesia particles with a chemically stable compound by an alkoxide method, a uniform precipitation method or the like has been studied. In the alkoxide method,
The particles to be coated (core particles) are dispersed and mixed in a solution in which an alkoxide is dissolved in alcohol, and then distilled water is added to hydrolyze the alkoxide to coat the core particles with the produced metal hydroxide. To process. However, when distilled water was added, the hydrolysis reaction of the alkoxide did not proceed uniformly in the solution, so it was difficult to form a uniform metal hydroxide coating layer on the surface of the core particles.

【0006】また、均一沈殿法では、通常、溶液中に沈
殿剤をあらかじめ添加して、溶液のpHを制御することに
より、金属水酸化物の生成速度を制御する。このため、
アルコキシド法とは異なり、金属水酸化物を均一に析出
させることができる。しかし、マグネシア粒子の場合に
は、マグネシアの水和に伴い、溶液のpHが変化するた
め、沈殿剤を添加しても溶液のpH制御ができないため、
金属水酸化物の生成を制御できない。このため、マグネ
シア粒子表面だけに選択的に他の金属水酸化物を析出さ
せることは困難である。
In the homogeneous precipitation method, a precipitating agent is usually added to the solution in advance to control the pH of the solution to control the rate of metal hydroxide formation. For this reason,
Unlike the alkoxide method, the metal hydroxide can be uniformly deposited. However, in the case of magnesia particles, since the pH of the solution changes with the hydration of magnesia, the pH of the solution cannot be controlled even if a precipitant is added,
Uncontrolled formation of metal hydroxides. Therefore, it is difficult to selectively deposit another metal hydroxide only on the surface of the magnesia particles.

【0007】特開平3−8714号公報には、マグネシ
ア粉末の分散液に、金属塩の溶液を、還流下に加熱撹拌
しながら、徐々に滴下し、金属水酸化物を析出させ、ろ
過、洗浄、乾燥し、加熱脱水処理する金属酸化物被覆マ
グネシア粉末の製造方法が開示されている。この方法で
は、アルコールなどの溶媒を使用し、還流下に加熱撹拌
しながら金属化合物溶液を滴下する必要があるため、工
程が煩雑で、経費がかかるという欠点がある。
In Japanese Patent Laid-Open No. 3-8714, a solution of a metal salt is gradually added dropwise to a dispersion of magnesia powder under heating and stirring under reflux to precipitate a metal hydroxide, which is then filtered and washed. , A method of producing a metal oxide-coated magnesia powder which is dried and subjected to heat dehydration treatment is disclosed. In this method, a solvent such as alcohol is used, and it is necessary to drop the metal compound solution while heating and stirring under reflux, so that the steps are complicated and costly.

【0008】このように、従来の技術では、被覆層の機
械的強度やマグネシア粉末表面の被覆が完全ではなく、
半導体封止用樹脂等のフィラーとして充分な耐湿性が得
られていなかった。
As described above, in the conventional technique, the mechanical strength of the coating layer and the coating of the magnesia powder surface are not perfect,
Moisture resistance sufficient as a filler for a resin for semiconductor encapsulation has not been obtained.

【0009】また、芯粒子となるマグネシア粉末も、水
酸化マグネシウムや塩基性炭酸マグネシウムなど種々の
マグネシウム化合物の熱分解によって得た場合、凝集性
が強く、樹脂と混練するには分散性が充分でないという
問題点がある。
Further, the magnesia powder to be the core particles also has strong cohesiveness when obtained by thermal decomposition of various magnesium compounds such as magnesium hydroxide and basic magnesium carbonate, and the dispersibility is not sufficient for kneading with the resin. There is a problem.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
の課題を鑑み、耐久性及び耐湿性に優れ、かつ樹脂への
分散性に優れたマグネシア粉末、特に半導体封止用樹脂
等のフィラーとして用い得るマグネシア粉末を提供する
ことである。
In view of the above problems, an object of the present invention is to provide a magnesia powder excellent in durability and moisture resistance and dispersibility in a resin, particularly a filler such as a resin for semiconductor encapsulation. Is to provide a magnesia powder that can be used as.

【0011】[0011]

【課題を解決するための手段】発明者は、上記目的を達
成すべく、種々検討を重ねた結果、本発明を見出したも
のである。すなわち、アルミニウム(Al)とマグネシ
ウム(Mg)との複酸化物により、マグネシア粉末の表
面を被覆することにより、低コストで容易に耐水和性
(耐湿性)を維持しながら被覆層の機械的強度、更に樹
脂への分散性を改善させる、電気絶縁特性及び熱伝導性
に優れたマグネシア粉末を製造する方法を見出した。
The inventor has found the present invention as a result of various studies in order to achieve the above object. That is, by coating the surface of the magnesia powder with a double oxide of aluminum (Al) and magnesium (Mg), the mechanical strength of the coating layer can be easily maintained at low cost while maintaining hydration resistance (moisture resistance). Further, they have found a method for producing a magnesia powder having excellent electrical insulating properties and thermal conductivity, which further improves dispersibility in a resin.

【0012】本発明の方法は、アルミニウム塩の水溶液
と、酸化マグネシウム粉末を混合し、固体分をろ別し、
水洗し、乾燥させて、焼成することにより、該酸化マグ
ネシウム粉末の表面を、アルミニウムとマグネシウムの
複酸化物を含む被覆層で被覆することを特徴とする被覆
酸化マグネシウム粉末の製造する方法に関する。
According to the method of the present invention, an aqueous solution of an aluminum salt is mixed with magnesium oxide powder, and a solid content is separated by filtration.
The present invention relates to a method for producing a coated magnesium oxide powder, which comprises coating the surface of the magnesium oxide powder with a coating layer containing a double oxide of aluminum and magnesium by washing with water, drying and firing.

【0013】[0013]

【実施の態様】本発明において、「アルミニウムとマグ
ネシウムの複酸化物」は、アルミニウム、マグネシウ
ム、及び酸素を含む金属酸化物であり、スピネル等を含
む。また、「MgOとAl23の複合物」は同義であ
る。本発明において、「被覆層」は、アルミニウムとマ
グネシウムの複酸化物を含む層であり、スピネルを含
む。また、芯粒子である酸化マグネシウム粒子との境界
は不連続である場合がある。本発明において、「結晶子
径」は、X線回折法を用いて、Scherrer式で算出した値
である。一般に、一つの粒子は複数の単結晶で構成され
た多結晶体であり、結晶子径は多結晶体中の単結晶の大
きさの平均値を示している。「粒子径」は、レーザー回
折法によって測定した体積平均径である。一般的には、
これが粒子の大きさである。本発明において、「スピネ
ル」は、セン晶石であり、組成式Al2MgO4を有する
等軸晶系の物質である。本発明において、「焼成」は、
該被覆材の溶融温度以下に焼成温度を設定して行う。こ
こで、被覆材は溶解しない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the "aluminum-magnesium composite oxide" is a metal oxide containing aluminum, magnesium and oxygen, and includes spinel and the like. Further, “composite of MgO and Al 2 O 3 ” has the same meaning. In the present invention, the “coating layer” is a layer containing a double oxide of aluminum and magnesium and contains spinel. Further, the boundary with the magnesium oxide particles, which are the core particles, may be discontinuous. In the present invention, the “crystallite size” is a value calculated by the Scherrer equation using the X-ray diffraction method. In general, one particle is a polycrystal composed of a plurality of single crystals, and the crystallite diameter indicates the average value of the sizes of the single crystals in the polycrystal. The "particle diameter" is a volume average diameter measured by a laser diffraction method. In general,
This is the size of the particles. In the present invention, “spinel” is phenocrite, which is an equiaxed substance having the composition formula Al 2 MgO 4 . In the present invention, "baking" means
The firing temperature is set below the melting temperature of the coating material. Here, the coating material does not dissolve.

【0014】本発明の方法によれば、アルミニウム塩溶
液、例えば硝酸アルミニウム溶液とマグネシアを混合す
ると、次の反応により、水酸化アルミニウムが生成する
(図1(A)参照)。
According to the method of the present invention, when an aluminum salt solution such as an aluminum nitrate solution is mixed with magnesia, aluminum hydroxide is produced by the following reaction (see FIG. 1 (A)).

【0015】2Al(NO3)3+3MgO+3H2O→2
Al(OH)3+3Mg(NO3)2
2Al (NO 3 ) 3 + 3MgO + 3H 2 O → 2
Al (OH) 3 + 3Mg ( NO 3) 2

【0016】本発明の方法によれば、混合するとき、マ
グネシア粉末表面にMgOとAl23の複合物を均一に
生成させるため、湿式で、アルミニウム塩とマグネシア
を混合することが好ましい。混合する比率は、添加量と
質量増加率を考慮すると、Al23に換算したアルミニ
ウム塩の混合比が、該酸化マグネシウム粉末に対し、1
〜35mass%であることが好ましく、5〜25mass%が
より好ましい。
According to the method of the present invention, it is preferable to mix the aluminum salt and magnesia by a wet method in order to uniformly form a composite of MgO and Al 2 O 3 on the surface of the magnesia powder when mixing. Considering the addition amount and the mass increase rate, the mixing ratio of the aluminum salt converted to Al 2 O 3 is 1 to the magnesium oxide powder.
It is preferably from 35 to 35 mass%, more preferably from 5 to 25 mass%.

【0017】本発明の方法によれば、アルミニウム塩の
水溶液と酸化マグネシウムを混合し、その固体分をろ過
等により分離する。回収した固体分について、水洗は、
マグネシアに吸着したAl(OH)3の外側に、水溶性
の硝酸マグネシウムが残留することを防止するため、充
分に行うことが好ましい。これは、焼成すると、耐水和
性・耐湿性の被覆層の外側に、残留した硝酸マグネシウ
ムがMgOを形成して、本発明の方法により得られた被
覆マグネシアの性能を阻害することを防止するためであ
る。水洗した固体分を乾燥させ、解砕することが好まし
い。解砕は、ミルを用いることができる。
According to the method of the present invention, an aqueous solution of an aluminum salt is mixed with magnesium oxide, and the solid content is separated by filtration or the like. Washing the collected solids with water
In order to prevent water-soluble magnesium nitrate from remaining on the outside of Al (OH) 3 adsorbed on magnesia, it is preferable to perform it sufficiently. This is to prevent the residual magnesium nitrate from forming MgO on the outside of the hydration resistant / moisture resistant coating layer upon firing, thereby inhibiting the performance of the coated magnesia obtained by the method of the present invention. Is. It is preferable to dry and crush the solid content washed with water. A mill can be used for crushing.

【0018】解砕した固体分を、焼成して、被覆マグネ
シアを得る(図1(B)参照)。ここで、BET比表面
積と質量増加率を考慮すると、被覆材の融点以下である
温度1473〜2073Kで焼成することが好ましく、
1673〜1873Kがより好ましい。
The crushed solid is calcined to obtain coated magnesia (see FIG. 1 (B)). Here, considering the BET specific surface area and the mass increase rate, it is preferable to perform the firing at a temperature of 1473 to 2073 K which is equal to or lower than the melting point of the coating material,
1673-1873K is more preferable.

【0019】また、本発明の方法によれば、アルコール
などの有機溶媒を用いる必要がなく、また加熱や滴下も
必要ない。したがって、低コストで、かつ容易に、耐水
和性に優れたマグネシア粉末を製造することができる。
加えて、水酸化アルミニウムをスピネルに変換するため
の焼成工程を経ることにより、粒度分布がシャープにな
り、樹脂と混練した場合に、分散性に優れたマグネシア
粉末を製造することができる。
Further, according to the method of the present invention, it is not necessary to use an organic solvent such as alcohol, nor is heating or dropping necessary. Therefore, it is possible to easily manufacture the magnesia powder having excellent hydration resistance at low cost.
In addition, by going through a firing step for converting aluminum hydroxide into spinel, the particle size distribution becomes sharp, and when kneaded with a resin, magnesia powder having excellent dispersibility can be produced.

【0020】本発明で用いるアルミニウム塩は、硝酸ア
ルミニウム、硫酸アルミニウム及び塩化アルミニウムか
らなる群から選択される1の塩であることが好ましい。
アルミニウム塩の純度は、98%以上が好ましい。ま
た、水和物を用いることもできる。
The aluminum salt used in the present invention is preferably one salt selected from the group consisting of aluminum nitrate, aluminum sulfate and aluminum chloride.
The purity of the aluminum salt is preferably 98% or more. Also, a hydrate can be used.

【0021】本発明で用いるマグネシア粉末は、結晶子
径が、50×10-9m以上である。純度は限定されない
が、電子部品の絶縁特性のためには、純度95%以上が
好ましい。
The magnesia powder used in the present invention has a crystallite diameter of 50 × 10 -9 m or more. The purity is not limited, but a purity of 95% or more is preferable for the insulating properties of electronic parts.

【0022】本発明で用いるマグネシアの結晶子径が、
50×10-9m以上であることが好ましい。これは、耐
水和性を改善させるため、結晶子径が50×10-9m以
上のマグネシアを用いることにより、マグネシア粒子の
表面上のみに水酸化アルミニウムを析出させ得るためで
ある。結晶粒子径が50×10-9m以上のマグネシア
は、より微細な粉末に比して、反応性が低い。そのた
め、マグネシア表面上のみで上記の反応が進行する結
果、マグネシア粒子の表面に水酸化アルミニウムを均一
に析出させることができる。また、マグネシアの平均粒
径は、5×10-6〜500×10-6mが好ましく、10
×10-6〜100×10-6mがより好ましい。平均粒径
は、マグネシアへの被覆の効率及び被覆量、そして機械
的及び電気的特性に影響を与える。本発明の方法によれ
ば、マグネシアを被覆する成分は、AlとMgとの反応
による複酸化物であり、マグネシアの高熱伝導性及び高
電気絶縁性を低下させない。
The crystallite size of magnesia used in the present invention is
It is preferably 50 × 10 −9 m or more. This is because aluminum hydroxide can be deposited only on the surface of the magnesia particles by using magnesia having a crystallite diameter of 50 × 10 −9 m or more in order to improve hydration resistance. Magnesia having a crystal particle size of 50 × 10 −9 m or more has low reactivity as compared with a finer powder. Therefore, as a result of the above reaction proceeding only on the magnesia surface, aluminum hydroxide can be uniformly deposited on the surface of the magnesia particles. The average particle size of magnesia is preferably 5 × 10 −6 to 500 × 10 −6 m, and 10
× 10 −6 to 100 × 10 −6 m is more preferable. The average particle size affects the efficiency and amount of coating on magnesia, and the mechanical and electrical properties. According to the method of the present invention, the component that coats magnesia is a complex oxide formed by the reaction of Al and Mg, and does not deteriorate the high thermal conductivity and high electrical insulation of magnesia.

【0023】本発明によれば、本発明の特性を有するマ
グネシアは、公知の方法を用いて形成することができ
る。例えば、電融法、焼結法等を用いて形成することが
できる。
According to the present invention, magnesia having the characteristics of the present invention can be formed using known methods. For example, it can be formed using an electrofusion method, a sintering method, or the like.

【0024】本発明による被覆酸化マグネシウムにおい
て、平均粒径は、5×10-6〜500×10-6mが好ま
しく、10×10-6〜100×10-6mがより好まし
い。BET比表面積は、1.0×103m2/kg以下が好ま
しく、0.5×103m2/kg以下がより好ましい。
In the coated magnesium oxide according to the present invention, the average particle size is preferably 5 × 10 −6 to 500 × 10 −6 m, more preferably 10 × 10 −6 to 100 × 10 −6 m. The BET specific surface area is preferably 1.0 × 10 3 m 2 / kg or less, more preferably 0.5 × 10 3 m 2 / kg or less.

【0025】[0025]

【実施例】本発明を実施例により具体的に説明するが、
本発明は以下の実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described with reference to Examples.
The present invention is not limited to the examples below.

【0026】実施例1 (a)結晶子径58.3×10-9mである酸化マグネシ
ウム(タテホ化学工業(株)製KMAO−H)を、アル
ミナボールミルを用いて、粒径45×10-6m以下に粉
砕した。4%硝酸アルミニウム水溶液〔Al(NO3)3
9H2O〕(関東化学(株)製特級試薬)中のAl量を
Al23に換算して、混合比が、酸化マグネシウムに対
し、11mass%になるように添加し、400〜500rp
mで600s撹拌混合した。 (b)撹拌混合後、ろ過し、ケーキができ始めたところ
で、蒸留水を用いて、残留硝酸アルミニウムを除去する
ため、充分に水洗した。水洗したケーキを、脱水した。
このケーキを、乾燥機を用いて、383Kで一晩乾燥し
た。乾燥したケーキを、ミルで60s解砕して、原料の
酸化マグネシウム粉末と同程度の粒径に調整した。 (c)上記の(b)工程の粉末40×10-3kgを、1×10-4
3容のアルミナるつぼに入れ、空気中に、1673Kで
3600s焼成した。焼成後、炉中で1223Kまで放
冷後、炉からるつぼを取り出し、室温で急冷して、熱伝
導性フィラー試料を得た。 試料のBET比表面積、平均粒径及び耐湿性を測定し
た。表1に、結果を示す。
Example 1 (a) Magnesium oxide having a crystallite size of 58.3 × 10 −9 m (KMAO-H manufactured by Tateho Chemical Industry Co., Ltd.) was used with an alumina ball mill to have a particle size of 45 × 10 −. It was crushed to 6 m or less. 4% aluminum nitrate aqueous solution [Al (NO 3 ) 3 ·
9H 2 O] (special grade reagent manufactured by Kanto Chemical Co., Inc.) was converted to Al 2 O 3 and added so that the mixing ratio was 11 mass% with respect to magnesium oxide, and 400 to 500 rp was added.
The mixture was stirred and mixed at 600 m for 600 s. (b) After stirring and mixing, the mixture was filtered, and when a cake was formed, it was thoroughly washed with distilled water to remove residual aluminum nitrate. The cake washed with water was dehydrated.
The cake was dried overnight at 383K using a dryer. The dried cake was crushed for 60 s with a mill to adjust the particle size to the same level as the raw material magnesium oxide powder. (c) 40 × 10 −3 kg of the powder of the above step (b) is added to 1 × 10 −4
It was put in an alumina crucible having a volume of m 3 and fired in air at 1673 K for 3600 s. After the firing, the crucible was taken out from the furnace after being left to cool to 1223 K in the furnace, and rapidly cooled at room temperature to obtain a heat conductive filler sample. The BET specific surface area, average particle size and moisture resistance of the sample were measured. The results are shown in Table 1.

【0027】BET比表面積: ガス吸着法により、フ
ローソーブII2300島津製作所製を用いて、粉末試
料の比表面積を測定した。 平均粒径: レーザー回折・散乱法による粒度分布測定
装置(マイクロトラックHRA)を用いて、粉末試料の
体積平均粒径を測定した。 耐湿性試験: 得られた試料10×10-3kgを、温度3
33K、湿度90%に設定した恒温恒湿器に8日間保管
し、質量増加率を測定して、耐湿性を評価した。
BET Specific Surface Area: The specific surface area of the powder sample was measured by a gas adsorption method using Flowsorb II2300 manufactured by Shimadzu Corporation. Average particle size: The volume average particle size of the powder sample was measured using a particle size distribution measuring device (Microtrac HRA) by a laser diffraction / scattering method. Moisture resistance test: 10 x 10 -3 kg of the obtained sample was measured at a temperature of 3
It was stored in a thermo-hygrostat set at 33 K and humidity of 90% for 8 days, and the mass increase rate was measured to evaluate the humidity resistance.

【0028】実施例2 実施例1で作製した試料に、エポキシシランを1.0ma
ss%添加し、60s撹拌混合して表面処理し、次いで4
22Kで7200s乾燥させた。得られた試料231重
量部を、オルソクレゾールノボラック型エポキシ樹脂5
1.8重量部、ノボラック型フェノール樹脂46.2重
量部、トリフェニルホスフィン1重量部及びカルナバワ
ックス2重量部と、擂解機を用いて、600s混合粉砕
した。その後、混合物を、二本ロールを用いて、373
Kで300s混練し、次いでこの混練物を10メッシュ
以下に更に粉砕し、φ38×t15mmのペレットを作製
した。このペレットを、7MPa、448Kで180s間加
圧成型し、次いで453Kで18×103s間ポストキュ
アを行い、φ50×t3mmの成型体を得た。この成型体
について、耐候性試験を行い、外見変化を観察した。表
2に、結果を示す。
Example 2 Epoxysilane was added to the sample prepared in Example 1 at 1.0 ma.
Add ss%, stir and mix for 60 s for surface treatment, then 4
It was dried at 22K for 7200s. 231 parts by weight of the obtained sample was used as an orthocresol novolac type epoxy resin 5
Using 1.8 parts by weight, 46.2 parts by weight of novolac type phenol resin, 1 part by weight of triphenylphosphine and 2 parts by weight of carnauba wax, 600 s were mixed and pulverized using a disintegrator. Then, the mixture is 373 using a two-roll.
The mixture was kneaded for 300 s at K, and then this kneaded material was further pulverized to 10 mesh or less to produce pellets of φ38 × t15 mm. The pellets were pressure molded at 7 MPa and 448 K for 180 s, and then post-cured at 453 K for 18 × 10 3 s to obtain a molded body of φ50 × t3 mm. This molded product was subjected to a weather resistance test, and changes in appearance were observed. The results are shown in Table 2.

【0029】耐候性試験:得られた成型体を、温度33
3K、湿度90%に設定した恒温恒湿器に8日間保管
し、外観を観察して、樹脂との混練後の耐湿性を評価し
た。
Weather resistance test: The obtained molded body was subjected to a temperature of 33
It was stored in a thermo-hygrostat set at 3K and a humidity of 90% for 8 days, and the appearance was observed to evaluate the moisture resistance after kneading with the resin.

【0030】比較例1 酸化マグネシウム(タテホ化学工業(株)製KMAO−
H)を、アルミナボールミルを用いて、粒径45×10
-6m以下に粉砕して、比較例1の試料を得た。更なる処
理を施さずに、比較例1の試料を得た。実施例1と同様
にして、試料を試験した。表1に、結果を示す。
Comparative Example 1 Magnesium oxide (KMAO-manufactured by Tateho Chemical Industry Co., Ltd.)
H) with an alumina ball mill having a particle size of 45 × 10
The sample of Comparative Example 1 was obtained by crushing to -6 m or less. A sample of Comparative Example 1 was obtained without further treatment. Samples were tested as in Example 1. The results are shown in Table 1.

【0031】比較例2 酸化マグネシウム(タテホ化学工業(株)KMAO−
H)を、アルミナボールミルを用いて、粒径45×10
-6m以下に粉砕し、その後、エポキシシランを1.0ma
ss%添加し、60s撹拌混合して、表面処理した。次い
で、423Kで7200s乾燥して、比較例2の試料を
得た。実施例1と同様にして、試料を試験した。表1
に、結果を示す。
Comparative Example 2 Magnesium oxide (KMAO-manufactured by Tateho Chemical Industry Co., Ltd.)
H) with an alumina ball mill having a particle size of 45 × 10
Crushed to less than -6 m and then added epoxy silane to 1.0 ma
ss% was added, and the mixture was stirred and mixed for 60 seconds for surface treatment. Then, it was dried at 423 K for 7200 s to obtain a sample of Comparative Example 2. Samples were tested as in Example 1. Table 1
The results are shown in.

【0032】比較例3 比較例2の試料を用いた以外は、実施例2と同様にし
て、成型体を作成した。得られた成型体に耐候性試験を
行い、外観の変化を観察した。表2に、結果を示す。
Comparative Example 3 A molded body was prepared in the same manner as in Example 2 except that the sample of Comparative Example 2 was used. The molded body thus obtained was subjected to a weather resistance test, and changes in appearance were observed. The results are shown in Table 2.

【0033】[0033]

【表1】 [Table 1]

【0034】表1から明らかなように、本発明の方法に
よる実施例1は、Alを湿式で添加して、水洗し、その
後1673Kで焼成することにより、表面にMgの複合
体であるAl2MgO4が一様に形成するため、水分吸着
による質量増加を抑えることができ、耐湿性に優れてい
た。
As is clear from Table 1, in Example 1 according to the method of the present invention, Al was wet-added, washed with water, and then calcined at 1673 K to form a composite of Al 2 on the surface of Mg 2. Since MgO 4 was formed uniformly, it was possible to suppress an increase in mass due to water adsorption, and it was excellent in moisture resistance.

【0035】本発明の実施例1に係る熱伝導性フィラー
(Al添加1673K焼成品)は、全く被覆しない比較
例1よりも耐湿性に優れていた。また、実施例1は、比
較例2と同等又はそれ以上の耐水和性がある。
The heat conductive filler (Al-added 1673K fired product) according to Example 1 of the present invention was superior in moisture resistance to Comparative Example 1 which was not coated at all. In addition, Example 1 has hydration resistance equal to or higher than that of Comparative Example 2.

【0036】[0036]

【表2】 [Table 2]

【0037】本発明の実施例2は、樹脂と混練した後で
あっても、耐候性は維持された。しかし、エポキシシラ
ンで表面処理した比較例3は白化現象が観察され、樹脂
との混練後の耐候性はほとんどなかった。
In Example 2 of the present invention, the weather resistance was maintained even after kneading with the resin. However, the whitening phenomenon was observed in Comparative Example 3 surface-treated with epoxysilane, and there was almost no weather resistance after kneading with the resin.

【0038】[0038]

【発明の効果】本発明の方法によれば、電気絶縁特性と
熱伝導性に優れるマグネシア粉末に、例えば、半導体封
止用樹脂等のフィラーとして用いるため、耐水和性(耐
湿性)、被覆層の機械的強度、更に樹脂への分散性を、
低コストで容易に付与することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, since the magnesia powder having excellent electric insulating properties and thermal conductivity is used as a filler such as a resin for semiconductor encapsulation, hydration resistance (moisture resistance), coating layer The mechanical strength of, and further dispersibility in resin,
It can be easily applied at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の製造工程流れである。FIG. 1 is a manufacturing process flow of a method of the present invention.

【符号の説明】[Explanation of symbols]

1 芯粒子、酸化マグネシウム、MgO 2 水酸化アルミニウム、Al(OH)3 3 被覆層、被覆材、スピネル、Al2MgO4 1 core particle, magnesium oxide, MgO 2 aluminum hydroxide, Al (OH) 3 3 coating layer, coating material, spinel, Al 2 MgO 4

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平津 豊 兵庫県赤穂市加里屋字加藤974番地 タテ ホ化学工業株式会社内 Fターム(参考) 4G076 AA02 AB02 BF05 CA02 CA26 CA28 DA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yutaka Hirats             974 Kato, Kariya, Ako City, Hyogo Vertical             Ho Chemical Industry Co., Ltd. F-term (reference) 4G076 AA02 AB02 BF05 CA02 CA26                       CA28 DA20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム塩の水溶液と、酸化マグネ
シウム粉末を混合し、固体分をろ別し、水洗し、乾燥さ
せて、焼成することにより、該酸化マグネシウム粉末の
表面を、アルミニウムとマグネシウムの複酸化物を含む
被覆層で被覆することを特徴とする被覆酸化マグネシウ
ム粉末の製造方法。
1. An aqueous solution of an aluminum salt and magnesium oxide powder are mixed, solids are separated by filtration, washed with water, dried and calcined, whereby the surface of the magnesium oxide powder is mixed with aluminum and magnesium. A method for producing a coated magnesium oxide powder, which comprises coating with a coating layer containing an oxide.
【請求項2】 該アルミニウム塩が、硝酸アルミニウ
ム、硫酸アルミニウム及び塩化アルミニウムからなる群
から選択される1の塩である、請求項1記載の方法。
2. The method of claim 1, wherein the aluminum salt is one salt selected from the group consisting of aluminum nitrate, aluminum sulfate and aluminum chloride.
【請求項3】 該酸化マグネシウム粒子の結晶子径が、
50×10-9m以上である、請求項1又は2記載の方
法。
3. The crystallite size of the magnesium oxide particles is
The method according to claim 1 or 2, which has a size of 50 × 10 -9 m or more.
【請求項4】 該被覆酸化マグネシウム粉末中のアルミ
ニウムとマグネシウムの複酸化物の構成比が、該被覆酸
化マグネシウムに対し、5〜50mass%である、請求項
1〜3のいずれか1項記載の方法。
4. The coated magnesium oxide powder according to claim 1, wherein the composition ratio of the aluminum and magnesium double oxides is 5 to 50 mass% with respect to the coated magnesium oxide. Method.
【請求項5】 Al23に換算した該アルミニウム塩の
混合比が、該酸化マグネシウム粉末に対し、1〜35ma
ss%である、請求項1〜4のいずれか1項記載の方法。
5. The mixing ratio of the aluminum salt converted to Al 2 O 3 is 1 to 35 ma based on the magnesium oxide powder.
The method according to claim 1, wherein the method is ss%.
【請求項6】 被覆材の融点以下の焼成温度1473〜
2073Kで焼成する、請求項1〜5のいずれか1項記
載の方法。
6. A firing temperature 1473 to below the melting point of the coating material.
The method according to any one of claims 1 to 5, which is fired at 2073K.
【請求項7】 該被覆酸化マグネシウムにおいて、平均
粒径が、5×10-6〜500×10-6mであり、BET
比表面積が、1.0×103m2/kg以下である、請求項1
〜6のいずれか1項記載の方法。
7. The coated magnesium oxide having an average particle diameter of 5 × 10 −6 to 500 × 10 −6 m, and BET
2. The specific surface area is 1.0 × 10 3 m 2 / kg or less.
7. The method according to any one of 6 to 6.
JP2001222634A 2001-07-24 2001-07-24 Method for manufacturing coated magnesium oxide powder Pending JP2003034522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222634A JP2003034522A (en) 2001-07-24 2001-07-24 Method for manufacturing coated magnesium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222634A JP2003034522A (en) 2001-07-24 2001-07-24 Method for manufacturing coated magnesium oxide powder

Publications (1)

Publication Number Publication Date
JP2003034522A true JP2003034522A (en) 2003-02-07

Family

ID=19056086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222634A Pending JP2003034522A (en) 2001-07-24 2001-07-24 Method for manufacturing coated magnesium oxide powder

Country Status (1)

Country Link
JP (1) JP2003034522A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
US8357737B2 (en) * 2005-11-04 2013-01-22 Tosoh Corporation Polyarylene sulfide composition
WO2015122427A1 (en) * 2014-02-14 2015-08-20 宇部マテリアルズ株式会社 Magnesium oxide, thermally conductive filler, thermally conductive resin composition comprising same, and method for producing magnesium oxide
JP2015199625A (en) * 2014-04-08 2015-11-12 Dic株式会社 Core-shell type structure, manufacturing method thereof, and heat conductive resin composition
JP2016135841A (en) * 2015-01-15 2016-07-28 大日精化工業株式会社 Heat-conductive composite oxide, heat-conductive resin composition and coating liquid
WO2016147862A1 (en) * 2015-03-16 2016-09-22 宇部マテリアルズ株式会社 Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
JPWO2005033215A1 (en) * 2003-10-03 2006-12-14 タテホ化学工業株式会社 Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
KR100785197B1 (en) * 2003-10-03 2007-12-11 다테호 가가쿠 고교 가부시키가이샤 Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
US8357737B2 (en) * 2005-11-04 2013-01-22 Tosoh Corporation Polyarylene sulfide composition
WO2015122427A1 (en) * 2014-02-14 2015-08-20 宇部マテリアルズ株式会社 Magnesium oxide, thermally conductive filler, thermally conductive resin composition comprising same, and method for producing magnesium oxide
JP6076510B2 (en) * 2014-02-14 2017-02-08 宇部マテリアルズ株式会社 Magnesium oxide, thermally conductive filler, thermally conductive resin composition containing the same, and method for producing magnesium oxide
US9938443B2 (en) 2014-02-14 2018-04-10 Ube Material Industries, Ltd. Magnesium oxide material,thermally conductive filler and thermally conductive resin composition containing the same, and method of producing magnesium oxide material
JP2015199625A (en) * 2014-04-08 2015-11-12 Dic株式会社 Core-shell type structure, manufacturing method thereof, and heat conductive resin composition
JP2016135841A (en) * 2015-01-15 2016-07-28 大日精化工業株式会社 Heat-conductive composite oxide, heat-conductive resin composition and coating liquid
WO2016147862A1 (en) * 2015-03-16 2016-09-22 宇部マテリアルズ株式会社 Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder
US10501635B2 (en) 2015-03-16 2019-12-10 Ube Material Industries, Ltd. Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder

Similar Documents

Publication Publication Date Title
JP2731854B2 (en) Method for producing high hydration resistant and high fluidity magnesium oxide
JP3850371B2 (en) Resin composition containing magnesium oxide powder
JP2009007192A (en) Magnesium oxide particle agglomerate and method for producing the same
JP4046491B2 (en) Method for producing double oxide-coated magnesium oxide
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
Simonenko et al. Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics
CN1330574C (en) Method for producing alpha -alumina powder
JP2003034522A (en) Method for manufacturing coated magnesium oxide powder
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
JP5125258B2 (en) Spherical magnesium oxide particles and method for producing the same
CN108046620A (en) It is a kind of that the method containing chrome-magnesite is prepared by magnesite light burnt powder
JPH0137331B2 (en)
JPWO2003097527A1 (en) Particulate aluminum nitride and method for producing the same
KR102262069B1 (en) Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof
CN1631772A (en) Method for preparing aluminium nitride powder by carbothermic reduction method
JPH07215707A (en) Large sized aluminum nitride powder and its production
JPH0952704A (en) Aluminum nitride granule and its production
WO2020203710A1 (en) Spherical magnesium oxide, method for producing same, heat-conductive filler, and resin composition
JP5877745B2 (en) Composite metal hydroxide particles and resin composition containing the same
TW202132222A (en) Coated zirconia microparticle and method for producing same
JPS6360106A (en) Spinel powder and its production
JP2001151512A (en) Cement coloring pigment
JPS6235970B2 (en)
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
JP2002316818A (en) Hydroxide and oxide of indium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710