WO2006061953A1 - Detergent for selectively permeable membranes and method for washing the membranes - Google Patents

Detergent for selectively permeable membranes and method for washing the membranes Download PDF

Info

Publication number
WO2006061953A1
WO2006061953A1 PCT/JP2005/019190 JP2005019190W WO2006061953A1 WO 2006061953 A1 WO2006061953 A1 WO 2006061953A1 JP 2005019190 W JP2005019190 W JP 2005019190W WO 2006061953 A1 WO2006061953 A1 WO 2006061953A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
acid
membrane
permeable membrane
selective permeable
Prior art date
Application number
PCT/JP2005/019190
Other languages
French (fr)
Japanese (ja)
Inventor
Shuhei Izawa
Takahiro Kawakatsu
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2006061953A1 publication Critical patent/WO2006061953A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/06Hydroxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a cleaning agent for cleaning a selective permeable membrane such as a reverse osmosis membrane or a nanofiltration membrane, and a cleaning method using the cleaning agent.
  • a cleaning agent for cleaning the permeation flux and other selectively permeable membranes that have been degraded by water treatment such as desalination, pure water production, etc. It is related with the washing
  • Patent Document 1 Japanese Patent Publication No. 54-99783 discloses a cleaning method using an alkali as a cleaning agent. In this method, the permeation flux is recovered in a short time when the degree of contamination is high. The permeation flux recovery rate is less than 100%.
  • a selective permeable membrane is used for treatment of wastewater containing inorganic and organic substances, contaminants including inorganic and organic substances will adhere, but such deposits cannot be removed by using the above cleaning agent alone.
  • Patent Document 2 is a cleaning agent containing a positive molecular weight having a molecular weight of 400 or less
  • a cleaning method is shown in which the selective permeable membrane is cleaned with a cleaning agent containing an organic solvent.
  • This method is a method in which a permselective membrane having a reduced permeation performance such as a permeation flux is brought into contact with the above-mentioned cleaning agent for cleaning, and the polyalkylene glycol or the non-ionic surfactant adheres thereto. It has been shown that the selective permeable membrane can be effectively washed.
  • Patent Document 2 in order to further enhance the cleaning effect of cleaning with a cleaning agent containing a polyol having a molecular weight of 400 or less, cleaning with a cleaning agent containing an acid as a pre-cleaning or post-cleaning, or a cleaning agent containing alkali Or other cleanings have been shown.
  • This method is a combination of cleaning with a cleaning agent containing a polyol having a molecular weight of 400 or less and cleaning with an acid-containing cleaning agent or cleaning with an alkali-containing cleaning agent by shifting them back and forth. It is a method to do.
  • Patent Document 1 Japanese Patent Publication No. 54-99783
  • Patent Document 2 WO 2004-076040
  • An object of the present invention is to increase the cleaning effect on organic substances that are difficult to remove, such as TOC components having a molecular weight of more than 400, and to add the ability to remove inorganic substances such as scales.
  • TOC components having a molecular weight of more than 400
  • the present invention provides the following selective permeable membrane cleaning method.
  • a cleaning agent for a selective permeable membrane containing a polyol having a molecular weight of 400 or less and an acid or an alkali (2) The cleaning agent according to the above (1), wherein the polyol is at least one selected from the group power of ethylene glycol, diethylene glycol, propylene glycol, glycerin, polydalicol and sugar alcohol.
  • a method for cleaning a selective permeable membrane in which the selective permeable membrane having a reduced permeation flux is washed with a selective permeable membrane cleaner containing a polyol having a molecular weight of 400 or less and an acid or an alkali.
  • the selective permeable membrane to be cleaned is a selective permeable membrane with reduced permeation flux, selective permeability, and other performance.
  • the selective permeable membrane is a semipermeable membrane that selectively permeates a specific substance, component, etc., such as a reverse osmosis membrane or a nanofiltration membrane. Things are the target.
  • the material of the selective permeable membrane is not particularly limited, and examples thereof include polyamide permeable membranes, polysulfone permeable membranes, polyimide permeable membranes, and cellulose permeable membranes.
  • the membrane to be cleaned may be a selective permeable membrane itself or a membrane module.
  • the membrane module to be cleaned is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
  • the cause of the performance degradation of the selective permeable membrane is not limited, it can be contaminated by the use of a reverse osmosis membrane such as water treatment such as liquid concentration, desalting, pure water production, or other treatments. Is common. All contaminants such as organic substances such as surfactants and inorganic substances such as scales, which are not limited as contaminants, are targeted, but the selective permeation has deteriorated due to the strong combined contamination of organic and inorganic contamination. Membrane is suitable for cleaning.
  • TOC components with a molecular weight of more than 400 specifically high molecular weight polyalkylene glycols, nonionic surfactants (especially alkyl ether type Detergents), proteins, polysaccharides, glycoproteins, humins (e.g. humic acid), etc., and selective permeable membranes with inorganic substances such as calcium salts attached. Even a selective permeable membrane can be washed.
  • Polyalkylene glycols such as polyethylene glycol and polypropylene glycol, particularly polyethylene glycol, are selected as nonionic surfactants, particularly alkyl ether type nonionic surfactants. Since it has a high affinity with the permeable membrane, it adheres to the surface and pores of the selective permeable membrane and causes a decrease in performance. Of these, those with a molecular weight of 400 or less have high affinity water, so they are easily washed and removed by washing with water, etc., but are selected with a high molecular weight polyalkylene glycol or nonionic surfactant that exceeds 400 in molecular weight.
  • the permeable permeable membrane is not removed by permeation of water, causing performance degradation, and is difficult to remove by washing with water.
  • the same applies to other TOC components having a molecular weight exceeding 400 such as proteins, polysaccharides, glycoproteins, and humins.
  • the above polyalkylene glycols with a molecular weight exceeding 400, non-ionic surfactants, and other TOC components with a molecular weight exceeding 400 even when only these adhere to the selective permeable membrane as contaminants. Forces that are difficult to remove by washing In addition to these, it is difficult to wash and remove composite contaminants when inorganic scale components such as calcium adhere to the selective permeable membrane as composite contaminants.
  • the selective permeable membrane cleaning agent of the present invention is a cleaning agent including both a polyol having a molecular weight of 400 or less and an acid or alkali. In addition to these components, an organic solvent or other solvent is also included. Ingredients may be included.
  • the selective permeable membrane cleaning agent of the present invention is often used as an aqueous solution at the time of use, but as a product form, it may or may not contain water.
  • the selective permeable membrane cleaning agent of the present invention only needs to contain both a polyol having a molecular weight of 400 or less and an acid or alkali at the time of use. It may be prepared and used.
  • Polyol is a compound having a plurality of OH groups, such as ethylene glycol, propylene glycol, trimethylene glycol and other alkylene glycols; glycerin; diethylene glycol and other polyalkylene glycols such as polyglycols; and erythritol Sugar alcohols and the like.
  • These polyols are preferably those having 2 to 6 carbon atoms and an OHZC ratio of 0.5 to 1 which are preferably hydrophilic.
  • oar can be used alone, it is preferred because it can improve the cleaning effect by using it as a mixture of two or more.
  • the polyalkylene glycol such as diethylene glycol and other substances may be used. It is preferable to use a polyol in combination.
  • Examples of the acid used for the cleaning agent in the present invention include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid and citrate, and nitric acid is particularly preferred.
  • inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid
  • organic acids such as oxalic acid and citrate
  • nitric acid is particularly preferred.
  • Detergents that combine polyols and acids with a molecular weight of 400 or less are suitable for cleaning membranes that adhere to inorganic scale components such as calcium carbonate and calcium phosphate, and contaminants such as metals such as iron and manganese.
  • nitric acid is suitable for cleaning a selectively permeable membrane to which contaminants such as proteins are attached by simply removing the inorganic components described above.
  • alkali examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like, and sodium hydroxide is particularly preferable.
  • a cleaning agent combining a polyol with a molecular weight of 400 or less and an alkali is suitable for cleaning a selective permeable membrane to which inorganic components such as silica and aluminum hydroxide and contaminants such as high molecular organic substances such as protein and humin are attached. Yes.
  • organic solvents that have been used conventionally such as monohydric alcohols, ethers, ketones and amides can be used. These organic solvents are preferably those having 1 to 3 carbon atoms, which polar solvents are preferred.
  • the monovalent alcohol include methanol and ethanol
  • examples of the ether include ethers of the above monohydric alcohol or polyol
  • examples of the ketone include acetone and acetyl acetate
  • examples of the amide include formamide.
  • These organic solvents may also be included alone or in a mixture of two or more.
  • an anionic surfactant can be further blended as another component if necessary.
  • the anionic surfactant include alkyl sulfate esters such as sodium alkyl sulfate, linear alkyl benzene sulfonate such as sodium dodecyl benzene sulfonate, and alkyl sulfate such as sodium dodecyl sulfate (SDS). It is done.
  • a chelating agent can be blended with.
  • Chelating agents include aliphatic carboxylic acids such as oxalic acid, citrate or their salts: ethylenepolyamine tetraacetic acid (EDTA) or aminopolycarboxylic acids such as their salts: darconic acid, phosphonic acid, polyphosphoric acid (pyrophosphoric acid, And other acids such as hexametaphosphoric acid) or salts thereof.
  • a reducing agent can be further blended as another component if necessary to the film contaminated by the adhesion of slime (microorganisms).
  • the reducing agent include sodium sulfite, sodium sulfite, sodium thionite, sodium erythorbate, sodium ascorbate, cysteine, and hydrazine.
  • the cleaning agent containing a polyol having a molecular weight of 400 or less and an acid or alkali used as a cleaning agent for the selective permeable membrane of the present invention may be used without containing water, or may be used as an aqueous solution. Good.
  • the concentration of the aqueous solution during use of these components as a cleaning agent is not particularly limited, but the concentration of a polyol having a molecular weight of 400 or less is usually 1 to 50% by weight, and preferably 20 to 50% by weight.
  • an acid it can be added in such an amount that the aqueous solution strength during use is H3 or less, preferably pH2 or less.
  • nitric acid In the case of nitric acid, it can usually be 0.01 to 30% by weight, preferably 1 to 20% by weight. When an alkali is used, it can be added in such an amount that the aqueous solution strength during use is H10 or more, preferably pH 12 or more, more preferably pH 12-13.
  • the concentration of other components to be blended if necessary is usually 1% by weight or less, preferably 0.2% by weight or less for each component, but the total amount of each component is preferably 1% by weight or less, preferably 0.2% by weight or less is preferable.
  • the above concentration is the concentration at the time of use. Depending on the product, it may be used at this concentration, or it may be diluted at a higher concentration than this. Also good.
  • the selective permeable membrane cleaning method of the present invention is a method of cleaning a selective permeable membrane with reduced performance such as permeation flux with a cleaning agent containing the above polyol and an acid or an alkali.
  • a specific method of cleaning there is a method in which the selective permeable membrane is brought into contact with a cleaning agent, and immersion in a cleaning agent solution, cleaning by a parallel flow or a stirring flow is preferable, but the cleaning agent permeates the selective permeable membrane. It can also be washed.
  • the pressure at the time of washing is not particularly limited in the case of immersion, but it may not be pressurized, but in the case of washing by parallel flow, stirring flow or permeation, the treatment Pressurization can be performed at a pressure equal to or lower than the pressure during liquid permeation.
  • the cleaning time that is, the time of contact with the cleaning agent varies depending on the degree of contamination, the concentration of the cleaning agent, etc., but can generally be 1 to 8 hours.
  • the cleaning agent of the present invention has a high cleaning effect on the selective permeable membrane and is safe and safe for people and the environment without degrading the selective permeable membrane.
  • a selective permeable membrane with reduced performance can be efficiently washed in a short time to restore performance.
  • the contaminants that had been attached to the pre-use force may also be removed, and the removal rate and performance recovery rate may exceed 100%.
  • pre-processing cleaning, post-processing cleaning, and the like by other cleaning methods may be performed before and after cleaning with a cleaning agent. If necessary, after washing, operations such as washing with pure water and solvent replacement with the liquid to be treated can be performed.
  • the selective permeable membrane is washed with a detergent containing a polyol having a molecular weight of 400 or less and an acid or an alkali. Therefore, an organic substance that is difficult to remove such as a TOC component having a molecular weight of more than 400 is used.
  • a TOC component having a molecular weight of more than 400 is used.
  • FIG. 1 is a graph showing the results of Example 1.
  • Alkyl ether type nonionic surfactant polyoxyethylene (20) lauryl ether NTR '759H R manufactured by Nitto Denko Co., Ltd.
  • the pure water permeation flux of the new membrane is 1.2MPa with operating pressure of 1.2MPa and 1.0 to 1.2mZd
  • the permeation flux decreased to 0.20 mZd
  • this contaminated membrane (CMe) was immersed in an aqueous solution of sodium hydroxide (pH 12) for 24 hours.
  • Table 1 shows the overflux.
  • Comparative Examples 1 and 2 the permeation flux hardly recovered.
  • Comparative Example 3 the force at which the permeation flux was recovered as compared with Comparative Examples 1 and 2 due to the use of the polyol was satisfactory in comparison with the following examples.
  • CMe contaminated membrane used in Comparative Examples 1 to 3 was immersed in an aqueous solution of 50% ethylene glycol (EG) and 0.06 to 20% nitric acid (HNO) for 24 hours, and then purified water was passed through (50% EG + 0.
  • EG ethylene glycol
  • HNO nitric acid
  • Figure 1 shows the pure water permeation flux (Flux) after cleaning of each cleaning solution.
  • nitric acid swells the membrane and the polyol easily comes into contact with the non-ionic surfactant that is a membrane contaminant. It is thought that the cleaning effect has improved. The effect was particularly remarkable at nitric acid concentrations of 1% or higher. It is clear that the performance of a reverse osmosis membrane with a significantly reduced permeation flux with a nonionic surfactant can be effectively recovered in a short time by washing with a mixture of polyol and acid, particularly nitric acid. is there.
  • the pure water permeation flux of the new membrane was filtered using 1.2 to 1.3 mZd at an operating pressure of 1.2 MPa and an operating pressure of 1.2 MPa. As a result, the permeation flux was As a result of observing the film surface with fluorescent X-rays, inorganic substances such as Al, Ca, and Fe were attached.
  • Table 2 shows the water flux. These cleaning methods were unable to recover to the same extent as the new membrane.
  • Table 2 shows the flux. This contaminated film was a composite contamination of organic contamination and scale, so it is considered that the performance could be recovered by alternately performing alkaline cleaning and acid cleaning. However, this cleaning method required more than 3 days for cleaning. [Comparative Examples 7 to 8]:
  • the contamination film (CMe) used in Comparative Examples 4 and 5 was washed using a 5% nitric acid aqueous solution and a mixed aqueous solution of 50% propylene glycol (PG) and 20% methanol (MeOH) as a washing solution.
  • PG propylene glycol
  • MeOH methanol
  • the acid and polyol were soaked in the order of 24 hours, respectively, and then pure water was passed (indicated as 5% HN 2 O ⁇ 50% PG + 20% MeOH).
  • the order of polyol and acid was followed. 24 each
  • Table 2 shows the pure water permeation flux after washing.
  • Comparative Example 7 since the polyol was washed in the presence of scale, the removal of organic contaminants by the polyol was hindered, and the permeation flux could not be restored to the level of the unused membrane.
  • Comparative Example 8 it was possible to recover the permeation flux by performing the polyol washing after the scale removal, and it took more than 2 days for the force washing.
  • the contaminated membrane (CMe) used in Comparative Examples 4 and 5 was immersed in an aqueous solution of 50% propylene glycol (PG) and 5% nitric acid for 24 hours and then passed with pure water (50% PG + 5% HNO and display). Wash
  • Table 2 shows the pure water permeation flux after purification.
  • the permeation flux was recovered even when the combination of alkali cleaning and acid cleaning in Comparative Example 6 and the combination of polyol cleaning and acid cleaning in Comparative Example 8 were restored, but in Example 2, organic contaminant removal by polyol and acid cleaning were performed. Due to the combined effect of scale removal by, higher permeation flux was obtained with cleaning times from 1Z3 min to 1Z2.
  • Comparative Example 9 the contaminated membrane (CMe) was immersed in a sodium hydroxide aqueous solution (pH 12) for 4 hours, and then pure water was passed through (displayed as NaOH (pH 12)).
  • Comparative Example 10 the contaminated film (C Me) was immersed in a 1% aqueous propylene glycol (PG) solution for 4 hours, and then pure water was passed through (denoted as 1% PG). Table 3 shows the pure water permeation flux after each washing operation. These cleaning methods have been unable to recover to the same extent as the new membrane.
  • CMe membranes used in Comparative Examples 9 and 10 were soaked in the order of 1% propylene glycol (PG) and aqueous sodium hydroxide solution (PH12) for 4 hours, respectively, and then passed with pure water (1 % PG ⁇ NaOH (pH12)).
  • Table 3 shows the pure water permeation flux after washing. Since the polyol was washed in the presence of scale, removal of organic pollutants by the polyol was hindered, and it was considered impossible to restore the permeation flux to the level of the unused membrane. [Example 3]:
  • the contaminated membrane (CMe) used in Comparative Examples 9 and 10 was immersed in a mixed aqueous solution (pH 12) of 1% propylene glycol (PG) and sodium hydroxide for 4 hours, and then purified water was passed through (1% PG + Na OH (pH12)).
  • Table 3 shows the pure water permeation flux after washing.
  • inorganic substances such as A1 and some organic substances are removed by alkali
  • organic substances that cannot be removed by alkali can be removed by polyol, so that the permeation flux can be restored to the same level as the new membrane. It is thought that it was able to wash effectively in a shorter time than Comparative Example 11.
  • NTR-759HRC a reverse osmosis membrane manufactured by Nitto Denko Co., Ltd. Filtration was performed at 1.2 MPa with an operating pressure of 1.2 MPa at 1.2 MPa, and as a result, the permeation flux decreased to 0.56 mZd.
  • pure water was passed through (indicated as NaOH (pH 12))
  • Comparative Example 13 after being immersed in a 20% nitric acid aqueous solution for 24 hours, pure water was passed through In Comparative Example 14, 50% ethylene glycol (EG), 20%
  • CMe contaminated soot
  • EG ethylene glycol
  • methanol 20% methanol mixed aqueous solution
  • Table 4 shows the flux.
  • CMe contaminated membrane used in Comparative Examples 12 to 14 was immersed in a mixed aqueous solution of 50% ethylene glycol (EG) and 20% nitric acid for 24 hours and then passed with pure water (50% PG + 20% HNO
  • Table 4 shows the pure water permeation flux after washing.
  • the permeation flux was recovered to the same level as that of the new membrane. It has been clarified that the performance of the reverse osmosis membrane having a reduced permeation flux can be recovered by a polymer organic material such as protein by a mixture of polyol and acid. The permeation flux recovers even with the cleaning method of Comparative Example 15. With this cleaning method, an even higher permeation flux was obtained in half the cleaning time.
  • Selective permeable membranes such as reverse osmosis membranes and nanofiltration membranes that have been contaminated by water treatment such as liquid concentration, desalination, pure water production, etc. Can be used for cleaning to restore performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method for washing a selectively permeable membrane, in which the detergency against strong complex pollutants formed by combination of organic substances such as surfactant with inorganic pollutants such as scale is enhanced by enhancing the detergency against TOC components having molecular weights exceeding 400 such as polyalkylene glycol, nonionic surfactants, proteins, polysaccharides, glycoproteins, or humins and imparting the ability to remove inorganic substances such as scales, whereby effective recovery of the membrane performance can be attained in a short time via simple steps. This method comprises bringing a selectively permeable membrane into contact with a detergent for selectively permeable membranes which contains a polyol having a molecular weight of 400 or below and an acid or an alkali to dissolve and remove the pollutants adhering to the membrane.

Description

選択性透過膜の洗浄剤および洗浄方法  Selective permeable membrane cleaning agent and cleaning method
技術分野  Technical field
[0001] 本発明は、逆浸透膜、ナノ濾過膜等の選択性透過膜を洗浄するための洗浄剤、お よびその洗浄剤を使用する洗浄方法に関し、さら〖こ詳しくは、液体の濃縮、脱塩、純 水製造等の水処理、あるいはその他の処理などによって汚染され、透過流束その他 の性能の低下した選択性透過膜を洗浄して性能を回復させるための洗浄剤、および その洗浄剤を使用する洗浄方法に関するものである。  [0001] The present invention relates to a cleaning agent for cleaning a selective permeable membrane such as a reverse osmosis membrane or a nanofiltration membrane, and a cleaning method using the cleaning agent. A cleaning agent for cleaning the permeation flux and other selectively permeable membranes that have been degraded by water treatment such as desalination, pure water production, etc. It is related with the washing | cleaning method which uses.
背景技術  Background art
[0002] 逆浸透膜、限外ろ過膜等の選択性透過膜を用いて、液体の濃縮、脱塩、純水製造 その他の水処理を行うと、選択性透過膜は種々の汚染物質によって汚染され、透過 流束が低下したり、選択透過率が低下する。このため性能の低下した選択性透過膜 を洗浄剤で洗浄して、性能を回復させることが行われて 、る。  [0002] When selective permeable membranes such as reverse osmosis membranes and ultrafiltration membranes are used to concentrate liquids, desalinate, produce pure water, and other water treatments, the selective permeable membranes are contaminated with various pollutants. As a result, the permeation flux decreases and the selective permeability decreases. For this reason, the selective permeation membrane with reduced performance is washed with a cleaning agent to restore the performance.
[0003] 従来、透過流束等の性能の低下した選択性透過膜の洗浄方法では、酸、アルカリ 、有機溶媒または界面活性剤を洗浄剤として用いることが多い。例えば特許文献 1 ( 日本特許公開昭 54— 99783号)には、洗浄剤としてアルカリを用いる洗浄方法が示 されているが、この方法では、汚染の度合いが激しいと短時間で透過流束を回復さ せることは困難であり、また透過流束の回復率も 100%には至らない。無機物および 有機物を含む排水等の処理に選択性透過膜を用いると、無機物および有機物を含 む汚染物質が付着するが、このような付着物は上記洗浄剤を単独で用いても除去で きないため、例えば酸で洗浄した後、アルカリで洗浄するなど、前後にずらせて組み 合わせ洗浄が行われていた。しかしこの場合でも、洗浄工程が複雑で、洗浄時間が 長くなるにもかかわらず、洗浄効果の改善は少なぐ透過流束の回復率も十分でない  [0003] Conventionally, in selective permeation membrane cleaning methods with reduced performance such as permeation flux, acids, alkalis, organic solvents or surfactants are often used as cleaning agents. For example, Patent Document 1 (Japanese Patent Publication No. 54-99783) discloses a cleaning method using an alkali as a cleaning agent. In this method, the permeation flux is recovered in a short time when the degree of contamination is high. The permeation flux recovery rate is less than 100%. When a selective permeable membrane is used for treatment of wastewater containing inorganic and organic substances, contaminants including inorganic and organic substances will adhere, but such deposits cannot be removed by using the above cleaning agent alone. For this reason, for example, after washing with an acid, washing with an alkali is performed in combination with the front and back. However, even in this case, although the washing process is complicated and the washing time becomes long, the improvement of the washing effect is small and the recovery rate of the permeation flux is not sufficient.
[0004] 一方、高分子のポリアルキレングリコール、ノ-オン性界面活性剤、蛋白、多糖類、 糖蛋白、フミン (humin)等の分子量 400を超える TOC (全有機炭素)成分を含む排 水等を選択性透過膜で処理することにより、これらの TOC成分が付着した選択性透 過膜は、上記従来の洗浄剤では性能を回復することができない。上記のポリアルキレ ングリコールまたはノニオン性界面活性剤が付着した選択性透過膜の洗净方法とし て、特許文献 2 (WO 2004-076040)〖こは、分子量 400以下のポジ才ーノレを含む 洗浄剤、あるいはさらに有機溶媒を含む洗浄剤で選択性透過膜を洗浄する洗浄方 法が示されている。この方法は、透過流束等の透過性能が低下した選択性透過膜を 上記の洗浄剤と接触させて洗浄する方法であり、前記のポリアルキレングリコールま たはノ-オン性界面活性剤が付着した選択性透過膜を効果的に洗浄することができ ることが示されている。 [0004] On the other hand, wastewater containing TOC (total organic carbon) components exceeding 400 molecular weight such as high molecular weight polyalkylene glycol, non-ionic surfactant, protein, polysaccharide, glycoprotein, humin, etc. By treating with a selective permeable membrane, the selective permeable component with these TOC components attached is obtained. The film cannot recover its performance with the above-mentioned conventional cleaning agents. As a method for cleaning the selective permeable membrane to which the above polyalkylene glycol or nonionic surfactant is attached, Patent Document 2 (WO 2004-076040) is a cleaning agent containing a positive molecular weight having a molecular weight of 400 or less, Alternatively, a cleaning method is shown in which the selective permeable membrane is cleaned with a cleaning agent containing an organic solvent. This method is a method in which a permselective membrane having a reduced permeation performance such as a permeation flux is brought into contact with the above-mentioned cleaning agent for cleaning, and the polyalkylene glycol or the non-ionic surfactant adheres thereto. It has been shown that the selective permeable membrane can be effectively washed.
[0005] 特許文献 2には、分子量 400以下のポリオールを含む洗浄剤による洗浄の洗浄効 果をさらに高めるために、前洗浄または後洗浄として酸を含む洗浄剤による洗浄、ァ ルカリを含む洗浄剤による洗浄、または他の洗浄を行うことが示されている。この方法 は、分子量 400以下のポリオールを含む洗浄剤による洗浄と、酸を含む洗浄剤によ る洗浄、またはアルカリを含む洗浄剤による洗浄等の他の洗浄とを、前後にずらせて 組み合わせて洗浄を行う方法である。し力しこのような洗浄方法では、洗浄工程が複 雑で、洗浄時間が長くなるほか、洗浄回復性が十分でないなどの問題点がある。 特許文献 1 :日本特許公開昭 54— 99783号公報  [0005] In Patent Document 2, in order to further enhance the cleaning effect of cleaning with a cleaning agent containing a polyol having a molecular weight of 400 or less, cleaning with a cleaning agent containing an acid as a pre-cleaning or post-cleaning, or a cleaning agent containing alkali Or other cleanings have been shown. This method is a combination of cleaning with a cleaning agent containing a polyol having a molecular weight of 400 or less and cleaning with an acid-containing cleaning agent or cleaning with an alkali-containing cleaning agent by shifting them back and forth. It is a method to do. However, such a cleaning method has problems such as a complicated cleaning process, a long cleaning time, and insufficient cleaning recovery. Patent Document 1: Japanese Patent Publication No. 54-99783
特許文献 2 :WO 2004-076040  Patent Document 2: WO 2004-076040
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の課題は、分子量 400を超える TOC成分のような除去困難な有機物に対 する洗浄効果を高めるとともに、スケール等の無機物除去能を付加でき、これにより 前記 TOC成分とスケール等の無機物による汚染が複合した強固な複合汚染に対す る洗浄能を高めることができ、簡単な工程で短時間に膜性能を効果的に回復できる ことができる選択性透過膜の洗浄方法を提案することである。 [0006] An object of the present invention is to increase the cleaning effect on organic substances that are difficult to remove, such as TOC components having a molecular weight of more than 400, and to add the ability to remove inorganic substances such as scales. To propose a cleaning method for selective permeation membranes that can improve the cleaning performance against strong complex contamination with contamination by inorganic substances and can effectively restore membrane performance in a short time with a simple process. It is.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、次の選択性透過膜の洗浄方法である。 The present invention provides the following selective permeable membrane cleaning method.
(1) 分子量 400以下のポリオールと、酸またはアルカリとを含む選択性透過膜の洗 浄剤。 (2) ポリオールがエチレングリコール、ジエチレングリコール、プロピレングリコール、 グリセリン、ポリダリコールおよび糖アルコール力もなる群力 選ばれる少なくとも 1つ である上記(1)記載の洗浄剤。 (1) A cleaning agent for a selective permeable membrane containing a polyol having a molecular weight of 400 or less and an acid or an alkali. (2) The cleaning agent according to the above (1), wherein the polyol is at least one selected from the group power of ethylene glycol, diethylene glycol, propylene glycol, glycerin, polydalicol and sugar alcohol.
(3) 酸が硝酸、塩酸、硫酸、シユウ酸およびクェン酸力 なる群力 選ばれる少なく とも 1つである上記(1)または(2)記載の洗浄剤。  (3) The cleaning agent according to (1) or (2) above, wherein the acid is at least one selected from the group power of nitric acid, hydrochloric acid, sulfuric acid, oxalic acid, and succinic acid.
(4) アルカリが水酸ィ匕ナトリウム、水酸ィ匕カリウムおよび水酸化リチウム力もなる群か ら選ばれる少なくとも 1つである上記(1)な 、し (3)の 、ずれかに記載の洗浄剤。 (4) The washing according to any one of (1) and (3) above, wherein the alkali is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. Agent.
(5) 洗浄対象の選択性透過膜は、分子量 400を超える TOC成分が付着したもので ある上記( 1)な 、し (4)の 、ずれかに記載の洗浄剤。 (5) The cleaning agent according to any one of (1) and (4) above, wherein the selective permeable membrane to be cleaned is a TOC component having a molecular weight of more than 400 attached.
(6) 透過流束が低下した選択性透過膜を、分子量 400以下のポリオールと、酸また はアルカリとを含む選択性透過膜の洗浄剤により洗浄する選択性透過膜の洗浄方法  (6) A method for cleaning a selective permeable membrane, in which the selective permeable membrane having a reduced permeation flux is washed with a selective permeable membrane cleaner containing a polyol having a molecular weight of 400 or less and an acid or an alkali.
[0008] 本発明にお ヽて洗浄の対象となる選択性透過膜は、透過流束、選択透過率、その 他の性能の低下した選択性透過膜である。ここで選択性透過膜とは、逆浸透膜ある いはナノ濾過膜など、特定の物質、成分等を選択的に透過させる半透膜であり、その 用途は制限されず、一般的な用途のものが対象となる。選択性透過膜の材質として は特に制限されず、例えばポリアミド系透過膜、ポリスルホン系透過膜、ポリイミド系 透過膜、セルロース系透過膜などが挙げられる。また洗浄の対象となるのは選択性 透過膜自体でもよぐ膜モジュールでもよい。洗浄の対象となる膜モジュールには特 に制限はなぐ例えば管状膜モジュール、平面膜モジュール、スパイラル膜モジユー ル、中空糸膜モジュールなどを挙げることができる。 [0008] In the present invention, the selective permeable membrane to be cleaned is a selective permeable membrane with reduced permeation flux, selective permeability, and other performance. Here, the selective permeable membrane is a semipermeable membrane that selectively permeates a specific substance, component, etc., such as a reverse osmosis membrane or a nanofiltration membrane. Things are the target. The material of the selective permeable membrane is not particularly limited, and examples thereof include polyamide permeable membranes, polysulfone permeable membranes, polyimide permeable membranes, and cellulose permeable membranes. The membrane to be cleaned may be a selective permeable membrane itself or a membrane module. The membrane module to be cleaned is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
[0009] 選択性透過膜の性能低下の原因は何でもよいが、液体の濃縮、脱塩、純水製造等 の水処理、あるいはプロセス処理、その他の処理など、逆浸透膜の使用によって汚 染されたものが一般的である。汚染物質としても制限はなぐ界面活性剤等の有機物 、スケール等の無機物など、あらゆる汚染物質が対象となるが、有機物による汚染と 無機物による汚染が複合した強固な複合汚染により性能低下した選択性透過膜が 洗浄対象として適している。特に分子量 400を超える TOC成分、具体的には高分子 のポリアルキレングリコール、ノ-オン性界面活性剤(特にアルキルエーテル型ノ-ォ ン性界面活性剤)、蛋白、多糖類、糖蛋白、フミン (例えばフミン酸)等が付着し、さら にカルシウム塩等の無機物質が付着した選択性透過膜のように、洗浄が困難とされ た選択性透過膜であっても、洗浄が可能である。 [0009] Although the cause of the performance degradation of the selective permeable membrane is not limited, it can be contaminated by the use of a reverse osmosis membrane such as water treatment such as liquid concentration, desalting, pure water production, or other treatments. Is common. All contaminants such as organic substances such as surfactants and inorganic substances such as scales, which are not limited as contaminants, are targeted, but the selective permeation has deteriorated due to the strong combined contamination of organic and inorganic contamination. Membrane is suitable for cleaning. In particular, TOC components with a molecular weight of more than 400, specifically high molecular weight polyalkylene glycols, nonionic surfactants (especially alkyl ether type Detergents), proteins, polysaccharides, glycoproteins, humins (e.g. humic acid), etc., and selective permeable membranes with inorganic substances such as calcium salts attached. Even a selective permeable membrane can be washed.
[0010] ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、特 にポリエチレングリコール、ある 、はこれらを構成成分とするノ-オン性界面活性剤、 特にアルキルエーテル型ノ-オン性界面活性剤は、選択性透過膜との親和性が高 いため、選択性透過膜の表面や細孔に付着して性能低下の原因となる。このうち分 子量 400以下のものは親性水が高いため、水洗等により容易に洗浄除去されるが、 分子量 400を超える高分子のポリアルキレングリコールまたはノ-オン性界面活性剤 が付着した選択性透過膜は、水の透過では除去されず、性能低下の原因となり、水 による洗浄除去が困難である。蛋白、多糖類、糖蛋白、フミン等の他の分子量 400を 超える TOC成分も同様である。上記の分子量 400を超える高分子のポリアルキレン グリコール、ノ-オン性界面活性剤、その他の分子量 400を超える TOC成分は、そ れらのみが選択性透過膜に汚染物として付着した場合でも、その洗净除去が困難で ある力 これらとともにカルシウム等の無機のスケール成分が複合汚染物として選択 性透過膜に付着した場合の複合汚染物の洗浄除去は困難である。  [0010] Polyalkylene glycols such as polyethylene glycol and polypropylene glycol, particularly polyethylene glycol, are selected as nonionic surfactants, particularly alkyl ether type nonionic surfactants. Since it has a high affinity with the permeable membrane, it adheres to the surface and pores of the selective permeable membrane and causes a decrease in performance. Of these, those with a molecular weight of 400 or less have high affinity water, so they are easily washed and removed by washing with water, etc., but are selected with a high molecular weight polyalkylene glycol or nonionic surfactant that exceeds 400 in molecular weight. The permeable permeable membrane is not removed by permeation of water, causing performance degradation, and is difficult to remove by washing with water. The same applies to other TOC components having a molecular weight exceeding 400 such as proteins, polysaccharides, glycoproteins, and humins. The above polyalkylene glycols with a molecular weight exceeding 400, non-ionic surfactants, and other TOC components with a molecular weight exceeding 400, even when only these adhere to the selective permeable membrane as contaminants. Forces that are difficult to remove by washing In addition to these, it is difficult to wash and remove composite contaminants when inorganic scale components such as calcium adhere to the selective permeable membrane as composite contaminants.
[0011] 本発明の選択性透過膜の洗浄剤は、分子量 400以下のポリオールと、酸またはァ ルカリとの両方の成分を含む洗浄剤であり、これらの成分の他にさらに有機溶媒その 他の成分を含んでいてもよい。本発明の選択性透過膜の洗浄剤は、使用時には水 溶液として使用されることが多いが、製品形態としては、水を含んでいても、含んでい なくてもよい。また本発明の選択性透過膜の洗浄剤は、使用時に分子量 400以下の ポリオールと、酸またはアルカリとの両方の成分を含んでいればよいので、使用時に 両方の成分を配合して洗浄剤を調製して使用してもよい。  [0011] The selective permeable membrane cleaning agent of the present invention is a cleaning agent including both a polyol having a molecular weight of 400 or less and an acid or alkali. In addition to these components, an organic solvent or other solvent is also included. Ingredients may be included. The selective permeable membrane cleaning agent of the present invention is often used as an aqueous solution at the time of use, but as a product form, it may or may not contain water. The selective permeable membrane cleaning agent of the present invention only needs to contain both a polyol having a molecular weight of 400 or less and an acid or alkali at the time of use. It may be prepared and used.
[0012] ポリオールは複数の OH基を有する化合物であり、エチレングリコール、プロピレン グリコール、トリメチレングリコール等のアルキレングリコール;グリセリン;ジエチレング リコール、その他のポリアルキレングリコール等のポリグリコール;およびエリトリトール 、マン-トール等の糖アルコールなどが挙げられる。これらのポリオールは親水性の ものが好ましぐ炭素数 2〜6、 OHZC比が 0. 5〜1のものが好ましい。これらのポリ オールは一種単独で用いてもょ 、が、 2種以上の混合物として用いることにより洗浄 効果を上げることができるので好ま 、。汚染物質にノ-オン界面活性剤が含まれて V、る場合には、ノ-オン界面活性剤の溶解性を増カロさせて洗浄効果を高めるために 、ジエチレングリコール等のポリアルキレングリコールと他のポリオールとを併用する のが好ましい。 [0012] Polyol is a compound having a plurality of OH groups, such as ethylene glycol, propylene glycol, trimethylene glycol and other alkylene glycols; glycerin; diethylene glycol and other polyalkylene glycols such as polyglycols; and erythritol Sugar alcohols and the like. These polyols are preferably those having 2 to 6 carbon atoms and an OHZC ratio of 0.5 to 1 which are preferably hydrophilic. These poly Although oar can be used alone, it is preferred because it can improve the cleaning effect by using it as a mixture of two or more. In order to increase the cleaning effect by increasing the solubility of the non-ionic surfactant, the polyalkylene glycol such as diethylene glycol and other substances may be used. It is preferable to use a polyol in combination.
[0013] 本発明において洗浄剤に使用する酸としては、硝酸、塩酸、硫酸等の無機酸、シュ ゥ酸、クェン酸等の有機酸などが挙げられるが、特に硝酸が好ましい。分子量 400以 下のポリオールと酸を組み合わせた洗浄剤は、炭酸カルシウム、リン酸カルシウム等 の無機のスケール成分や、鉄、マンガン等の金属類のような汚染物が付着した膜の 洗浄に適している。中でも、硝酸は前述の無機成分の除去だけでなぐタンパク質の ような汚染物が付着した選択性透過膜の洗浄に適している。  [0013] Examples of the acid used for the cleaning agent in the present invention include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid and citrate, and nitric acid is particularly preferred. Detergents that combine polyols and acids with a molecular weight of 400 or less are suitable for cleaning membranes that adhere to inorganic scale components such as calcium carbonate and calcium phosphate, and contaminants such as metals such as iron and manganese. Among these, nitric acid is suitable for cleaning a selectively permeable membrane to which contaminants such as proteins are attached by simply removing the inorganic components described above.
[0014] アルカリとしては、水酸化ナトリウム、水酸ィ匕カリウム、水酸化リチウムなどが挙げら れるが、特に水酸ィ匕ナトリウムが好ましい。分子量 400以下のポリオールとアルカリを 組み合わせた洗浄剤は、シリカ、水酸化アルミニウム等の無機成分や、蛋白、フミン 等の高分子有機物のような汚染物が付着した選択性透過膜の洗浄に適している。  [0014] Examples of the alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like, and sodium hydroxide is particularly preferable. A cleaning agent combining a polyol with a molecular weight of 400 or less and an alkali is suitable for cleaning a selective permeable membrane to which inorganic components such as silica and aluminum hydroxide and contaminants such as high molecular organic substances such as protein and humin are attached. Yes.
[0015] 本発明の洗浄剤に必要により配合される有機溶媒としては、 1価アルコール、エー テル、ケトンおよびアミドなど、従来力も用いられている有機溶媒が使用できる。これ らの有機溶媒としては、極性溶媒が好ましぐ炭素数 1〜3のものが好ましい。 1価ァ ルコールとしては例えばメタノールやエタノールなど、エーテルとしては例えば上記 1 価アルコールまたはポリオールのエーテル、ケトンとしては例えばアセトン、ァセチル アセトンなど、アミドとしては例えばホルムアミドなどが挙げられる。これらの有機溶媒 も 1種単独で含まれて!/、てもよく、 2種以上の混合物でもよ 、。  [0015] As the organic solvent blended in the cleaning agent of the present invention as necessary, organic solvents that have been used conventionally such as monohydric alcohols, ethers, ketones and amides can be used. These organic solvents are preferably those having 1 to 3 carbon atoms, which polar solvents are preferred. Examples of the monovalent alcohol include methanol and ethanol, examples of the ether include ethers of the above monohydric alcohol or polyol, examples of the ketone include acetone and acetyl acetate, and examples of the amide include formamide. These organic solvents may also be included alone or in a mixture of two or more.
[0016] 有機汚染により透過流束の低下した選択性透過膜に対しては、必要により他の成 分として、さらにァニオン界面活性剤を配合することができる。ァニオン界面活性剤と しては、アルキル硫酸エステルナトリウム塩等のアルキル硫酸エステル塩、ドデシル ベンゼンスルホン酸ナトリウム等の直鎖アルキルベンゼンスルホン酸塩、ドデシル硫 酸ナトリウム(SDS)等のアルキル硫酸塩などが挙げられる。  [0016] For the selective permeable membrane whose permeation flux is reduced due to organic contamination, an anionic surfactant can be further blended as another component if necessary. Examples of the anionic surfactant include alkyl sulfate esters such as sodium alkyl sulfate, linear alkyl benzene sulfonate such as sodium dodecyl benzene sulfonate, and alkyl sulfate such as sodium dodecyl sulfate (SDS). It is done.
[0017] スケール等の無機成分が付着した膜に対しては、必要により他の成分として、さら にキレート剤を配合することができる。キレート剤としては、シユウ酸、クェン酸または それらの塩類等の脂肪族カルボン酸:エチレンジァミン 4酢酸 (EDTA)またはそれら の塩類等のアミノポリカルボン酸:ダルコン酸、ホスホン酸、ポリリン酸(ピロリン酸、へ キサメタリン酸)等のその他の酸またはそれらの塩類などが挙げられる。 [0017] For a film to which an inorganic component such as a scale adheres, if necessary, as another component, A chelating agent can be blended with. Chelating agents include aliphatic carboxylic acids such as oxalic acid, citrate or their salts: ethylenepolyamine tetraacetic acid (EDTA) or aminopolycarboxylic acids such as their salts: darconic acid, phosphonic acid, polyphosphoric acid (pyrophosphoric acid, And other acids such as hexametaphosphoric acid) or salts thereof.
[0018] スライム (微生物)の付着により汚染した膜に対しては、必要により他の成分として、 さらに還元剤を配合することができる。還元剤としては、亜硫酸ナトリウム、亜硫酸水 素ナトリウム、亜-チオン酸ナトリウム、エリソルビン酸ナトリウム、ァスコルビン酸ナトリ ゥム、システィン、ヒドラジンなどが挙げられる。  [0018] A reducing agent can be further blended as another component if necessary to the film contaminated by the adhesion of slime (microorganisms). Examples of the reducing agent include sodium sulfite, sodium sulfite, sodium thionite, sodium erythorbate, sodium ascorbate, cysteine, and hydrazine.
[0019] 本発明の選択性透過膜の洗浄剤として用いる分子量 400以下のポリオールと、酸 またはアルカリとを含む洗浄剤は、水を含まない状態で用いてもよいが、水溶液とし て用いてもよい。これら各成分の洗浄剤としての使用時における水溶液の濃度は特 に限定されないが、分子量 400以下のポリオールの濃度は通常 1〜50重量%、好ま しくは 20〜50重量%とすることができる。酸を用いる場合は、使用時における水溶液 力 ¾H3以下、好ましくは pH2以下となるような量を配合することができる。硝酸の場合 は、通常 0. 01〜30重量%、好ましくは 1〜20重量%とすることができる。アルカリを 用いる場合は、使用時における水溶液力 ¾H10以上、好ましくは pH12以上、さらに 好ましくは pH12〜13となるような量を配合することができる。必要により配合される 他の成分の濃度は通常各成分毎にそれぞれ 1重量%以下、好ましくは 0. 2重量% 以下とすることができるが、各成分の合計量で 1重量%以下、好ましくは 0. 2重量% 以下とするのが好ましい。上記の濃度は使用時の濃度であり、製品としてはこの濃度 でもよぐまたこれより高濃度で使用時に希釈してもよぐ場合によっては、現場で各 成分を配合、溶解して使用してもよい。  [0019] The cleaning agent containing a polyol having a molecular weight of 400 or less and an acid or alkali used as a cleaning agent for the selective permeable membrane of the present invention may be used without containing water, or may be used as an aqueous solution. Good. The concentration of the aqueous solution during use of these components as a cleaning agent is not particularly limited, but the concentration of a polyol having a molecular weight of 400 or less is usually 1 to 50% by weight, and preferably 20 to 50% by weight. When an acid is used, it can be added in such an amount that the aqueous solution strength during use is H3 or less, preferably pH2 or less. In the case of nitric acid, it can usually be 0.01 to 30% by weight, preferably 1 to 20% by weight. When an alkali is used, it can be added in such an amount that the aqueous solution strength during use is H10 or more, preferably pH 12 or more, more preferably pH 12-13. The concentration of other components to be blended if necessary is usually 1% by weight or less, preferably 0.2% by weight or less for each component, but the total amount of each component is preferably 1% by weight or less, preferably 0.2% by weight or less is preferable. The above concentration is the concentration at the time of use. Depending on the product, it may be used at this concentration, or it may be diluted at a higher concentration than this. Also good.
[0020] 本発明の選択性透過膜の洗浄方法は、透過流束等の性能が低下した選択性透過 膜を、上記のポリオールと、酸またはアルカリとを含む洗浄剤で洗浄する方法である。 洗浄の具体的な方法は、選択性透過膜を洗浄剤と接触させる方法があり、洗浄剤液 への浸漬、平行流または攪拌流による洗浄などが好ましいが、洗浄剤を選択性透過 膜に透過させて洗浄を行うこともできる。洗浄時の圧力は特に制限はなぐ浸漬の場 合は加圧しなくてもよいが、平行流、攪拌流または透過による洗浄の場合は、被処理 液透過時の圧力以下の圧力で加圧することができる。洗浄時間、すなわち洗浄剤と 接触させる時間は、汚染の程度、洗浄剤の濃度等により変動するが、一般的には 1 〜8時間とすることができる。 [0020] The selective permeable membrane cleaning method of the present invention is a method of cleaning a selective permeable membrane with reduced performance such as permeation flux with a cleaning agent containing the above polyol and an acid or an alkali. As a specific method of cleaning, there is a method in which the selective permeable membrane is brought into contact with a cleaning agent, and immersion in a cleaning agent solution, cleaning by a parallel flow or a stirring flow is preferable, but the cleaning agent permeates the selective permeable membrane. It can also be washed. The pressure at the time of washing is not particularly limited in the case of immersion, but it may not be pressurized, but in the case of washing by parallel flow, stirring flow or permeation, the treatment Pressurization can be performed at a pressure equal to or lower than the pressure during liquid permeation. The cleaning time, that is, the time of contact with the cleaning agent varies depending on the degree of contamination, the concentration of the cleaning agent, etc., but can generally be 1 to 8 hours.
[0021] 上記の洗浄剤で洗浄を行うことにより、選択性透過膜に付着している汚染物質は洗 浄剤に溶解して流出し、選択性透過膜の低下した透過流束、選択透過率等の性能 を回復させることができる。本発明の洗浄剤は、選択性透過膜に対する洗浄効果が 高ぐ選択性透過膜を劣化させることがなぐ人や環境に対しても安全で取扱性にも 優れ、複合汚染により透過流束等の性能の低下した選択性透過膜を短時間で効率 よく洗浄して、性能を回復させることができる。この場合、選択性透過膜の使用により 付着した汚染物質のほかに、使用前力も付着していた汚染物質も除去されて、除去 率や性能回復率が 100%を超えることがある。  [0021] By cleaning with the above-described cleaning agent, the contaminants adhering to the selective permeable membrane dissolve and flow out in the cleaning agent, and the permeation flux and the selective permeation rate of the selective permeable membrane are reduced. Etc. can be recovered. The cleaning agent of the present invention has a high cleaning effect on the selective permeable membrane and is safe and safe for people and the environment without degrading the selective permeable membrane. A selective permeable membrane with reduced performance can be efficiently washed in a short time to restore performance. In this case, in addition to the contaminants attached due to the use of the selective permeable membrane, the contaminants that had been attached to the pre-use force may also be removed, and the removal rate and performance recovery rate may exceed 100%.
[0022] 上記の洗浄では、洗浄剤による洗浄の前および Zまたは後に、他の洗浄方法によ る前処理洗浄、後処理洗浄などを行ってもよい。また必要により洗浄後に、純水によ る水洗、被処理液による溶媒置換などの操作を行うことができる。  [0022] In the above-described cleaning, pre-processing cleaning, post-processing cleaning, and the like by other cleaning methods may be performed before and after cleaning with a cleaning agent. If necessary, after washing, operations such as washing with pure water and solvent replacement with the liquid to be treated can be performed.
発明の効果  The invention's effect
[0023] 本発明によれば、分子量 400以下のポリオールと、酸またはアルカリとを含む洗浄 剤で選択性透過膜を洗浄するようにしたので、分子量 400を超える TOC成分のよう な除去困難な有機物に対する洗浄効果を高めるとともに、スケール等の無機物除去 能を付加でき、これにより前記 TOC成分とスケール等の無機物による汚染が複合し た強固な複合汚染に対する洗浄能を高めることができ、簡単な工程で短時間に膜性 能を効果的に回復できることができる。  [0023] According to the present invention, the selective permeable membrane is washed with a detergent containing a polyol having a molecular weight of 400 or less and an acid or an alkali. Therefore, an organic substance that is difficult to remove such as a TOC component having a molecular weight of more than 400 is used. In addition to improving the cleaning effect against scales, it is possible to add the ability to remove inorganic substances such as scales. The membrane performance can be effectively recovered in a short time.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]図 1は実施例 1の結果を示すグラフである。 FIG. 1 is a graph showing the results of Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施例および比較例について説明する。各例中、特に言及のない 限り、%は重量%である。 [0025] Examples and comparative examples of the present invention will be described below. In each example, unless otherwise specified,% is% by weight.
[0026] 〔比較例 1〜3〕: [Comparative Examples 1 to 3]:
アルキルエーテル型ノ-オン界面活性剤(ポリオキシエチレン(20)ラウリルエーテ ル)を lmgZLを含む排水を被処理液として、 日東電工 (株)製逆浸透膜 NTR' 759H R (新膜の純水透過流束は操作圧力 1.2MPaで 1.0〜 1.2mZdを用いて 1.2MPaの 操作圧力で濾過を行った。その結果、透過流束は 0.20mZdまで低下した。比較例 1では、この汚染膜 (CMe)を水酸ィ匕ナトリウム (pH12)水溶液に 24時間浸漬した後、 純水通水を行った (NaOH(pH12)と表示)。比較例 2では、 20%硝酸水溶液に 24時 間浸漬した後、純水通水を行った(20%HNOと表示)。比較例 3では、汚染膜を 50 Alkyl ether type nonionic surfactant (polyoxyethylene (20) lauryl ether NTR '759H R manufactured by Nitto Denko Co., Ltd. (the pure water permeation flux of the new membrane is 1.2MPa with operating pressure of 1.2MPa and 1.0 to 1.2mZd) As a result, the permeation flux decreased to 0.20 mZd, and in Comparative Example 1, this contaminated membrane (CMe) was immersed in an aqueous solution of sodium hydroxide (pH 12) for 24 hours. Pure water was passed through (indicated as NaOH (pH 12)) In Comparative Example 2, pure water was passed through after being immersed in a 20% nitric acid aqueous solution for 24 hours (indicated as 20% HNO). In 3, the contamination film is 50
3  Three
o/oエチレングリコール (EG)、 20%硝酸水溶液 (HNO )の順に、各々 24時間浸潰し  o / o ethylene glycol (EG), 20% nitric acid aqueous solution (HNO) in this order, 24 hours each
3  Three
た後、純水通水を行った(50%EG→20%HNOと表示)。各洗浄操作後の純水透  After that, pure water was passed through (displayed as 50% EG → 20% HNO). Pure water permeability after each cleaning operation
3  Three
過流束を表 1に示す。比較例 1、 2では、どちも透過流束はほとんど回復しな力つた。 一方、比較例 3では、ポリオールを用いたことにより、比較例 1、 2に比べて透過流束 の回復が見られた力 以下の実施例に比べると、満足できる結果は得られな力つた。  Table 1 shows the overflux. In Comparative Examples 1 and 2, the permeation flux hardly recovered. On the other hand, in Comparative Example 3, the force at which the permeation flux was recovered as compared with Comparative Examples 1 and 2 due to the use of the polyol was satisfactory in comparison with the following examples.
[0027] 〔実施例 1〕: [Example 1]:
比較例 1〜3で用いた汚染膜(CMe)を、 50%エチレングリコール (EG)、 0.06〜20 %硝酸 (HNO )の水溶液に 24時間浸漬した後、純水通水を行った(50%EG + 0.  The contaminated membrane (CMe) used in Comparative Examples 1 to 3 was immersed in an aqueous solution of 50% ethylene glycol (EG) and 0.06 to 20% nitric acid (HNO) for 24 hours, and then purified water was passed through (50% EG + 0.
3  Three
06〜20%HNOと表示)。各洗浄液の洗浄後の純水透過流束 (Flux)を図 1に示す  06-20% HNO is displayed). Figure 1 shows the pure water permeation flux (Flux) after cleaning of each cleaning solution.
3  Three
。また 50%エチレングリコール (EG)、 20%硝酸 (HNO )の純水透過流束を表 1に  . The pure water permeation flux of 50% ethylene glycol (EG) and 20% nitric acid (HNO) is shown in Table 1.
3  Three
示す。図 1および表 1の結果より、硝酸濃度が高くなるにしたがって洗浄性が高まって いることから、硝酸が膜を膨潤させ、ポリオールが膜汚染物質であるノ-オン界面活 性剤に接触しやすくなつて、洗浄効果が上がったと考えられる。特に硝酸濃度 1%以 上で、その効果が顕著であった。ポリオールと酸、特に硝酸との混合液で洗浄するこ とにより、ノ-オン界面活性剤で著しく透過流束の低下した逆浸透膜の性能を、短時 間で効果的に回復できることが明らかである。  Show. From the results shown in Fig. 1 and Table 1, the higher the concentration of nitric acid, the higher the detergency. Therefore, nitric acid swells the membrane and the polyol easily comes into contact with the non-ionic surfactant that is a membrane contaminant. It is thought that the cleaning effect has improved. The effect was particularly remarkable at nitric acid concentrations of 1% or higher. It is clear that the performance of a reverse osmosis membrane with a significantly reduced permeation flux with a nonionic surfactant can be effectively recovered in a short time by washing with a mixture of polyol and acid, particularly nitric acid. is there.
[0028] [表 1] 表 1 [0028] [Table 1] table 1
Figure imgf000011_0001
Figure imgf000011_0001
[0029] 〔比較例 4〜5〕: [Comparative Examples 4 to 5]:
分子量 400を超える TOC成分: 0. 3mgZL、 Ca : 0. 7mg/L, A1 : 0. Olmg/L, Fe: 0. 05mgZLを含む機械製造工場排水処理装置の処理液を被処理液として、 東レ (株)製逆浸透膜 SU · 720(新膜の純水透過流束は操作圧力 1.2MPaで 1.2〜 1. 3mZdを用いて 1.2MPaの操作圧力で濾過を行った。その結果、透過流束は 0.45 mZdまで低下した。蛍光 X線で膜面を観察した結果、 Al、 Ca、 Fe等の無機物が付 着していた。  TOC component exceeding 400 molecular weight: 0.3 mgZL, Ca: 0.7 mg / L, A1: 0. Olmg / L, Fe: 0.05 mgZL Reverse Osmosis Membrane SU · 720 Co., Ltd. (The pure water permeation flux of the new membrane was filtered using 1.2 to 1.3 mZd at an operating pressure of 1.2 MPa and an operating pressure of 1.2 MPa. As a result, the permeation flux was As a result of observing the film surface with fluorescent X-rays, inorganic substances such as Al, Ca, and Fe were attached.
比較例 4では、この汚染膜 (CMe)を水酸ィ匕ナトリウム水溶液 (pH12)に 24時間浸 漬した後、純水通水を行った (NaOH(pH12)と表示 )。比較例 5では、 5%硝酸水溶 液に 24時間浸漬した後、純水通水を行った(5%HNOと表示)。各洗浄操作後の純  In Comparative Example 4, this contaminated membrane (CMe) was immersed in a sodium hydroxide aqueous solution (pH 12) for 24 hours, and then purified water was passed through (labeled NaOH (pH 12)). In Comparative Example 5, pure water was passed through after being immersed in a 5% nitric acid aqueous solution for 24 hours (indicated as 5% HNO). Pure after each cleaning operation
3  Three
水透過流束を表 2に示す。これらの洗浄方法では、新膜と同程度まで回復させること ができなかった。  Table 2 shows the water flux. These cleaning methods were unable to recover to the same extent as the new membrane.
[0030] 〔比較例 6〕: [Comparative Example 6]:
比較例 4、 5で用いた汚染膜 (CMe)を水酸ィ匕ナトリウム水溶液 (pH12)、 5%硝酸水 溶液、水酸ィ匕ナトリウム水溶液 (PH12)の順に各々 24時間浸漬した後、純水通水を 行った(NaOH(pH12)→20%HNO→NaOH(pH12)と表示)。洗浄後の純水透過  After immersing the contaminated film (CMe) used in Comparative Examples 4 and 5 in the order of sodium hydroxide aqueous solution (pH 12), 5% aqueous nitric acid solution, and aqueous sodium hydroxide solution (PH12) for 24 hours, respectively, pure water Water was passed through (NaOH (pH12) → 20% HNO → NaOH (pH12)). Pure water permeation after washing
3  Three
流束を表 2に示す。本汚染膜は、有機汚染とスケールの複合汚染であったため、ァ ルカリ洗浄と酸洗浄を交互に行うことにより、性能を回復できたと考えられる。しかし、 この洗浄方法では、洗浄に 3日以上の時間を要した。 [0031] 〔比較例 7〜8〕: Table 2 shows the flux. This contaminated film was a composite contamination of organic contamination and scale, so it is considered that the performance could be recovered by alternately performing alkaline cleaning and acid cleaning. However, this cleaning method required more than 3 days for cleaning. [Comparative Examples 7 to 8]:
比較例 4、 5で用いた汚染膜 (CMe)を 5%硝酸水溶液、 50%プロピレングリコール (PG)と 20%メタノール (MeOH)の混合水溶液を洗浄液として洗浄を行った。比較 例 7では、酸、ポリオールの順に各々 24時間浸漬した後、純水通水を行い(5%HN O→50%PG + 20%MeOHと表示)、比較例 8では、ポリオール、酸の順に各々 24 The contamination film (CMe) used in Comparative Examples 4 and 5 was washed using a 5% nitric acid aqueous solution and a mixed aqueous solution of 50% propylene glycol (PG) and 20% methanol (MeOH) as a washing solution. In Comparative Example 7, the acid and polyol were soaked in the order of 24 hours, respectively, and then pure water was passed (indicated as 5% HN 2 O → 50% PG + 20% MeOH). In Comparative Example 8, the order of polyol and acid was followed. 24 each
3 Three
時間浸漬した後、純水通水を行った(50%PG + 20%MeOH→20%HNO )と表示  After soaking for a while, pure water was passed (50% PG + 20% MeOH → 20% HNO)
3 Three
)。洗浄後の純水透過流束を表 2に示す。比較例 7では、スケールが存在する状態で ポリオール洗浄を行ったため、ポリオールによる有機汚染物質の除去が妨害され、透 過流束を未使用膜のレベルにまで回復させることができな力つた。比較例 8では、ス ケール除去後、ポリオール洗浄を行うことにより、透過流束を回復させることができた 力 洗浄に 2日以上の時間を要した。 ). Table 2 shows the pure water permeation flux after washing. In Comparative Example 7, since the polyol was washed in the presence of scale, the removal of organic contaminants by the polyol was hindered, and the permeation flux could not be restored to the level of the unused membrane. In Comparative Example 8, it was possible to recover the permeation flux by performing the polyol washing after the scale removal, and it took more than 2 days for the force washing.
[0032] 〔実施例 2〕: [Example 2]:
比較例 4、 5で用いた汚染膜 (CMe)を 50%プロピレングリコール (PG)、 5%硝酸の 水溶液に 24時間浸漬した後、純水通水を行った(50%PG + 5%HNOと表示)。洗  The contaminated membrane (CMe) used in Comparative Examples 4 and 5 was immersed in an aqueous solution of 50% propylene glycol (PG) and 5% nitric acid for 24 hours and then passed with pure water (50% PG + 5% HNO and display). Wash
3 浄後の純水透過流束を表 2に示す。比較例 6のアルカリ洗浄と酸洗浄の組み合わせ 、および比較例 8のポリオール洗浄と酸洗浄を組み合わせでも、透過流束は回復し ているが、実施例 2では、ポリオールによる有機汚染物質除去と、酸によるスケール 除去の複合効果により、 1Z3分ないし 1Z2の洗浄時間で、さらに高い透過流束が 得られた。  3 Table 2 shows the pure water permeation flux after purification. The permeation flux was recovered even when the combination of alkali cleaning and acid cleaning in Comparative Example 6 and the combination of polyol cleaning and acid cleaning in Comparative Example 8 were restored, but in Example 2, organic contaminant removal by polyol and acid cleaning were performed. Due to the combined effect of scale removal by, higher permeation flux was obtained with cleaning times from 1Z3 min to 1Z2.
[0033] [表 2] [0033] [Table 2]
表 2 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
[0034] 〔比較例 9〜10〕: [Comparative Examples 9 to 10]:
材料製造工場排水処理装置の処理液 (分子量 400を超える TOC成分: 0. 25mg ZL、 A1: 0. Olmg/L, Si: 3mgZL)を被処理液として日東電工 (株)製逆浸透膜 E S · 20(新膜の節水透過流束は操作圧力 0.75MPaで 1.0〜 1.2mZdを用いて 0.75 MPaの操作圧力で濾過を行った。その結果、透過流束は 0.56mZdまで低下した。 蛍光 X線で膜面を観察した結果、 Al、 Si等の無機物が付着していた。  Nitto Denko Co., Ltd. reverse osmosis membrane ES · Treatment liquid of material processing plant wastewater treatment equipment (TOC component exceeding 400 molecular weight: 0.25mg ZL, A1: 0. Olmg / L, Si: 3mgZL) 20 (The water-saving permeation flux of the new membrane was filtered at an operating pressure of 0.75 MPa and 1.0-1.2 mZd at an operating pressure of 0.75 MPa. As a result, the permeation flux decreased to 0.56 mZd. As a result of observing the film surface, inorganic substances such as Al and Si were adhered.
比較例 9では、この汚染膜 (CMe)を水酸ィ匕ナトリウム水溶液 (pH12)に 4時間浸漬 した後、純水通水を行った (NaOH(pH12)と表示 )。比較例 10では、この汚染膜 (C Me)を 1%プロピレングリコール (PG)水溶液に 4時間浸漬した後、純水通水を行つ た(1%PGと表示)。各洗浄操作後の純水透過流束を表 3に示す。これらの洗浄方法 では、新膜と同程度まで回復させることができな力つた。  In Comparative Example 9, the contaminated membrane (CMe) was immersed in a sodium hydroxide aqueous solution (pH 12) for 4 hours, and then pure water was passed through (displayed as NaOH (pH 12)). In Comparative Example 10, the contaminated film (C Me) was immersed in a 1% aqueous propylene glycol (PG) solution for 4 hours, and then pure water was passed through (denoted as 1% PG). Table 3 shows the pure water permeation flux after each washing operation. These cleaning methods have been unable to recover to the same extent as the new membrane.
[0035] 〔比較例 11〕: [Comparative Example 11]
比較例 9、 10で用いた汚染(CMe)膜を 1%プロピレングリコール (PG)、水酸ィ匕ナ トリウム水溶液 (PH12)の順に各々 4時間浸漬した後、純水通水を行った(1%PG→ NaOH(pH12)と表示)。洗浄後の純水透過流束を表 3に示す。スケールが存在する 状態でポリオール洗浄を行ったため、ポリオールによる有機汚染物質除去が妨害さ れ、透過流束を未使用膜のレベルまでは回復させることは出来な力つたと考えられる [0036] 〔実施例 3〕: The contaminated (CMe) membranes used in Comparative Examples 9 and 10 were soaked in the order of 1% propylene glycol (PG) and aqueous sodium hydroxide solution (PH12) for 4 hours, respectively, and then passed with pure water (1 % PG → NaOH (pH12)). Table 3 shows the pure water permeation flux after washing. Since the polyol was washed in the presence of scale, removal of organic pollutants by the polyol was hindered, and it was considered impossible to restore the permeation flux to the level of the unused membrane. [Example 3]:
比較例 9、 10で用いた汚染膜 (CMe)を 1%プロピレングリコール (PG)と水酸化ナ トリウムの混合水溶液 (pH 12)に 4時間浸漬した後、純水通水を行った( 1 %PG + Na OH(pH12)と表示)。洗浄後の純水透過流束を表 3に示す。アルカリにより、 A1等の 無機物と一部の有機物が除去されるのと同時に、アルカリでは除去しきれない有機 物をポリオールにより除去できたことにより、新膜と同程度まで透過流束を回復させる ことができたと考えられ、比較例 11よりも短時間で、効果的に洗浄できることがわ力る  The contaminated membrane (CMe) used in Comparative Examples 9 and 10 was immersed in a mixed aqueous solution (pH 12) of 1% propylene glycol (PG) and sodium hydroxide for 4 hours, and then purified water was passed through (1% PG + Na OH (pH12)). Table 3 shows the pure water permeation flux after washing. At the same time that inorganic substances such as A1 and some organic substances are removed by alkali, organic substances that cannot be removed by alkali can be removed by polyol, so that the permeation flux can be restored to the same level as the new membrane. It is thought that it was able to wash effectively in a shorter time than Comparative Example 11.
[0037] [表 3] [0037] [Table 3]
表 3  Table 3
Figure imgf000014_0001
Figure imgf000014_0001
[0038] 〔比較例 12〜14〕:  [Comparative Examples 12 to 14]:
分子量数万の蛋白 (BSA:牛血清アルブミン)を lOOmgZLの濃度で含む排水を被 処理液として、日東電工 (株)製逆浸透膜 NTR-759HRC (新膜の純水透過流束は操 作圧力 1.2MPaで 1.0〜1.2mZdを用いて 1.2MPaの操作圧力で濾過を行つた。そ の結果、透過流束は 0.56mZdまで低下した。比較例 12では、汚染膜 (CMe)を水 酸ィ匕ナトリウム水溶液 (PH12)に 24時間浸漬した後、純水通水を行った (NaOH(pH 12)と表示)。比較例 13では、 20%硝酸水溶液に 24時間浸漬した後、純水通水を行 つた(20%HNOと表示)。比較例 14では、 50%エチレングリコール(EG)、 20%メ  NTR-759HRC, a reverse osmosis membrane manufactured by Nitto Denko Co., Ltd. Filtration was performed at 1.2 MPa with an operating pressure of 1.2 MPa at 1.2 MPa, and as a result, the permeation flux decreased to 0.56 mZd. After being immersed in an aqueous sodium solution (PH12) for 24 hours, pure water was passed through (indicated as NaOH (pH 12)) In Comparative Example 13, after being immersed in a 20% nitric acid aqueous solution for 24 hours, pure water was passed through In Comparative Example 14, 50% ethylene glycol (EG), 20%
3  Three
タノール混合水溶液に 24時間浸漬した後、純水通水を行った(50%PG + 20%Me OH)と表示)。各洗浄操作後の純水透過流束を表 4に示す。比較例 12〜14はいず れも透過流束の回復は見られた力 未使用膜のレベルまで性能を回復させることは できなかった。 After immersing in a mixed aqueous solution of ethanol for 24 hours, pure water was passed through (displayed as 50% PG + 20% Me OH). Table 4 shows the pure water permeation flux after each washing operation. Comparative Examples 12-14 However, it was not possible to restore the performance to the level of the unused membrane.
[0039] 〔比較例 15〕:  [Comparative Example 15]
比較例 12〜14で用いた汚染謨 (CMe)を 20%硝酸水溶液、 50%エチレングリコ ール (EG)と 20%メタノール混合水溶液の順に、各々 24時間浸漬した後、純水通水 を行った(20%HNO→50%PG + 20%MeOHと表示)。洗浄操作後の純水透過  The contaminated soot (CMe) used in Comparative Examples 12 to 14 was immersed in a 20% nitric acid aqueous solution, 50% ethylene glycol (EG) and 20% methanol mixed aqueous solution in this order for 24 hours, respectively, followed by pure water flow. (Displayed as 20% HNO → 50% PG + 20% MeOH). Permeation of pure water after washing operation
3  Three
流束を表 4に示す。高濃度の硝酸とポリオール洗浄を組み合わせることにより、性能 を十分に回復させることが出来た。硝酸の酸化力により、蛋白が分解され、ポリオ一 ルにより膜面から除去されたと考えられる。  Table 4 shows the flux. By combining a high concentration of nitric acid with a polyol wash, the performance could be fully restored. It is thought that protein was decomposed by the oxidizing power of nitric acid and removed from the membrane surface by polyol.
[0040] 〔実施例 4〕: [Example 4]:
比較例 12〜 14で用いた汚染膜 (CMe)を 50%エチレングリコール (EG)と 20%硝 酸の混合水溶液に 24時間浸漬した後、純水通水を行った(50%PG + 20%HNO  The contaminated membrane (CMe) used in Comparative Examples 12 to 14 was immersed in a mixed aqueous solution of 50% ethylene glycol (EG) and 20% nitric acid for 24 hours and then passed with pure water (50% PG + 20% HNO
3 と表示)。洗浄後の純水透過流束を表 4に示す。本発明の洗浄方法により、透過流束 は新膜と同程度まで回復した。ポリオールと酸の混合液により蛋白のような高分子有 機物により透過流束の低下した逆浸透膜の性能を回復できることが明らかとなった。 比較例 15の洗浄方法でも透過流束は回復している力 本洗浄方法により 2分の 1の 洗浄時間でさらに高 ヽ透過流束が得られた。  3). Table 4 shows the pure water permeation flux after washing. By the cleaning method of the present invention, the permeation flux was recovered to the same level as that of the new membrane. It has been clarified that the performance of the reverse osmosis membrane having a reduced permeation flux can be recovered by a polymer organic material such as protein by a mixture of polyol and acid. The permeation flux recovers even with the cleaning method of Comparative Example 15. With this cleaning method, an even higher permeation flux was obtained in half the cleaning time.
[0041] [表 4] [0041] [Table 4]
表 4 比較例 12 比較例 13 比較例 14 比較例 15 実施例 4  Table 4 Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 Example 4
20%HN0320% HN0 3
汚染膜 NaOH 50 EG + 50%EG+ 洗浄液 20%隱 3 50%EG + Contaminated membrane NaOH 50 EG + 50% EG + Cleaning solution 20% 隱3 50% EG +
(CMe) (pH12) 20 MeOH 20%HN03 (CMe) (pH12) 20 MeOH 20% HN0 3
20% eOH  20% eOH
洗浄時間  Cleaning time
_ 2 4 2 4 2 4 4 8 2 4 _ 2 4 2 4 2 4 4 8 2 4
[hour] [hour]
純水透過流束  Pure water permeation flux
0. 56 0. 62 0. 75 0. 77 1. 00 1 . 05 [m/d] 産業上の利用可能性 0. 56 0. 62 0. 75 0. 77 1. 00 1.05 [m / d] Industrial applicability
液体の濃縮、脱塩、純水製造等の水処理、あるいはその他の処理などによって汚 染され、透過流束その他の性能の低下した逆浸透膜、ナノ濾過膜等の選択性透過 膜を洗浄して性能を回復させるための洗浄に利用可能である。  Selective permeable membranes such as reverse osmosis membranes and nanofiltration membranes that have been contaminated by water treatment such as liquid concentration, desalination, pure water production, etc. Can be used for cleaning to restore performance.

Claims

請求の範囲 The scope of the claims
[1] 分子量 400以下のポリオールと、酸またはアルカリとを含む選択性透過膜の洗浄剤。  [1] A selective permeable membrane cleaning agent comprising a polyol having a molecular weight of 400 or less and an acid or an alkali.
[2] ポリオールがエチレングリコール、ジエチレングリコール、プロピレングリコール、グリ セリン、ポリダリコールおよび糖アルコール力もなる群力も選ばれる少なくとも 1つであ る請求項 1記載の洗浄剤。 [2] The cleaning agent according to claim 1, wherein the polyol is at least one selected from ethylene glycol, diethylene glycol, propylene glycol, glycerin, polydaricol, and a group power that also has sugar alcohol power.
[3] 酸が硝酸、塩酸、硫酸、シユウ酸およびクェン酸力 なる群力 選ばれる少なくとも 1 つである請求項 1または 2記載の洗浄剤。 [3] The cleaning agent according to claim 1 or 2, wherein the acid is at least one selected from the group power of nitric acid, hydrochloric acid, sulfuric acid, oxalic acid, and succinic acid.
[4] アルカリが水酸ィ匕ナトリウム、水酸ィ匕カリウムおよび水酸化リチウム力もなる群力も選 ばれる少なくとも 1つである請求項 1ないし 3のいずれかに記載の洗浄剤。 [4] The cleaning agent according to any one of [1] to [3], wherein the alkali is at least one selected from the group strength including sodium hydroxide, potassium hydroxide and lithium hydroxide.
[5] 洗浄対象の選択性透過膜は、分子量 400を超える TOC成分が付着したものである 請求項 1な!、し 4の 、ずれかに記載の洗浄剤。 [5] The cleaning agent according to any one of claims 1 and 4, wherein the selective permeable membrane to be cleaned is attached with a TOC component having a molecular weight exceeding 400.
[6] 透過流束が低下した選択性透過膜を、分子量 400以下のポリオールと、酸またはァ ルカリとを含む選択性透過膜の洗浄剤により洗浄する選択性透過膜の洗浄方法。 [6] A method for cleaning a selective permeable membrane, in which a selective permeable membrane having a reduced permeation flux is washed with a selective permeable membrane cleaner containing a polyol having a molecular weight of 400 or less and an acid or alkali.
PCT/JP2005/019190 2004-12-06 2005-10-19 Detergent for selectively permeable membranes and method for washing the membranes WO2006061953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004352473A JP4691970B2 (en) 2004-12-06 2004-12-06 Selective permeable membrane cleaning agent and cleaning method
JP2004-352473 2004-12-06

Publications (1)

Publication Number Publication Date
WO2006061953A1 true WO2006061953A1 (en) 2006-06-15

Family

ID=36577784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019190 WO2006061953A1 (en) 2004-12-06 2005-10-19 Detergent for selectively permeable membranes and method for washing the membranes

Country Status (2)

Country Link
JP (1) JP4691970B2 (en)
WO (1) WO2006061953A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521080A (en) * 2013-10-10 2014-01-22 云南城投碧水源水务科技有限责任公司 Alkaline cleaning agent for depth cleaning of separating membrane and application thereof
CN104624056A (en) * 2015-02-09 2015-05-20 浙江理工大学 Method for cleaning waste polytetrafluoroethylene hollow fiber membranes and tubular membranes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2148737A1 (en) * 2007-05-24 2010-02-03 FUJIFILM Manufacturing Europe B.V. Membrane comprising oxyethylene groups
CN101754798B (en) * 2007-05-24 2013-01-02 富士胶片制造欧洲有限公司 Membrane comprising oxyethylene groups
JP6090378B2 (en) * 2015-07-27 2017-03-08 栗田工業株式会社 Reverse osmosis membrane cleaning solution and cleaning method
CN105214506A (en) * 2015-10-23 2016-01-06 邯钢集团邯宝钢铁有限公司 The high-efficiency washing method of milipore filter in the process of Metallurgical Waste Water advanced desalination
TW202235605A (en) * 2020-11-17 2022-09-16 日商東京應化工業股份有限公司 Film cleaning solution and method for cleaning film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125475A (en) * 1976-04-15 1977-10-21 Nippon Zeon Co Ltd Washing of cellulose hollow fiber
JPS5845712A (en) * 1981-09-11 1983-03-17 Asahi Chem Ind Co Ltd Method for restoring capacity of ultrafiltration module
JPH04193333A (en) * 1990-11-27 1992-07-13 Kurita Water Ind Ltd Detergent for oil contaminated membrane
JPH08281081A (en) * 1995-04-10 1996-10-29 Nitto Denko Corp Method for washing membrane module
JP2003001073A (en) * 2001-06-15 2003-01-07 Amtec Co Ltd Method for cleaning separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125475A (en) * 1976-04-15 1977-10-21 Nippon Zeon Co Ltd Washing of cellulose hollow fiber
JPS5845712A (en) * 1981-09-11 1983-03-17 Asahi Chem Ind Co Ltd Method for restoring capacity of ultrafiltration module
JPH04193333A (en) * 1990-11-27 1992-07-13 Kurita Water Ind Ltd Detergent for oil contaminated membrane
JPH08281081A (en) * 1995-04-10 1996-10-29 Nitto Denko Corp Method for washing membrane module
JP2003001073A (en) * 2001-06-15 2003-01-07 Amtec Co Ltd Method for cleaning separation membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521080A (en) * 2013-10-10 2014-01-22 云南城投碧水源水务科技有限责任公司 Alkaline cleaning agent for depth cleaning of separating membrane and application thereof
CN104624056A (en) * 2015-02-09 2015-05-20 浙江理工大学 Method for cleaning waste polytetrafluoroethylene hollow fiber membranes and tubular membranes

Also Published As

Publication number Publication date
JP4691970B2 (en) 2011-06-01
JP2006159062A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
AU2008233867B2 (en) Cleaning agent for separation membrane, process for preparing the cleaning agent, and cleaning method
WO2006061953A1 (en) Detergent for selectively permeable membranes and method for washing the membranes
JP4458039B2 (en) Selective permeable membrane cleaning agent and cleaning method
JPH1066972A (en) Cleaning and regenerating method of separation membrane for water treatment
AU2016299518B2 (en) Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP2016049483A (en) Detergent for reverse osmosis membrane and cleaning method of reverse osmosis membrane
JP6540154B2 (en) Reverse osmosis membrane cleaning method
WO2007029291A1 (en) Separation membrane cleaning composition
JP2005224671A (en) Method for washing permeable membrane
CN111589305A (en) Sulfur scale removal DTRO membrane cleaning agent and preparation method and use method thereof
JPS5820205A (en) Method for washing membrane separation apparatus
CN111556852A (en) Method for regenerating member and method for desalinating sea water
JP2007000869A (en) Method for chemical washing separation membrane
JP2021183306A (en) Separation membrane cleaning method and separation membrane cleaning agent used therefor
JP3905617B2 (en) Separation membrane chemical wash
JP2003164737A (en) Washing method for separation membrane and washing apparatus adapted thereto
Kowalska Unit and integrated membrane operations for purification of spent single-phase detergent
JP2006305444A (en) Membrane washing method
JP2005246361A (en) Liquid chemical cleaning method
JP2000189768A (en) Cleaning method of membrane module
JPH10249338A (en) Filter membrane module regenerating method
JP2004230246A (en) Permeation membrane detergent and washing method for treating water
UA76544C2 (en) Washing solution for the membranes of polyamides
JPH1119489A (en) Method for washing membrane module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795229

Country of ref document: EP

Kind code of ref document: A1