JPWO2004076040A1 - Selective permeable membrane cleaning agent and cleaning method - Google Patents

Selective permeable membrane cleaning agent and cleaning method Download PDF

Info

Publication number
JPWO2004076040A1
JPWO2004076040A1 JP2005502871A JP2005502871A JPWO2004076040A1 JP WO2004076040 A1 JPWO2004076040 A1 JP WO2004076040A1 JP 2005502871 A JP2005502871 A JP 2005502871A JP 2005502871 A JP2005502871 A JP 2005502871A JP WO2004076040 A1 JPWO2004076040 A1 JP WO2004076040A1
Authority
JP
Japan
Prior art keywords
cleaning
permeable membrane
selective permeable
cleaning agent
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005502871A
Other languages
Japanese (ja)
Other versions
JP4458039B2 (en
Inventor
孝博 川勝
孝博 川勝
織田 信博
信博 織田
一柳 直人
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of JPWO2004076040A1 publication Critical patent/JPWO2004076040A1/en
Application granted granted Critical
Publication of JP4458039B2 publication Critical patent/JP4458039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/261Alcohols; Phenols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5022Organic solvents containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • B01D2321/2075Ultrasonic treatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Detergent Compositions (AREA)

Abstract

選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる選択性透過膜の洗浄剤および洗浄方法を提案する。分子量400以下のポリオール、および必要によりさらに有機溶媒を含む洗浄剤を、モジュール1の濃縮液室3に供給して選択性透過膜2と接触させて洗浄を行い、必要によりさらに水槽6またはアルカリ槽8から、水またはアルカリ液をモジュール1の濃縮液室3に供給して洗浄を行い、選択性透過膜2性能を回復させる。A selective permeable membrane that has a high cleaning effect on the selective permeable membrane, does not deteriorate the selective permeable membrane, is safe for humans and the environment, has excellent handleability, and has reduced performance such as permeation flux. We propose a cleaning agent and a cleaning method for a selective permeable membrane that can be efficiently cleaned in a short time to restore performance. A cleaning agent containing a polyol having a molecular weight of 400 or less and, if necessary, further containing an organic solvent is supplied to the concentrated liquid chamber 3 of the module 1 to be brought into contact with the selective permeable membrane 2 for cleaning. From 8, water or an alkaline solution is supplied to the concentrate chamber 3 of the module 1 to perform cleaning, and the performance of the selective permeable membrane 2 is recovered.

Description

本発明は、逆浸透膜、ナノ濾過膜等の選択性透過膜を洗浄するための洗浄剤、およびその洗浄剤を使用する洗浄方法に関し、さらに詳しくは、液体の濃縮、脱塩、純水製造等の水処理、あるいはその他の処理などによって汚染され、透過流束その他の性能の低下した選択性透過膜を洗浄して性能を回復させるための洗浄剤、およびその洗浄剤を使用する洗浄方法に関するものである。  The present invention relates to a cleaning agent for cleaning a selective permeable membrane such as a reverse osmosis membrane and a nanofiltration membrane, and a cleaning method using the cleaning agent, and more particularly, concentration of liquid, desalting, pure water production The present invention relates to a cleaning agent for cleaning a permeation flux and other selective permeation membranes which have been deteriorated by being contaminated by water treatment such as water treatment or other treatments, and a cleaning method using the cleaning agent. Is.

逆浸透膜、限外ろ過膜等の選択性透過膜を用いて、液体の濃縮、脱塩、純水製造その他の水処理を行うと、選択性透過膜は種々の汚染物質によって汚染され、透過流束が低下したり、選択透過率が低下する。このため性能の低下した選択性透過膜を洗浄剤で洗浄して、性能を回復させることが行われている。
従来、透過流束等の性能の低下した選択性透過膜の洗浄方法では、酸、アルカリ、有機溶媒または界面活性剤を洗浄剤として用いることが多い。例えば日本特許公開昭54−99783号公報には、洗浄剤としてアルカリを用いる洗浄方法が示されているが、この方法では、汚染の度合いが激しいと短時間で透過流束を回復させることは困難であり、また透過流束の回復率も100%には至らない。
日本特許公開昭52−125475号公報や日本特許公開昭58−119304号公報などには、高濃度の有機溶媒を使用する方法が示されている。しかしこの方法では、汚染物質が有機物である場合に高い洗浄効果をもたらすが、膜や膜モジュールを劣化させる危険性があり、実装置に適用することができないのが現状である。例えばメタノールやエタノール、あるいはアセトンなどの有機溶媒は、透過流束の低下した逆浸透膜やナノ濾過膜に対する洗浄力が高い反面、高濃度の場合には膜および膜モジュールを劣化させてしまう。そして膜および膜モジュールを劣化させない濃度では高い洗浄効果が得ることができないという問題点がある。
一方、日本特許公開昭55−51406号公報には、エチレングリコールのアルキルエーテル類を用いる洗浄方法が示されている。しかし、このようなエチレングリコールのアルキルエーテル類は親水性基と疎水性基を有し、一価アルコールに近い構造を有する。そして有害性が高く、刺激臭が強いため、PRTR(環境汚染排出移動登録)法にも指定されており、作業環境評価値も5ppm以下と、使用濃度を高くできないという問題点がある。
本発明の目的は、選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる選択性透過膜の洗浄剤および洗浄方法を提案することである。
When selective permeable membranes such as reverse osmosis membranes and ultrafiltration membranes are used for liquid concentration, desalting, pure water production and other water treatment, the selective permeable membranes are contaminated by various contaminants and permeate. The flux decreases and the selective permeability decreases. For this reason, the selective permeable membrane with reduced performance is washed with a cleaning agent to recover the performance.
Conventionally, in selective permeation membrane cleaning methods with reduced performance such as permeation flux, acids, alkalis, organic solvents or surfactants are often used as cleaning agents. For example, Japanese Patent Publication No. 54-99783 discloses a cleaning method using an alkali as a cleaning agent. However, in this method, it is difficult to recover the permeation flux in a short time if the degree of contamination is high. In addition, the recovery rate of the permeation flux does not reach 100%.
Japanese Patent Publication No. 52-125475, Japanese Patent Publication No. 58-119304, and the like show a method of using a high concentration organic solvent. However, this method provides a high cleaning effect when the pollutant is an organic substance, but there is a risk of deteriorating the membrane or the membrane module, and it cannot be applied to an actual apparatus. For example, an organic solvent such as methanol, ethanol, or acetone has a high detergency for a reverse osmosis membrane or a nanofiltration membrane having a reduced permeation flux, but deteriorates the membrane and the membrane module when the concentration is high. Further, there is a problem that a high cleaning effect cannot be obtained at a concentration that does not deteriorate the membrane and the membrane module.
On the other hand, Japanese Patent Publication No. 55-51406 discloses a cleaning method using an alkyl ether of ethylene glycol. However, such ethylene ether alkyl ethers have a hydrophilic group and a hydrophobic group, and have a structure close to that of a monohydric alcohol. And since it is highly harmful and has a strong irritating odor, it is also specified in the PRTR (Environmental Pollution Discharge Transfer Registration) method, and there is a problem that the working environment evaluation value is 5 ppm or less and the use concentration cannot be increased.
The purpose of the present invention is to have a high cleaning effect on the selective permeable membrane, without degrading the selective permeable membrane, safe for humans and the environment, excellent in handleability, and reduced in performance such as permeation flux. Another object of the present invention is to propose a cleaning agent and a cleaning method for a selective permeable membrane that can recover the performance by efficiently cleaning the selected permeable membrane in a short time.

本発明は次の選択性透過膜の洗浄剤および洗浄方法である。
(1) 分子量400以下のポリオールを含む選択性透過膜の洗浄剤。
(2) さらに有機溶媒を含む上記(1)記載の洗浄剤。
(3) ポリオールがエチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、ポリグリコールおよび糖アルコールからなる群から選ばれる少なくとも1つである上記(1)または(2)記載の洗浄剤。
(4) 有機溶媒が1価アルコール、エーテル、ケトンおよびアミドからなる群から選ばれる少なくとも1つである上記(2)または(3)に記載の洗浄剤。
(5) 洗浄対象の選択性透過膜は、分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤が付着したものである上記(1)ないし(4)のいずれかに記載の洗浄剤。
(6) 透過流束が低下した選択性透過膜を、分子量400以下のポリオールを含む洗浄剤で洗浄する選択性透過膜の洗浄方法。
(7) 洗浄剤はさらに有機溶媒を含む上記(6)記載の方法。
(8) 洗浄剤による洗浄前および/または洗浄後に、他の洗浄方法で前処理洗浄および/または後処理洗浄する上記(6)または(7)記載の方法。
(9) 洗浄は洗浄剤を選択性透過膜に接触させて行う上記(6)ないし(8)のいずれかに記載の方法。
本発明において洗浄の対象となる選択性透過膜は、透過流束、選択透過率、その他の性能の低下した選択性透過膜である。ここで選択性透過膜とは、逆浸透膜あるいはナノ濾過膜など、特定の物質、成分等を選択的に透過させる半透膜であり、その用途は制限されず、一般的な用途のものが対象となる。選択性透過膜の材質としては特に制限されず、例えばポリアミド系透過膜、ポリスルホン系透過膜、ポリイミド系透過膜、セルロース系透過膜などが挙げられる。また洗浄の対象となるのは選択性透過膜自体でもよく、膜モジュールでもよい。洗浄の対象となる膜モジュールには特に制限はなく、例えば管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。
選択性透過膜の性能低下の原因は何でもよいが、液体の濃縮、脱塩、純水製造等の水処理、あるいはプロセス処理、その他の処理など、逆浸透膜の使用によって汚染されたものが一般的である。汚染物質としても制限はなく、無機物、有機物など、あらゆる汚染物質が対象となるが、特に分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤が付着したものに対する洗浄効果が優れている。
ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、特にポリエチレングリコール、あるいはこれらを構成成分とするノニオン性界面活性剤は、選択性透過膜との親和性が高いため、選択性透過膜の表面や細孔に付着して性能低下の原因となる。このうち分子量400以下のものは親水性が高いため、水洗等により容易に洗浄除去されるが、分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤が付着した選択性透過膜は、水の透過では除去されず、性能低下の原因となり、水による洗浄除去が困難である。
本発明者らは、このような汚染物質が付着した選択性透過膜の洗浄について研究を重ねた結果、このような膜汚染物質を除去するためには、洗浄液として用いる物質がOH基を有すること、それも複数有する化合物が有効であることを見出した。本発明はこのような知見に基づいて完成されたものである。
本発明の選択性透過膜の洗浄剤は、分子量400以下のポリオールを含む洗浄剤であり、ポリオールの他にさらに有機溶媒を含む洗浄剤が好ましい。本発明の選択性透過膜の洗浄剤は、さらに他の成分を含んでいてもよい。本発明の選択性透過膜の洗浄剤は、使用時には水溶液として使用されることが多いが、製品形態としては、水を含んでいなくてもよい。
ポリオールは複数のOH基を有する化合物であり、エチレングリコール、プロピレングリコール、トリメチレングリコール等のアルキレングリコール;グリセリン;ジエチレングリコール、その他のポリアルキレングリコール等のポリグリコール;およびエリトリトール、マンニトール等の糖アルコールなどが挙げられる。これらのポリオールは親水性のものが好ましく、炭素数2〜6、OH/C比が0.5〜1のものが好ましい。これらのポリオールは一種単独で用いてもよいが、2種以上の混合物として用いることにより洗浄効果を上げることができるので好ましい。汚染物質にノニオン界面活性剤が含まれている場合には、ノニオン界面活性剤の溶解性を増加させて洗浄効果を高めるために、ジエチレングリコール等のポリアルキレングリコールと他のポリオールとを併用するのが好ましい。
ポリオールとともに用いる有機溶媒としては、1価アルコール、エーテル、ケトンおよびアミドなど、従来から用いられている有機溶媒が使用できる。これらの有機溶媒としては、極性溶媒が好ましく、炭素数1〜3のものが好ましい。1価アルコールとしては例えばメタノールやエタノールなど、エーテルとしては例えば上記1価アルコールまたはポリオールのエーテル、ケトンとしては例えばアセトン、アセチルアセトンなど、アミドとしては例えばホルムアミドなどが挙げられる。これらの有機溶媒も一種単独で含まれていてもよく、2種以上の混合物でもよい。
選択性透過膜の洗浄剤として用いるポリオール、およびポリオールと有機溶媒の混合物は、それぞれ水を含まない状態で用いてもよいが、水溶液として用いてもよい。これらの水溶液の濃度は特に限定されないが、通常15〜90重量%、好ましくは35〜60重量%とすることができる。ポリオールおよび有機溶媒を用いる場合は、ポリオールを通常10〜70重量%、好ましくは30〜60重量%、有機溶媒を5〜30重量%とすることができる。
洗浄剤としてポリオールを単独で用いることにより、前記の汚染物質を洗浄除去することができるが、コストを低下させるために、あるいは洗浄効果を上げるために、ポリオールおよび有機溶媒を併用するのがよい場合がある。有機溶媒は従来より用いられて優れた洗浄効果を示すが、高濃度で使用する必要があるため、選択性透過膜を劣化させ、人や環境に対して安全でなく、取扱性にも劣るなどの問題点があった。これに対して有機溶媒を用い、ポリオールと混合することによって有機溶媒の使用濃度を低くできるため、このような問題点がないうえ、相乗的に優れた洗浄効果を得ることができる。
本発明の選択性透過膜の洗浄方法は、透過流束等の性能が低下した選択性透過膜を、上記のポリオールを含む洗浄剤、あるいはポリオールおよび有機溶媒を含む洗浄剤で洗浄する方法である。洗浄の具体的な方法は、選択性透過膜を洗浄剤と接触させる方法があり、洗浄剤液への浸漬、平行流または攪拌流による洗浄などが好ましいが、洗浄剤を選択性透過膜に透過させて洗浄を行うこともできる。洗浄時の圧力は特に制限はなく、浸漬の場合は加圧しなくてもよいが、平行流、攪拌流または透過による洗浄の場合は、被処理液透過時の圧力以下の圧力で加圧することができる。洗浄時間、すなわち洗浄剤と接触させる時間は、汚染の程度、洗浄剤の濃度等により変動するが、一般的には1〜8時間とすることができる。
上記の洗浄剤で洗浄を行うことにより、選択性透過膜に付着している汚染物質は洗浄剤に溶解して流出し、選択性透過膜の低下した透過流束、選択透過率等の性能を回復させることができる。本発明の洗浄剤は、選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる。この場合、選択性透過膜の使用により付着した汚染物質のほかに、使用前から付着していた汚染物質も除去されて、除去率や性能回復率が100%を超えることがある。
本発明の洗浄剤に含まれる分子量400以下のポリオールは、水に対しても、高分子のポリアルキレングリコールまたはノニオン性界面活性剤に対しても強い親和性を有するため、選択性透過膜に付着した汚染物質が分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤でも、洗浄効果が高く、これらの汚染物質は洗浄剤に溶解して流出し、選択性透過膜を劣化させることがなく、選択性透過膜の性能が回復する。
本発明では、上記の洗浄剤による洗浄前および/または洗浄後に、さらに水、水酸化ナトリウム等のアルカリ、硫酸等の酸などの他の洗浄液による洗浄方法や超音波洗浄などの物理的洗浄方法で前処理洗浄および/または後処理洗浄するのが好ましい。前処理洗浄は、汚染物を予備的に剥離するか、または剥離しやすくするような他の洗浄液または洗浄方法により、前処理として予備的な洗浄を行う。例えば汚染物が強固に付着しているような場合には、アルカリ等の他の洗浄液による洗浄や超音波洗浄などにより、汚染物を剥離しやすくして洗浄剤による洗浄を容易にすることができる。
後処理洗浄は、残留する洗浄剤および剥離した汚染物の除去するような他の洗浄液または洗浄方法により、後処理として補完的な洗浄を行う。洗浄剤として用いた低分子量のポリオールが残留する場合は水による洗浄で十分であるが、分子量が400に近づくにしたがってポリオールが残留しやすくなるので、これを除去するためにアルカリ洗浄液で洗浄すると、残留するポリオールは容易に除去される。アルカリ洗浄液のアルカリ濃度は任意であるが、pH9〜12のアルカリ水溶液とするのが好ましい。これを用いる洗浄方法も任意であるが、上記の洗浄剤による洗浄と同様とすることができる。
本発明の洗浄剤で洗浄後、さらに他の洗浄液で洗浄することにより、洗浄剤で除去されずに残留する汚染物質が洗浄除去され、選択性透過膜の性能を十分に回復するとともに、その後の処理工程において、汚染物質の流出を防止することができる。本発明の洗浄は他の洗浄剤による洗浄と組み合わせて行うこともできる。
本発明の選択性透過膜の洗浄剤によれば、分子量400以下のポリオールを含むため、選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる。
本発明の選択性透過膜の洗浄方法によれば、上記の洗浄剤を用いることにより、選択性透過膜を劣化させることなく、安全に、かつ取扱性よく、性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができ、洗浄効果が高い。
The present invention provides the following selective permeable membrane cleaning agent and cleaning method.
(1) A cleaning agent for a selective permeable membrane containing a polyol having a molecular weight of 400 or less.
(2) The cleaning agent according to (1), further comprising an organic solvent.
(3) The cleaning agent according to (1) or (2), wherein the polyol is at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, glycerin, polyglycol and sugar alcohol.
(4) The cleaning agent according to (2) or (3), wherein the organic solvent is at least one selected from the group consisting of monohydric alcohols, ethers, ketones and amides.
(5) The cleaning agent according to any one of the above (1) to (4), wherein the selective permeable membrane to be cleaned is attached with a high molecular weight polyalkylene glycol having a molecular weight exceeding 400 or a nonionic surfactant. .
(6) A method for cleaning a selective permeable membrane, in which a selective permeable membrane having a reduced permeation flux is washed with a cleaning agent containing a polyol having a molecular weight of 400 or less.
(7) The method according to (6) above, wherein the cleaning agent further contains an organic solvent.
(8) The method according to (6) or (7) above, wherein pre-treatment washing and / or post-treatment washing is performed by another cleaning method before and / or after cleaning with a cleaning agent.
(9) The method according to any one of (6) to (8), wherein the cleaning is performed by bringing a cleaning agent into contact with the selective permeable membrane.
In the present invention, the selective permeable membrane to be cleaned is a selective permeable membrane with reduced permeation flux, selective permeability, and other performance. Here, the selective permeable membrane is a semipermeable membrane that selectively permeates a specific substance, component, etc., such as a reverse osmosis membrane or a nanofiltration membrane. It becomes a target. The material of the selective permeable membrane is not particularly limited, and examples thereof include a polyamide permeable membrane, a polysulfone permeable membrane, a polyimide permeable membrane, and a cellulose permeable membrane. In addition, the selective permeation membrane itself or the membrane module may be the target of washing. The membrane module to be cleaned is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
The cause of the performance degradation of the selective permeable membrane may be anything, but it is generally contaminated by the use of reverse osmosis membranes such as liquid concentration, desalting, water treatment such as pure water production, process treatment, and other treatments. Is. There is no restriction as a pollutant, and any pollutant such as an inorganic substance or an organic substance is targeted. Particularly, a cleaning effect is excellent for a polymer having a molecular weight exceeding 400 or a nonionic surfactant attached thereto. .
Polyalkylene glycols such as polyethylene glycol and polypropylene glycol, especially polyethylene glycol, or nonionic surfactants containing these as constituent components have high affinity with the selective permeable membrane, and therefore the surface and pores of the selective permeable membrane. Adheres to the surface and causes performance degradation. Of these, those having a molecular weight of 400 or less have high hydrophilicity, and thus are easily washed and removed by washing or the like. However, a selective permeable membrane to which a high molecular weight polyalkylene glycol or nonionic surfactant having a molecular weight exceeding 400 is attached is, It is not removed by permeation of water, causing performance degradation and difficult to remove with water.
As a result of repeated research on the cleaning of the selective permeable membrane to which such contaminants are attached, the present inventors have found that a substance used as a cleaning solution has an OH group in order to remove such a membrane contaminant. The present inventors have found that a compound having a plurality of them is effective. The present invention has been completed based on such findings.
The cleaning agent for a selective permeable membrane of the present invention is a cleaning agent containing a polyol having a molecular weight of 400 or less, and a cleaning agent containing an organic solvent in addition to the polyol is preferable. The selective permeable membrane cleaning agent of the present invention may further contain other components. The selective permeable membrane cleaning agent of the present invention is often used as an aqueous solution at the time of use, but the product may not contain water.
Polyols are compounds having a plurality of OH groups, such as alkylene glycols such as ethylene glycol, propylene glycol and trimethylene glycol; glycerin; polyglycols such as diethylene glycol and other polyalkylene glycols; and sugar alcohols such as erythritol and mannitol. Can be mentioned. These polyols are preferably hydrophilic and preferably have 2 to 6 carbon atoms and an OH / C ratio of 0.5 to 1. These polyols may be used alone, but are preferably used as a mixture of two or more because the cleaning effect can be improved. When the nonionic surfactant is contained in the pollutant, a polyalkylene glycol such as diethylene glycol and other polyols may be used in combination in order to increase the solubility of the nonionic surfactant and enhance the cleaning effect. preferable.
As the organic solvent used together with the polyol, conventionally used organic solvents such as monohydric alcohols, ethers, ketones and amides can be used. As these organic solvents, polar solvents are preferable, and those having 1 to 3 carbon atoms are preferable. Examples of the monohydric alcohol include methanol and ethanol, examples of the ether include ethers of the above monohydric alcohol or polyol, examples of the ketone include acetone and acetylacetone, and examples of the amide include formamide. These organic solvents may be contained alone or in a mixture of two or more.
The polyol used as the cleaning agent for the selective permeable membrane and the mixture of the polyol and the organic solvent may be used in a state not containing water, but may also be used as an aqueous solution. The concentration of these aqueous solutions is not particularly limited, but is usually 15 to 90% by weight, preferably 35 to 60% by weight. When a polyol and an organic solvent are used, the polyol is usually 10 to 70% by weight, preferably 30 to 60% by weight, and the organic solvent can be 5 to 30% by weight.
By using a polyol alone as a cleaning agent, the above contaminants can be removed by washing. However, in order to reduce costs or improve the cleaning effect, it is preferable to use a polyol and an organic solvent in combination. There is. Organic solvents have been used in the past and have excellent cleaning effects, but they need to be used at high concentrations, which degrades the selective permeable membrane, is not safe for people and the environment, and is inferior in handleability. There was a problem. On the other hand, since the use concentration of the organic solvent can be lowered by using an organic solvent and mixing with the polyol, there is no such problem and a synergistically excellent cleaning effect can be obtained.
The method for cleaning a selective permeable membrane of the present invention is a method of cleaning a selective permeable membrane with reduced performance such as permeation flux with a cleaning agent containing the above polyol or a cleaning agent containing a polyol and an organic solvent. . As a specific method of cleaning, there is a method in which the selective permeable membrane is brought into contact with the cleaning agent, and immersion in a cleaning agent solution, cleaning by parallel flow or stirring flow is preferable, but the cleaning agent permeates the selective permeable membrane. It can also be washed. The pressure at the time of washing is not particularly limited, and it is not necessary to pressurize in the case of immersion. it can. The cleaning time, that is, the time of contact with the cleaning agent varies depending on the degree of contamination, the concentration of the cleaning agent, etc., but can generally be 1 to 8 hours.
By washing with the above cleaning agent, contaminants adhering to the selective permeable membrane dissolve and flow out in the cleaning agent, and the permeation flux, selective permeability, etc., of the selective permeable membrane are reduced. Can be recovered. The cleaning agent of the present invention has a high cleaning effect on the selective permeable membrane, does not degrade the selective permeable membrane, is safe for humans and the environment, has excellent handling properties, and has a performance such as a permeation flux. The lowered selective permeable membrane can be efficiently washed in a short time to restore the performance. In this case, in addition to the contaminants attached due to the use of the selective permeable membrane, contaminants attached before use are also removed, and the removal rate and performance recovery rate may exceed 100%.
The polyol having a molecular weight of 400 or less contained in the cleaning agent of the present invention has a strong affinity for both water and a high-molecular polyalkylene glycol or nonionic surfactant, so that it adheres to the selectively permeable membrane. Even if the pollutant is a high molecular weight polyalkylene glycol or nonionic surfactant having a molecular weight of more than 400, the cleaning effect is high, and these contaminants dissolve and flow out in the cleaning agent, which may deteriorate the selective permeable membrane. The performance of the selective permeable membrane is restored.
In the present invention, before and / or after the cleaning with the above-described cleaning agent, a cleaning method using another cleaning liquid such as water, an alkali such as sodium hydroxide, an acid such as sulfuric acid, or a physical cleaning method such as ultrasonic cleaning. Pre-treatment washing and / or post-treatment washing is preferred. In the pretreatment cleaning, preliminary cleaning is performed as a pretreatment by preliminarily removing contaminants or using another cleaning liquid or a cleaning method that facilitates peeling. For example, when the contaminants are firmly attached, the contaminants can be easily peeled off by cleaning with another cleaning liquid such as alkali or ultrasonic cleaning, and cleaning with a cleaning agent can be facilitated. .
In the post-processing cleaning, complementary cleaning is performed as a post-processing by another cleaning liquid or a cleaning method for removing the remaining cleaning agent and the separated contaminants. When the low molecular weight polyol used as a cleaning agent remains, washing with water is sufficient, but since the polyol tends to remain as the molecular weight approaches 400, washing with an alkaline cleaning solution to remove this, Residual polyol is easily removed. The alkali concentration of the alkali cleaning liquid is arbitrary, but an alkaline aqueous solution having a pH of 9 to 12 is preferable. Although the cleaning method using this is arbitrary, it can be the same as the cleaning with the above-mentioned cleaning agent.
After washing with the cleaning agent of the present invention, further washing with another cleaning solution removes contaminants remaining without being removed by the cleaning agent, and sufficiently restores the performance of the selective permeable membrane. In the treatment process, the outflow of contaminants can be prevented. The cleaning of the present invention can also be performed in combination with cleaning with other cleaning agents.
According to the cleaning agent for a selective permeable membrane of the present invention, since it contains a polyol having a molecular weight of 400 or less, the cleaning effect on the selective permeable membrane is high, and the selective permeable membrane is not deteriorated. The selective permeation membrane with low performance such as permeation flux can be efficiently washed in a short time to restore the performance.
According to the method for cleaning a selective permeable membrane of the present invention, by using the above-described cleaning agent, a selective permeable membrane with reduced performance can be safely and easily handled without degrading the selective permeable membrane. It can be cleaned efficiently in a short time to restore performance, and the cleaning effect is high.

図1は、実施形態の選択性透過膜の洗浄方法を示すフロー図である。
図2は、実施例1〜2、比較例1の結果を示す透過流束の回復率のグラフである。
図3は、実施例1〜2、比較例1の結果を示す脱塩率のグラフである。
図4は、実施例4の結果を示す透過流束の回復率のグラフである。
図5は、実施例5〜8、比較例3の結果を示す透過流束のグラフである。
図6は、実施例9〜10の結果を示す透過流束の回復率のグラフである。
図7は、実施例14〜15の結果を示す透過流束の回復率のグラフである。
図8は、実施例16の結果を示す透過流速のグラフである。
FIG. 1 is a flowchart showing a method of cleaning a selective permeable membrane according to an embodiment.
2 is a graph of the permeation flux recovery rate showing the results of Examples 1 and 2 and Comparative Example 1. FIG.
FIG. 3 is a desalting rate graph showing the results of Examples 1 and 2 and Comparative Example 1.
FIG. 4 is a graph of the permeation flux recovery rate showing the results of Example 4.
FIG. 5 is a permeation flux graph showing the results of Examples 5 to 8 and Comparative Example 3.
FIG. 6 is a graph of the permeation flux recovery rate showing the results of Examples 9-10.
FIG. 7 is a graph of the permeation flux recovery rate showing the results of Examples 14-15.
FIG. 8 is a graph of the permeation flow rate showing the results of Example 16.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は実施形態の選択性透過膜の洗浄方法を示すフロー図である。図1において、1はモジュールで、選択性透過膜2により濃縮液室3と透過液室4に区画されている。5は被処理液槽、6は水槽、7は洗浄剤槽、8はアルカリ槽である。P1は高圧ポンプ、P2は洗浄用ポンプであり、高圧ポンプP1よりも低圧でよい。V1〜V15は弁、L1〜L15はラインである。
図1の選択性透過膜装置で膜分離を行うには、弁V1〜V4を開き(他は閉)、高圧ポンプP1を駆動し、被処理液槽5からラインL1を通して被処理液をモジュール1の濃縮液室3に供給し、加圧下に選択性透過膜2を通して選択性透過を行い、透過液を透過液室4からラインL2を通して処理液として流出させる。濃縮液は濃縮液室3からラインL3を通して排出する。このような膜分離を継続すると、選択性透過膜2に汚染物質が付着し、透過流束、選択透過率等の性能が低下するので、選択性透過膜の洗浄を行う。
選択性透過膜の洗浄は、透過流束等の性能の低下を検出し、洗浄剤をモジュール1の濃縮液室3に供給して選択性透過膜2の洗浄を行い、選択性透過膜の性能を回復する。この場合、弁V5〜V8を開き(弁V1は閉)、ラインL4〜L7を通して水槽6、洗浄剤槽7、アルカリ槽8にそれぞれ処理液(処理水)を導入する。ここで洗浄剤槽7にはポリオールまたはポリオールと有機溶媒を注入して洗浄剤を調製し、アルカリ槽8にはアルカリを注入してアルカリ液を調製する。
洗浄剤で洗浄する場合は、弁V10、V2、V5、V7、V12、V14を開き(他は閉)、洗浄用ポンプP2を駆動し、洗浄剤槽7からラインL10、L9を通して洗浄剤をモジュール1の濃縮液室3に供給して洗浄剤を濃縮液室3に充満させ、選択性透過膜2と接触させて洗浄を行う。濃縮液室3からラインL12、L14を通して洗浄剤槽7に循環して洗浄を行ってもよい。また洗浄剤を加圧下に選択性透過膜2を透過させて洗浄を行う場合は、透過液は透過液室4からラインL4、L6を通して洗浄剤槽7に循環する。
洗浄剤で洗浄後、洗浄する場合は、弁V2、V8、V11、V12、V15を開き、アルカリ槽8からラインL11、L9を通してアルカリ液をモジュール1の濃縮液室3に供給して、洗浄剤の場合と同様に洗浄することができる。
洗浄剤で洗浄後、またはアルカリ液からなる洗浄液で洗浄後、さらに水(処理水)からなる洗浄液で洗浄する場合は、弁V9、V2、V5、V6、V12、V13を開き、洗浄用ポンプP2を駆動し、水槽6からラインL8、L9を通して、洗浄液として処理水をモジュール1の濃縮液室3に供給し、洗浄剤の場合と同様に洗浄することができる。
上記の選択性透過膜2の洗浄では、分子量400以下のポリオールを含む洗浄剤を用いるため、選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる。洗浄剤で洗浄後、さらにアルカリ液または水からなる洗浄液で洗浄することにより、残留する洗浄剤および剥離した汚染物を除去することができる。
ポリオールを含む洗浄剤に、洗浄力が高いが高濃度では膜や膜モジュールを劣化させる恐れのあるアルコール、ケトン、エーテル、アミドなどの有機溶媒を、膜や膜モジュールを劣化させない濃度になるように添加することによって、非常に高い洗浄力が得られ、選択性透過膜に対する洗浄効果がさらに高くなる。
図1では洗浄水として処理液を用いているが、系外から純水、軟水等を供給してもよい。また水槽6、洗浄剤槽7、アルカリ槽8は別の槽ではなく、単一の槽を共用してもよい。
実施例1〜2、比較例1:
金属加工工場排水処理装置の処理水を被処理液(COD25mg/L以下)として、日東電工(株)製逆浸透膜NTR−759HRを用いて、1.2MPaの操作圧力で濾過を行った。その結果、透過流束は汚染前の30%まで低下した。実施例1では、エチレングリコールの30重量%水溶液を洗浄液として2時間通水した後、pH12のアルカリ性水溶液を3時間通水した。実施例2では、平均分子量400のポリエチレングリコール(PEG400)の70重量%水溶液を洗浄液として2時間通水した後、pH12のアルカリ性水溶液を2時間通水した。比較例1では、pH12のアルカリ性水溶液のみを洗浄液として通水した。その際の透過流束の回復率を図2に示す。図2より、アルカリ性水溶液のみで洗浄した場合に比べて、エチレングリコールまたはポリエチレングリコール(PEG400)で洗浄後アルカリ洗浄を行った場合の方が、回復に要する時間も短く、回復率も高いことが分かる。図3に500mg/Lの塩化ナトリウム水溶液の脱塩率を示すが、洗浄後はいずれの場合も約98%の脱塩率が得られており、膜性能が劣化していないことが分かる。
実施例3、比較例2:
逆浸透膜として日東電工(株)製逆浸透膜NTR−759HRを用いた。機械部品製造工場排水を被処理水(TOC20mg/L以下)として、1.2MPaの操作圧力で濾過を行った。所定時間濾過を行って透過流束が低下した膜に対して、比較例2として、pH12に調整した水酸化ナトリウム水溶液を用いて洗浄を行った。7.5時間通水を行うことで透過流束が0.8m/(m・d)となるまで回復した。水酸化ナトリウムを通水する前後で、1時間ずつ純水を通水している。その後、再び排水を所定時間濾過したところ透過流束が減少したため、実施例3として、エチレングリコール70重量%、メタノール30重量%の混合液を洗浄液として2時間通水し、続いて1時間純水を通水した。この膜の使用前の純水透過流束は1m/(m・d)であり、アルカリ洗浄のみでは水洗も含めて9.5時間でも完全には回復しなかったのに対して、エチレングリコールとメタノールの混合液で洗浄を行うことで、僅か3時間で透過流束が完全に回復した。なお、500mg/Lの塩化ナトリウム水溶液を用いて脱塩率を測定したところ、試験前が98.0%、試験後は97.5%と、ほとんど変化が見られなかった。
実施例4:
機械部品製造工場排水を被処理水(TOC20mg/L以下)として、実施例3と同条件で処理を行ったところ透過流束が減少したため、洗浄液としてグリセリン70重量%、メタノール30重量%の混合液を1時間通水し、続いて1時間純水を通水した。洗浄前後の透過流束の回復率を図4に示す。図4より、高い透過流束の回復率が認められる。
実施例5〜8、比較例3:
実施例4において、洗浄液として、エチレングリコール(EG)30重量%、エタノール(EtOH)30重量%の混合液(実施例5)、プロピレングリコール(PG)30重量%、エタノール(EtOH)30重量%の混合液(実施例6)、エチレングリコール(EG)30重量%、ホルムアミド(HA)30重量%の混合液(実施例7)、エチレングリコール(EG)70重量%、アセトン(Aceton)5重量%の混合液(実施例8)、ならびにエタノール(EtOH)30重量%(比較例3)を、それぞれ1時間通水し、続いて1時間純水を通水した。洗浄前後の透過流束を図5に示す。図5より、実施例5〜8は比較例3に比べて、高い透過流束の回復率が認められる。図5において、Originalは使用前の透過流束(参考例)を示す。
比較例4:
ノニオン界面活性剤を含む排水を被処理液として濾過を行って、透過流束が0.6m/(m・d)に低下したNTR759HR膜(日東電工(株)製)を、60重量%メタノールで洗浄したところ、透過流束は0.9m/(m・d)程度まで回復したが、脱塩率は98%から93%まで減少した。
比較例5:
被処理水にアセトン水溶液を用いてモジュールの耐久性を調べた。膜モジュールとしては、NTR759HR4インチモジュール(日東電工(株)製)を使用した。アセトン水溶液のアセトン濃度5重量%では問題なく、10重量%でも通水可能であったが、30重量%にするとモジュールが破壊されて、被処理液がそのまま透過側に流出した。
実施例9〜10:
印刷塗料製造工場排水処理装置の処理水を被処理液(COD30mg/L以下)として、東レ(株)製逆浸透膜SU720Pを用いて1.5MPaの操作圧力で濾過を行った。その結果、透過流束は汚染前の50%まで低下した。実施例9では、70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。実施例10では、純水に浸漬して5分間超音波照射を行った後、pH12のアルカリ性溶液を15時間通水し、その後70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。各洗浄操作後の500mg/Lの塩化ナトリウム水溶液の透過流束の回復度を図6に示す。実施例9における洗浄操作でも透過流束は回復しているが、実施例10の洗浄操作では、他の洗浄方法との複合効果によりさらに高い透過流束が得られている。
実施例11〜12:
ノニオン界面活性剤を含む排水を被処理液として、日東電工(株)製逆浸透膜NTR759HRを用いて1.2MPaの操作圧力で濾過を行った。その結果、透過流束は0.2m/(m・d)まで低下した。実施例11では、膜モジュールを70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1.5時間浸漬した後、1時間純水通水を行った。実施例12では膜モジュールを50重量%エチレングリコール、20重量%ジエチレングリコール、および30重量%メタノールの混合液を洗浄液として1.5時間浸漬した後、1時間純水通水を行った。実施例11、12における洗浄後の純水透過流束は、それぞれ83%、100%に回復した。実施例11の組成でも透過流束は回復するが、実施例12ではさらに高い洗浄効果が得られている。これは、エチレングリコールの一部をジエチレングリコールに変えることで、洗浄液へのノニオン界面活性剤の溶解性が増したためと考えられる。
実施例13:
市水を被処理水として、日東電工(株)製逆浸透膜NTR759HRを用いて1.5MPaの操作圧力で濾過を行った。透過流束が18%低下した膜モジュールを、10重量%エリトリトールと30重量%エタノールの混合液を洗浄液として1時間浸漬した後、5時間純水通水を行った。その結果、透過流束は約15%回復し、オリジナルに近い値になった。
実施例14〜15:
印刷塗料製造工場排水処理装置の処理水を被処理液(COD30mg/L以下)として、東レ(株)製逆浸透膜SU720Pを用いて1.5MPaの操作圧力で濾過を行った。その結果、透過流束は汚染前の50%まで低下した。実施例14では、70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。実施例15では、68重量%エチレングリコール、30重量%メタノール、2重量%アセチルアセトンの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。各洗浄操作後の500mg/Lの塩化ナトリウム水溶液の透過流束の回復度を図7に示す。実施例14における洗浄操作でも透過流束は回復しているが、実施例15の洗浄操作では、さらに高い透過流束が得られている。これは、アセチルアセトンの添加による膜汚染物質の洗浄液への溶解性向上によるものと考えられる。
実施例16:
機械部品製造工場排水を被処理液(TOC12mg/L)として、日東電工(株)製逆浸透膜NTR759HR膜を用いて1.2MPaの圧力で50時間濾過を行った。その結果、透過流束は図8に示すように0.55m/(m・d)まで低下した。その後、70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。洗浄後、再び同じ被処理液の濾過を行ったところ、洗浄を行う前よりも高い初期透過流束が得られ、50時間に渡って高い透過流束を得ることができた。また、脱塩率はいずれの場合も99%であった。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a method of cleaning a selective permeable membrane according to an embodiment. In FIG. 1, reference numeral 1 denotes a module, which is divided into a concentrated liquid chamber 3 and a permeated liquid chamber 4 by a selective permeable membrane 2. 5 is a liquid tank to be treated, 6 is a water tank, 7 is a cleaning agent tank, and 8 is an alkali tank. P1 is a high-pressure pump and P2 is a cleaning pump, which may be at a lower pressure than the high-pressure pump P1. V1 to V15 are valves, and L1 to L15 are lines.
In order to perform membrane separation with the selective permeable membrane apparatus of FIG. 1, the valves V1 to V4 are opened (the others are closed), the high pressure pump P1 is driven, and the liquid to be processed is supplied from the liquid tank 5 to be processed through the line L1. The concentrated liquid chamber 3 is supplied, and selective permeation is performed through the selective permeable membrane 2 under pressure, and the permeated liquid is discharged from the permeated liquid chamber 4 as a processing liquid through the line L2. The concentrate is discharged from the concentrate chamber 3 through the line L3. If such membrane separation is continued, contaminants adhere to the selective permeable membrane 2 and the performance such as the permeation flux and the selective permeability decreases, so the selective permeable membrane is washed.
In the cleaning of the selective permeable membrane, a decrease in performance such as the permeation flux is detected, the cleaning agent is supplied to the concentrated liquid chamber 3 of the module 1 to clean the selective permeable membrane 2, and the performance of the selective permeable membrane is measured. To recover. In this case, the valves V5 to V8 are opened (the valve V1 is closed), and the treatment liquid (treated water) is introduced into the water tank 6, the detergent tank 7, and the alkali tank 8 through the lines L4 to L7, respectively. Here, a cleaning agent is prepared by injecting polyol or polyol and an organic solvent into the cleaning agent tank 7, and an alkali solution is prepared by injecting alkali into the alkali tank 8.
When cleaning with the cleaning agent, the valves V10, V2, V5, V7, V12, V14 are opened (the others are closed), the cleaning pump P2 is driven, and the cleaning agent is modularized from the cleaning agent tank 7 through the lines L10, L9. 1 is supplied to the concentrated liquid chamber 3 to fill the concentrated liquid chamber 3 with the cleaning agent, and is brought into contact with the selective permeable membrane 2 for cleaning. Cleaning may be performed by circulating from the concentrate chamber 3 to the cleaning agent tank 7 through lines L12 and L14. When cleaning is performed by allowing the cleaning agent to pass through the selective permeable membrane 2 under pressure, the permeate is circulated from the permeate chamber 4 to the cleaning agent tank 7 through lines L4 and L6.
After cleaning with the cleaning agent, when cleaning, the valves V2, V8, V11, V12, and V15 are opened, and the alkaline solution is supplied from the alkaline tank 8 to the concentrate chamber 3 of the module 1 through the lines L11 and L9. It can be washed in the same manner as in
When cleaning with a cleaning agent or a cleaning solution made of an alkaline solution and further with a cleaning solution made of water (treated water), the valves V9, V2, V5, V6, V12, and V13 are opened and the cleaning pump P2 is opened. , And the treated water is supplied from the water tank 6 through the lines L8 and L9 as the cleaning liquid to the concentrate chamber 3 of the module 1 and can be cleaned in the same manner as in the case of the cleaning agent.
In the cleaning of the selective permeable membrane 2, a cleaning agent containing a polyol having a molecular weight of 400 or less is used. Therefore, the cleaning effect on the selective permeable membrane is high, and the selective permeable membrane is not deteriorated. However, it is safe and excellent in handleability, and the permeation membrane with reduced performance such as permeation flux can be efficiently washed in a short time to recover the performance. After washing with the cleaning agent, the remaining cleaning agent and the separated contaminants can be removed by further washing with a cleaning solution comprising an alkaline solution or water.
Detergents containing polyol have high detergency but organic solvents such as alcohols, ketones, ethers, and amides that have high detergency but may deteriorate membranes and membrane modules so that they do not degrade membranes and membrane modules. By adding, a very high detergency can be obtained, and the cleaning effect on the selective permeable membrane is further enhanced.
In FIG. 1, the treatment liquid is used as the cleaning water, but pure water, soft water, or the like may be supplied from outside the system. Further, the water tank 6, the cleaning agent tank 7, and the alkali tank 8 are not separate tanks, and a single tank may be shared.
Examples 1-2, Comparative Example 1:
Filtration was performed at an operating pressure of 1.2 MPa using a reverse osmosis membrane NTR-759HR manufactured by Nitto Denko Corporation as the treated liquid (COD 25 mg / L or less) as the treated water of the metal processing factory wastewater treatment apparatus. As a result, the permeation flux decreased to 30% before contamination. In Example 1, a 30% by weight aqueous solution of ethylene glycol was passed as a washing solution for 2 hours, and then an alkaline aqueous solution having a pH of 12 was passed for 3 hours. In Example 2, a 70 wt% aqueous solution of polyethylene glycol (PEG 400) having an average molecular weight of 400 was passed as a washing solution for 2 hours, and then an alkaline aqueous solution having a pH of 12 was passed for 2 hours. In Comparative Example 1, only an alkaline aqueous solution having a pH of 12 was passed as a cleaning liquid. The recovery rate of the permeation flux at that time is shown in FIG. From FIG. 2, it can be seen that the time required for recovery is shorter and the recovery rate is higher when alkali cleaning is performed after cleaning with ethylene glycol or polyethylene glycol (PEG 400) than when cleaning with only an alkaline aqueous solution. . FIG. 3 shows the desalting rate of a 500 mg / L sodium chloride aqueous solution. After washing, a desalting rate of about 98% was obtained in any case, and it can be seen that the membrane performance was not deteriorated.
Example 3, Comparative Example 2:
The reverse osmosis membrane NTR-759HR manufactured by Nitto Denko Corporation was used. The machine part manufacturing factory wastewater was treated as treated water (TOC 20 mg / L or less) and filtered at an operating pressure of 1.2 MPa. The membrane having a reduced permeation flux after filtration for a predetermined time was washed with a sodium hydroxide aqueous solution adjusted to pH 12 as Comparative Example 2. The permeation flux was restored to 0.8 m 3 / (m 2 · d) by passing water for 7.5 hours. Pure water is passed for one hour before and after sodium hydroxide is passed. Thereafter, when the drainage was filtered again for a predetermined time, the permeation flux decreased. Therefore, as Example 3, a mixture of 70% by weight of ethylene glycol and 30% by weight of methanol was passed as a washing liquid for 2 hours, followed by 1 hour of pure water I passed water. The pure water permeation flux before use of this membrane was 1 m 3 / (m 2 · d), and the alkali cleaning alone did not completely recover even in 9.5 hours including the water washing. By washing with a mixed solution of glycol and methanol, the permeation flux was completely recovered in only 3 hours. In addition, when the desalting rate was measured using a 500 mg / L sodium chloride aqueous solution, almost no change was observed, being 98.0% before the test and 97.5% after the test.
Example 4:
Since the machine component manufacturing factory wastewater was treated under the same conditions as in Example 3 as treated water (TOC 20 mg / L or less), the permeation flux decreased. Therefore, a mixed liquid of 70% by weight of glycerin and 30% by weight of methanol as a cleaning liquid Was passed for 1 hour, and then pure water was passed for 1 hour. The recovery rate of the permeation flux before and after washing is shown in FIG. From FIG. 4, a high permeation flux recovery rate is observed.
Examples 5-8, Comparative Example 3:
In Example 4, as a cleaning liquid, a mixed liquid of ethylene glycol (EG) 30% by weight, ethanol (EtOH) 30% by weight (Example 5), propylene glycol (PG) 30% by weight, ethanol (EtOH) 30% by weight. Mixture (Example 6), ethylene glycol (EG) 30% by weight, formamide (HA) 30% by weight (Example 7), ethylene glycol (EG) 70% by weight, acetone (Aceton) 5% by weight The mixed solution (Example 8) and 30% by weight of ethanol (EtOH) (Comparative Example 3) were each passed for 1 hour, and then pure water was passed for 1 hour. The permeation flux before and after washing is shown in FIG. From FIG. 5, Examples 5-8 show a higher permeation flux recovery rate than Comparative Example 3. In FIG. 5, “Original” indicates a permeation flux (reference example) before use.
Comparative Example 4:
60% by weight of an NTR759HR membrane (manufactured by Nitto Denko Corporation) having a permeation flux reduced to 0.6 m 3 / (m 2 · d) by filtering wastewater containing a nonionic surfactant When washed with methanol, the permeation flux recovered to about 0.9 m 3 / (m 2 · d), but the desalination rate decreased from 98% to 93%.
Comparative Example 5:
The durability of the module was investigated using an aqueous acetone solution as the water to be treated. As the membrane module, NTR759HR 4 inch module (manufactured by Nitto Denko Corporation) was used. When the acetone concentration of the acetone aqueous solution was 5% by weight, water could pass even at 10% by weight, but when it was 30% by weight, the module was destroyed and the liquid to be treated flowed out to the permeate side.
Examples 9-10:
Filtration was performed at an operating pressure of 1.5 MPa using a reverse osmosis membrane SU720P manufactured by Toray Industries, Inc., using the treated water of the waste water treatment apparatus of the printing paint manufacturing factory as the liquid to be treated (COD 30 mg / L or less). As a result, the permeation flux decreased to 50% before contamination. In Example 9, after immersing a mixed solution of 70% by weight ethylene glycol and 30% by weight methanol as a cleaning solution for 1 hour, pure water was passed through for 1 hour. In Example 10, after being immersed in pure water and subjected to ultrasonic irradiation for 5 minutes, an alkaline solution having a pH of 12 was passed for 15 hours, and then a mixed solution of 70% by weight ethylene glycol and 30% by weight methanol was used as a cleaning solution. After immersion for a period of time, pure water was passed for 1 hour. FIG. 6 shows the degree of recovery of the permeation flux of the 500 mg / L sodium chloride aqueous solution after each washing operation. Although the permeation flux is recovered by the cleaning operation in Example 9, the permeation flux is higher in the cleaning operation of Example 10 due to the combined effect with other cleaning methods.
Examples 11-12:
Filtration was performed at an operating pressure of 1.2 MPa using a reverse osmosis membrane NTR759HR manufactured by Nitto Denko Corporation using wastewater containing a nonionic surfactant as a liquid to be treated. As a result, the permeation flux decreased to 0.2 m 3 / (m 2 · d). In Example 11, the membrane module was immersed in a mixed solution of 70% by weight ethylene glycol and 30% by weight methanol for 1.5 hours, and then pure water was passed through for 1 hour. In Example 12, the membrane module was immersed in a mixture of 50 wt% ethylene glycol, 20 wt% diethylene glycol, and 30 wt% methanol as a cleaning solution for 1.5 hours, and then pure water was passed through for 1 hour. The pure water permeation flux after washing in Examples 11 and 12 recovered to 83% and 100%, respectively. Although the permeation flux is recovered even with the composition of Example 11, a higher cleaning effect is obtained in Example 12. This is presumably because the solubility of the nonionic surfactant in the cleaning liquid was increased by changing a part of ethylene glycol to diethylene glycol.
Example 13:
Using city water as the treated water, filtration was performed at an operating pressure of 1.5 MPa using a reverse osmosis membrane NTR759HR manufactured by Nitto Denko Corporation. The membrane module in which the permeation flux was reduced by 18% was immersed for 1 hour using a mixed solution of 10% by weight erythritol and 30% by weight ethanol as a washing solution, and then pure water was passed through for 5 hours. As a result, the permeation flux recovered by about 15%, which was close to the original value.
Examples 14-15:
Filtration was performed at an operating pressure of 1.5 MPa using a reverse osmosis membrane SU720P manufactured by Toray Industries, Inc., using the treated water of the waste water treatment apparatus of the printing paint manufacturing factory as the liquid to be treated (COD 30 mg / L or less). As a result, the permeation flux decreased to 50% before contamination. In Example 14, after immersing a mixed liquid of 70% by weight ethylene glycol and 30% by weight methanol as a cleaning liquid for 1 hour, pure water was passed through for 1 hour. In Example 15, the mixture of 68% by weight ethylene glycol, 30% by weight methanol, and 2% by weight acetylacetone was immersed for 1 hour as a cleaning solution, and then pure water was passed through for 1 hour. FIG. 7 shows the degree of recovery of the permeation flux of the 500 mg / L sodium chloride aqueous solution after each washing operation. The permeation flux was recovered by the cleaning operation in Example 14, but a higher permeation flux was obtained in the cleaning operation of Example 15. This is considered to be due to the improvement of the solubility of the membrane contaminants in the cleaning solution by the addition of acetylacetone.
Example 16:
The machine component manufacturing factory wastewater was filtered as a liquid to be treated (TOC 12 mg / L) using a reverse osmosis membrane NTR759HR membrane manufactured by Nitto Denko Corporation at a pressure of 1.2 MPa for 50 hours. As a result, the permeation flux decreased to 0.55 m 3 / (m 2 · d) as shown in FIG. Thereafter, a mixed liquid of 70% by weight ethylene glycol and 30% by weight methanol was immersed as a cleaning liquid for 1 hour, and then pure water was passed through for 1 hour. When the same liquid to be treated was filtered again after washing, an initial permeation flux higher than that before washing was obtained, and a high permeation flux could be obtained over 50 hours. The desalting rate was 99% in all cases.

本発明は、逆浸透膜、ナノ濾過膜等の選択性透過膜を洗浄するための洗浄剤、およびその洗浄剤を使用する洗浄方法に利用される。  The present invention is used in a cleaning agent for cleaning a selective permeable membrane such as a reverse osmosis membrane or a nanofiltration membrane, and a cleaning method using the cleaning agent.

【0001】
【技術分野】
本発明は、逆浸透膜からなる選択性透過膜を洗浄するための洗浄剤、およびその洗浄剤を使用する洗浄方法に関し、さらに詳しくは、液体の濃縮、脱塩、純水製造等の水処理、あるいはその他の処理などによって汚染され、透過流束その他の性能の低下した選択性透過膜を洗浄して性能を回復させるための洗浄剤、およびその洗浄剤を使用する洗浄方法に関するものである。
【背景技術】
逆浸透膜からなる選択性透過膜を用いて、液体の濃縮、脱塩、純水製造その他の水処理を行うと、選択性透過膜は種々の汚染物質によって汚染され、透過流束が低下したり、選択透過率が低下する。このため性能の低下した選択性透過膜を洗浄剤で洗浄して、性能を回復させることが行われている。
従来、透過流束等の性能の低下した選択性透過膜の洗浄方法では、酸、アルカリ、有機溶媒または界面活性剤を洗浄剤として用いることが多い。例えば日本特許公開昭54−99783号公報には、洗浄剤としてアルカリを用いる洗浄方法が示されているが、この方法では、汚染の度合いが激しいと短時間で透過流束を回復させることは困難であり、また透過流束の回復率も100%には至らない。
日本特許公開昭52−125475号公報や日本特許公開昭58−119304号公報などには、高濃度の有機溶媒を使用する方法が示されている。しかしこの方法では、汚染物質が有機物である場合に高い洗浄効果をもたらすが、膜や膜モジュールを劣化させる危険性があり、実装置に適用することができないのが現状である。例えばメタノールやエタノール、あるいはアセトンなどの有機溶媒は、
[0001]
【Technical field】
The present invention relates to a cleaning agent for cleaning a selective permeable membrane comprising a reverse osmosis membrane, and a cleaning method using the cleaning agent, and more particularly, water treatment such as liquid concentration, desalting, and pure water production. The present invention also relates to a cleaning agent for cleaning a permeation flux and other selective permeable membranes that have been contaminated by other treatments and the like and to restore the performance, and a cleaning method using the cleaning agent.
[Background]
When a selective permeable membrane made of a reverse osmosis membrane is used for liquid concentration, desalting, pure water production and other water treatment, the selective permeable membrane is contaminated with various contaminants, and the permeation flux decreases. Or the selective transmittance decreases. For this reason, the selective permeable membrane with reduced performance is washed with a cleaning agent to recover the performance.
Conventionally, in selective permeation membrane cleaning methods with reduced performance such as permeation flux, acids, alkalis, organic solvents or surfactants are often used as cleaning agents. For example, Japanese Patent Publication No. 54-99783 discloses a cleaning method using an alkali as a cleaning agent. However, in this method, it is difficult to recover the permeation flux in a short time if the degree of contamination is high. In addition, the recovery rate of the permeation flux does not reach 100%.
Japanese Patent Publication No. 52-125475, Japanese Patent Publication No. 58-119304, and the like show a method of using a high concentration organic solvent. However, this method provides a high cleaning effect when the pollutant is an organic substance, but there is a risk of deteriorating the membrane or the membrane module, and it cannot be applied to an actual apparatus. For example, organic solvents such as methanol, ethanol, or acetone

【0002】
透過流束の低下した逆浸透膜やナノ濾過膜に対する洗浄力が高い反面、高濃度の場合には膜および膜モジュールを劣化させてしまう。そして膜および膜モジュールを劣化させない濃度では高い洗浄効果が得ることができないという問題点がある。
一方、日本特許公開昭55−51406号公報には、エチレングリコールのアルキルエーテル類を用いる洗浄方法が示されている。しかし、このようなエチレングリコールのアルキルエーテル類は親水性基と疎水性基を有し、一価アルコールに近い構造を有する。そして有害性が高く、刺激臭が強いため、PRTR(環境汚染排出移動登録)法にも指定されており、作業環境評価値も5ppm以下と、使用濃度を高くできないという問題点がある。
本発明の目的は、選択性透過膜に対する洗浄効果が高く、選択性透過膜を劣化させることがなく、人や環境に対しても安全で取扱性にも優れ、透過流束等の性能の低下した選択性透過膜を短時間で効率よく洗浄して、性能を回復させることができる選択性透過膜の洗浄剤および洗浄方法を提案することである。
【発明の開示】
本発明は次の選択性透過膜の洗浄剤および洗浄方法である。
(1) 汚染物質が付着して、透過流束が低下した逆浸透膜からなる選択性透過膜の洗浄剤であって、
分子量400以下のポリオールを含む選択性透過膜の洗浄剤。
(2) さらに有機溶媒を含む上記(1)記載の洗浄剤。
(3) ポリオールがエチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、ポリグリコールおよび糖アルコールからなる群から選ばれる少なくとも1つである上記(1)または(2)記載の洗浄剤。
(4) 有機溶媒が1価アルコール、エーテル、ケトンおよびアミドからなる群から選ばれる少なくとも1つである上記(2)または(3)に記載の洗浄剤。
[0002]
Although the detergency against a reverse osmosis membrane or nanofiltration membrane having a reduced permeation flux is high, the membrane and the membrane module are deteriorated when the concentration is high. Further, there is a problem that a high cleaning effect cannot be obtained at a concentration that does not deteriorate the membrane and the membrane module.
On the other hand, Japanese Patent Publication No. 55-51406 discloses a cleaning method using an alkyl ether of ethylene glycol. However, such ethylene ether alkyl ethers have a hydrophilic group and a hydrophobic group, and have a structure close to that of a monohydric alcohol. And since it is highly harmful and has a strong irritating odor, it is also specified in the PRTR (Environmental Pollution Discharge Transfer Registration) method, and there is a problem that the working environment evaluation value is 5 ppm or less and the use concentration cannot be increased.
The purpose of the present invention is to have a high cleaning effect on the selective permeable membrane, without degrading the selective permeable membrane, safe for humans and the environment, excellent in handleability, and reduced in performance such as permeation flux. Another object of the present invention is to propose a cleaning agent and a cleaning method for a selective permeable membrane that can recover the performance by efficiently cleaning the selected permeable membrane in a short time.
DISCLOSURE OF THE INVENTION
The present invention provides the following selective permeable membrane cleaning agent and cleaning method.
(1) A selective permeation membrane cleaning agent comprising a reverse osmosis membrane with a permeate attached and a reduced permeation flux,
A cleaning agent for a selective permeable membrane containing a polyol having a molecular weight of 400 or less.
(2) The cleaning agent according to (1), further comprising an organic solvent.
(3) The cleaning agent according to (1) or (2), wherein the polyol is at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, glycerin, polyglycol and sugar alcohol.
(4) The cleaning agent according to (2) or (3), wherein the organic solvent is at least one selected from the group consisting of monohydric alcohols, ethers, ketones and amides.

【0003】
(5) 汚染物質がノニオン性界面活性剤である上記(1)ないし(4)のいずれかに記載の洗浄剤。
(6) 汚染物質が付着して、透過流束が低下した逆浸透膜からなる選択性透過膜を、分子量400以下のポリオールを含む洗浄剤で洗浄する選択性透過膜の洗浄方法。
(7) 洗浄剤はさらに有機溶媒を含む上記(6)記載の方法。
(8) 洗浄剤による洗浄前および/または洗浄後に、他の洗浄方法で前処理洗浄および/または後処理洗浄する上記(6)または(7)記載の方法。
(9) 洗浄は洗浄剤を選択性透過膜に接触させて行う上記(6)ないし(8)のいずれかに記載の方法。
本発明において洗浄の対象となる選択性透過膜は、汚染物質が付着して透過流束、選択透過率、その他の性能の低下した逆浸透膜からなる選択性透過膜である。逆浸透膜は、特定の物質、成分等を選択的に透過させる半透膜であり、その用途は制限されず、一般的な用途のものが対象となる。選択性透過膜の材質としては特に制限されず、例えばポリアミド系透過膜、ポリスルホン系透過膜、ポリイミド系透過膜、セルロース系透過膜などが挙げられる。また洗浄の対象となるのは選択性透過膜自体でもよく、膜モジュールでもよい。洗浄の対象となる膜モジュールには特に制限はなく、例えば管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。
選択性透過膜の性能低下の原因は何でもよいが、液体の濃縮、脱塩、純水製造等の水処理、あるいはプロセス処理、その他の処理など、逆浸透膜の使用によって汚染されたものが一般的である。汚染物質としても制限はなく、無機物、有機物など、あらゆる汚染物質が対象となるが、特に分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤が付着したものに対する洗浄効果が優れている。
ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、特にポリエチレングリコール、あるいはこれらを構成成分とするノニオ
[0003]
(5) The cleaning agent according to any one of (1) to (4), wherein the contaminant is a nonionic surfactant.
(6) A method for cleaning a selective permeable membrane, in which a selective permeable membrane comprising a reverse osmosis membrane having a reduced permeation flux attached with contaminants is washed with a cleaning agent containing a polyol having a molecular weight of 400 or less.
(7) The method according to (6) above, wherein the cleaning agent further contains an organic solvent.
(8) The method according to (6) or (7) above, wherein pre-treatment washing and / or post-treatment washing is performed by another cleaning method before and / or after cleaning with a cleaning agent.
(9) The method according to any one of (6) to (8), wherein the cleaning is performed by bringing a cleaning agent into contact with the selective permeable membrane.
The selective permeable membrane to be cleaned in the present invention is a selective permeable membrane comprising a reverse osmosis membrane having a permeation flux, a selective permeability, and other performance deteriorated due to adhesion of contaminants. The reverse osmosis membrane is a semipermeable membrane that selectively permeates a specific substance, component, etc., and its use is not limited, and is intended for general use. The material of the selective permeable membrane is not particularly limited, and examples thereof include a polyamide permeable membrane, a polysulfone permeable membrane, a polyimide permeable membrane, and a cellulose permeable membrane. In addition, the selective permeation membrane itself or the membrane module may be the target of washing. The membrane module to be cleaned is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
The cause of the performance degradation of the selective permeable membrane may be anything, but it is generally contaminated by the use of reverse osmosis membranes such as liquid concentration, desalting, water treatment such as pure water production, process treatment, and other treatments. Is. There is no restriction as a pollutant, and any pollutant such as an inorganic substance or an organic substance is targeted. Particularly, a cleaning effect is excellent for a polymer having a molecular weight exceeding 400 or a nonionic surfactant attached thereto. .
Polyalkylene glycols such as polyethylene glycol and polypropylene glycol, especially polyethylene glycol, or nonio containing these as constituents

【0014】
濾過を行った。その結果、透過流束は汚染前の50%まで低下した。実施例14では、70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。実施例15では、68重量%エチレングリコール、30重量%メタノール、2重量%アセチルアセトンの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。各洗浄操作後の500mg/Lの塩化ナトリウム水溶液の透過流束の回復度を図7に示す。実施例14における洗浄操作でも透過流束は回復しているが、実施例15の洗浄操作では、さらに高い透過流束が得られている。これは、アセチルアセトンの添加による膜汚染物質の洗浄液への溶解性向上によるものと考えられる。
【実施例16】
機械部品製造工場排水を被処理液(TOC12mg/L)として、日東電工(株)製逆浸透膜NTR759HR膜を用いて1.2MPaの圧力で50時間濾過を行った。その結果、透過流束は図8に示すように0.55m/(m・d)まで低下した。その後、70重量%エチレングリコールと30重量%メタノールの混合液を洗浄液として1時間浸漬した後、1時間純水通水を行った。洗浄後、再び同じ被処理液の濾過を行ったところ、洗浄を行う前よりも高い初期透過流束が得られ、50時間に渡って高い透過流束を得ることができた。また、脱塩率はいずれの場合も99%であった。
【産業上の利用可能性】
本発明は、逆浸透膜からなる選択性透過膜を洗浄するための洗浄剤、およびその洗浄剤を使用する洗浄方法に利用される。
[0014]
Filtration was performed. As a result, the permeation flux decreased to 50% before contamination. In Example 14, after immersing a mixed liquid of 70% by weight ethylene glycol and 30% by weight methanol as a cleaning liquid for 1 hour, pure water was passed through for 1 hour. In Example 15, the mixture of 68% by weight ethylene glycol, 30% by weight methanol, and 2% by weight acetylacetone was immersed for 1 hour as a cleaning solution, and then pure water was passed through for 1 hour. FIG. 7 shows the degree of recovery of the permeation flux of the 500 mg / L sodium chloride aqueous solution after each washing operation. The permeation flux was recovered by the cleaning operation in Example 14, but a higher permeation flux was obtained in the cleaning operation of Example 15. This is considered to be due to the improvement of the solubility of the membrane contaminants in the cleaning solution by the addition of acetylacetone.
Example 16
The machine component manufacturing factory wastewater was filtered as a liquid to be treated (TOC 12 mg / L) using a reverse osmosis membrane NTR759HR membrane manufactured by Nitto Denko Corporation at a pressure of 1.2 MPa for 50 hours. As a result, the permeation flux decreased to 0.55 m 3 / (m 2 · d) as shown in FIG. Thereafter, a mixed liquid of 70% by weight ethylene glycol and 30% by weight methanol was immersed as a cleaning liquid for 1 hour, and then pure water was passed through for 1 hour. When the same liquid to be treated was filtered again after washing, an initial permeation flux higher than that before washing was obtained, and a high permeation flux could be obtained over 50 hours. The desalting rate was 99% in all cases.
[Industrial applicability]
The present invention is used for a cleaning agent for cleaning a selective permeable membrane made of a reverse osmosis membrane, and a cleaning method using the cleaning agent.

Claims (9)

分子量400以下のポリオールを含む選択性透過膜の洗浄剤。A cleaning agent for a selective permeable membrane containing a polyol having a molecular weight of 400 or less. さらに有機溶媒を含む請求項1記載の洗浄剤。The cleaning agent according to claim 1, further comprising an organic solvent. ポリオールがエチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、ポリグリコールおよび糖アルコールからなる群から選ばれる少なくとも1つである請求項1または2記載の洗浄剤。The cleaning agent according to claim 1 or 2, wherein the polyol is at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, glycerin, polyglycol and sugar alcohol. 有機溶媒が1価アルコール、エーテル、ケトンおよびアミドからなる群から選ばれる少なくとも1つである請求項2または3に記載の洗浄剤。The cleaning agent according to claim 2 or 3, wherein the organic solvent is at least one selected from the group consisting of monohydric alcohols, ethers, ketones and amides. 洗浄対象の選択性透過膜は、分子量400を超える高分子のポリアルキレングリコールまたはノニオン性界面活性剤が付着したものである請求項1ないし4のいずれかに記載の洗浄剤。The cleaning agent according to any one of claims 1 to 4, wherein the selective permeable membrane to be cleaned is one to which a high molecular weight polyalkylene glycol or nonionic surfactant having a molecular weight exceeding 400 is attached. 透過流束が低下した選択性透過膜を、分子量400以下のポリオールを含む洗浄剤で洗浄する選択性透過膜の洗浄方法。A method for cleaning a selective permeable membrane, comprising cleaning a selective permeable membrane having a reduced permeation flux with a cleaning agent containing a polyol having a molecular weight of 400 or less. 洗浄剤はさらに有機溶媒を含む請求項6記載の方法。The method of claim 6, wherein the cleaning agent further comprises an organic solvent. 洗浄剤による洗浄前および/または洗浄後に、他の洗浄方法で前処理洗浄および/または後処理洗浄する請求項6または7記載の方法。The method according to claim 6 or 7, wherein pre-cleaning and / or post-processing cleaning is performed by another cleaning method before and / or after cleaning with a cleaning agent. 洗浄は洗浄剤を選択性透過膜に接触させて行う請求項6ないし8のいずれかに記載の方法。The method according to any one of claims 6 to 8, wherein the cleaning is performed by bringing a cleaning agent into contact with the selective permeable membrane.
JP2005502871A 2003-02-25 2004-02-23 Selective permeable membrane cleaning agent and cleaning method Expired - Fee Related JP4458039B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003048170 2003-02-25
JP2003048170 2003-02-25
PCT/JP2004/002078 WO2004076040A1 (en) 2003-02-25 2004-02-23 Detergent for selectively permeable film and method of cleaning

Publications (2)

Publication Number Publication Date
JPWO2004076040A1 true JPWO2004076040A1 (en) 2006-06-01
JP4458039B2 JP4458039B2 (en) 2010-04-28

Family

ID=32923287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005502871A Expired - Fee Related JP4458039B2 (en) 2003-02-25 2004-02-23 Selective permeable membrane cleaning agent and cleaning method

Country Status (9)

Country Link
US (1) US7540292B2 (en)
EP (1) EP1600204A4 (en)
JP (1) JP4458039B2 (en)
KR (1) KR20060002757A (en)
CN (1) CN100506361C (en)
AU (1) AU2004216334A1 (en)
SG (1) SG181175A1 (en)
TW (1) TW200424005A (en)
WO (1) WO2004076040A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320719B1 (en) * 2007-08-16 2013-10-29 코오롱인더스트리 주식회사 An Apparatus for Cleaning Hollow Fiber Membrane and A Method Therefor
EP2611741A4 (en) * 2010-09-02 2016-10-05 Fujifilm Planar Solutions Llc Cleaning method and system
KR101938604B1 (en) * 2011-02-18 2019-01-15 도레이 카부시키가이샤 Method for producing sugar solution
CN102489159B (en) * 2011-12-05 2013-08-14 北京碧水源科技股份有限公司 Flux recovery method of dry hollow fiber membrane
CN103657427B (en) * 2012-09-03 2016-03-16 湖州欧美新材料有限公司 Hollow fiber ultrafiltration membrane cleaning agent and preparation thereof
JP6251953B2 (en) * 2012-12-28 2017-12-27 栗田工業株式会社 Reverse osmosis membrane rejection improvement method
CN104069740B (en) * 2014-07-26 2016-06-22 威海翔宇环保科技股份有限公司 The special alkaline cleaner of reverse osmosis membrane and application process
JP6648695B2 (en) * 2015-04-27 2020-02-14 東レ株式会社 Operating method of semipermeable membrane separation device
JP6090377B2 (en) 2015-07-27 2017-03-08 栗田工業株式会社 Cleaning agent for polyamide reverse osmosis membrane for water treatment, cleaning liquid, and cleaning method
CN106390756A (en) * 2016-11-28 2017-02-15 中国人民解放军空军勤务学院 Cleaning method of hollow fiber membrane module
CN106731860B (en) * 2017-01-09 2020-06-05 唐山钢铁集团有限责任公司 Cleaning agent combining reverse osmosis membrane with multi-element organic solvent and biological agent and using method
CN107413202A (en) * 2017-05-11 2017-12-01 江苏博大环保股份有限公司 A kind of efficient supermicro filtration membrane degreasing cleaning agent
JP6406394B1 (en) 2017-05-29 2018-10-17 栗田工業株式会社 Nonionic surfactant-containing water treatment method and water treatment method
CN108795580A (en) * 2017-07-26 2018-11-13 上海丰信环保科技有限公司 A kind of cleaning agent for film organosilicon grease
CN107638836B (en) * 2017-11-09 2023-10-03 东南大学 Multiple emulsion preparation system
CN110937656A (en) * 2019-10-17 2020-03-31 珠海市江河海水处理科技股份有限公司 Full-automatic electroplating nickel wastewater zero-discharge equipment and operation method thereof
TW202235605A (en) * 2020-11-17 2022-09-16 日商東京應化工業股份有限公司 Film cleaning solution and method for cleaning film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125475A (en) 1976-04-15 1977-10-21 Nippon Zeon Co Ltd Washing of cellulose hollow fiber
US4153545A (en) * 1977-08-18 1979-05-08 Ppg Industries, Inc. Method for cleaning membrane filter
JPS5845712A (en) 1981-09-11 1983-03-17 Asahi Chem Ind Co Ltd Method for restoring capacity of ultrafiltration module
JPS58119304A (en) 1981-12-30 1983-07-15 Tokuyama Soda Co Ltd Treatment of osmotic membrane
DE3820040A1 (en) * 1988-06-13 1989-12-14 Henkel Kgaa METHOD AND DEVICE FOR SEPARATING PROPYLENE GLYCOL
JPH04193333A (en) 1990-11-27 1992-07-13 Kurita Water Ind Ltd Detergent for oil contaminated membrane
JPH08281081A (en) 1995-04-10 1996-10-29 Nitto Denko Corp Method for washing membrane module
JPH09313901A (en) 1996-05-24 1997-12-09 Amutetsuku Kk Washing method for filter for water purification
JP4038702B2 (en) 1998-01-29 2008-01-30 東洋紡績株式会社 Processing method and processing apparatus for developing solution for photosensitive resin plate
US6235692B1 (en) * 1998-08-26 2001-05-22 Cottrell International, Llc Foaming enzyme spray cleaning composition and method of delivery
JP2000325758A (en) 1999-05-21 2000-11-28 Mitsubishi Rayon Co Ltd Method for cleaning separation member module
JP2001161811A (en) * 1999-12-13 2001-06-19 Aisei:Kk Detergent for artificial dialyzing apparatus
JP4580589B2 (en) 2001-06-15 2010-11-17 アムテック株式会社 Cleaning method of separation membrane

Also Published As

Publication number Publication date
US20070015680A1 (en) 2007-01-18
WO2004076040A1 (en) 2004-09-10
JP4458039B2 (en) 2010-04-28
CN1524607A (en) 2004-09-01
AU2004216334A1 (en) 2004-09-10
EP1600204A4 (en) 2006-03-01
TW200424005A (en) 2004-11-16
US7540292B2 (en) 2009-06-02
EP1600204A1 (en) 2005-11-30
CN100506361C (en) 2009-07-01
TWI319329B (en) 2010-01-11
SG181175A1 (en) 2012-06-28
KR20060002757A (en) 2006-01-09

Similar Documents

Publication Publication Date Title
JP4458039B2 (en) Selective permeable membrane cleaning agent and cleaning method
CN104741006A (en) Reverse osmosis membrane detergent
WO2006061953A1 (en) Detergent for selectively permeable membranes and method for washing the membranes
JP4968027B2 (en) Method for improving rejection rate of permeable membrane, water treatment method using permeable membrane with improved rejection rate, and permeable membrane device
AU2016299518B2 (en) Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP2016049483A (en) Detergent for reverse osmosis membrane and cleaning method of reverse osmosis membrane
KR101211740B1 (en) Method of membrane treatment for ballast water
JPH084728B2 (en) Membrane module cleaning method
JP2011067716A (en) Water treatment method
JP4635414B2 (en) Cleaning method for reverse osmosis membrane device
JP4631287B2 (en) Permeation membrane cleaning method
JP3194679B2 (en) Cleaning method for filtration membrane module
JP3473465B2 (en) Cleaning method of membrane
CN111556852B (en) Method for regenerating member and method for desalinating sea water
JP3128250B2 (en) Rinse water circulation treatment method
JPS5820205A (en) Method for washing membrane separation apparatus
JP2007014829A (en) On-line washing method
JP2020018986A (en) Method for cleaning membrane filtration device and water treatment method
JP2007181773A (en) Filtration film performance recovering method
JPH01119306A (en) Method for washing reverse osmosis membrane
Kowalska Unit and integrated membrane operations for purification of spent single-phase detergent
JP2006159124A (en) Washing method for permselective membrane
JP2019150789A (en) Washing method of membrane separator
JPH04354583A (en) Waste water treatment and apparatus thereof
JP2005246361A (en) Liquid chemical cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4458039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees