JPWO2004073063A1 - Electronic device and semiconductor device - Google Patents

Electronic device and semiconductor device Download PDF

Info

Publication number
JPWO2004073063A1
JPWO2004073063A1 JP2004568182A JP2004568182A JPWO2004073063A1 JP WO2004073063 A1 JPWO2004073063 A1 JP WO2004073063A1 JP 2004568182 A JP2004568182 A JP 2004568182A JP 2004568182 A JP2004568182 A JP 2004568182A JP WO2004073063 A1 JPWO2004073063 A1 JP WO2004073063A1
Authority
JP
Japan
Prior art keywords
tab
lead
electrode terminal
circuit unit
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004568182A
Other languages
Japanese (ja)
Other versions
JP4137059B2 (en
Inventor
団野 忠敏
忠敏 団野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Publication of JPWO2004073063A1 publication Critical patent/JPWO2004073063A1/en
Application granted granted Critical
Publication of JP4137059B2 publication Critical patent/JP4137059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09309Core having two or more power planes; Capacitive laminate of two power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10689Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10969Metallic case or integral heatsink of component electrically connected to a pad on PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Geometry (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

低雑音増幅器を含む高周波部アナログ信号処理ICが組み込まれた高周波パワーモジュール(1)の実装構造であり、タブ(4)と、複数のリード(7)と、複数の電極端子および回路部を有する半導体チップ(3)と、前記複数の電極端子とリード(7)とを接続する複数のワイヤ(10)と、前記複数の電極端子とタブ(4)とを接続する複数のワイヤ(10)とを有する高周波パワーモジュール(1)と、複数のスルーホール(84)により低インダクタンス化されたグランド電位をタブ(4)に供給可能な実装基板(80)とからなり、前記回路部に入力信号を送る信号配線の両側に固定電位の配線が配置され、かつ複数のスルーホール(84)によって低インダクタンス化されたグランド電位を実装基板(80)からタブ(4)に供給することにより、1系統の通信システムを使用中の他の系統の通信システムとの間でのクロストークが発生しなくなり、携帯電話機などの電子装置において良好な通話が可能になる。A mounting structure of a high-frequency power module (1) incorporating a high-frequency section analog signal processing IC including a low-noise amplifier, and includes a tab (4), a plurality of leads (7), a plurality of electrode terminals, and a circuit section. A plurality of wires (10) for connecting the semiconductor chip (3), the plurality of electrode terminals and the leads (7), and a plurality of wires (10) for connecting the plurality of electrode terminals and the tab (4); And a mounting board (80) capable of supplying a ground potential reduced in inductance by a plurality of through holes (84) to the tab (4), and an input signal is supplied to the circuit unit. The fixed potential wiring is arranged on both sides of the signal wiring to be sent, and the ground potential reduced in inductance by the plurality of through holes (84) is transferred from the mounting board (80) to the tab (4). By feeding, 1 crosstalk between other strains communication systems in use systematic communication system is not generated, allowing a good call in an electronic device such as a mobile phone.

Description

本発明は、電子装置および半導体装置に関し、特に、微弱な信号を増幅する低雑音増幅器(LNA:Low Noise Amplifier)を含む高周波部アナログ信号処理ICを組み込んだ無線通信装置(電子装置)および高周波パワーモジュール(半導体装置)に適用して有効な技術に関する。  The present invention relates to an electronic device and a semiconductor device, and in particular, a wireless communication device (electronic device) incorporating a high-frequency unit analog signal processing IC including a low noise amplifier (LNA) that amplifies a weak signal and a high-frequency power. The present invention relates to a technology effective when applied to a module (semiconductor device).

携帯電話機などの移動体通信機(移動端末)は、複数の通信システムに対応できるような構成になっている。すなわち、携帯電話機の送受信機(フロントエンド)には複数の通信システムの送受信を行うように、複数の回路系が組み込まれている。例えば、通信方式(システム)の異なる携帯電話(例えばセルラー電話機)間での通話を可能とする方式としてデュアルバンド通信方式が知られている。
デュアルバンド方式については、例えば、搬送周波数帯が880〜915MHzのGSM(Global System for Mobile Communications)と、搬送周波数帯が1710〜1785MHzのDCS−1800(Digital Cellular System 1800)によるデュアルバンド方式およびデュアルバンド用高周波電力増幅器について知られている。
また、特開平11−186921号公報には、PCN(Personal Communications Network:DCS−1800)、PCS(Personal Communications Service:DCS−1900)およびGSMなどの携帯電話システムに利用できる多バンド移動体通信装置が開示されている。
また、携帯電話機のフロントエンドでは、GSM用の高周波部アナログ信号処理回路のモジュール化が図られている。例えば、MOSFET(Metal Oxide Semiconductor Field−Effect−Transistor)によるデュアルバンドまたはトリプルバンドのGSM用RF(Radio Frequency)パワーモジュールが有る。
デュアルバンド方式はGSMおよびDCS1800方式などの二つの通信系の信号を処理するものであり、トリプルバンド方式はGSMおよびDCS(Digital Cellular System)1800並びにPCS1900方式などの三つの通信系の信号を処理するものである。GSMとしては、GSM900あるいはGSM850が組み込まれる。
また、高周波パワーモジュールは、LNA、ミキサ、PLL(Phase−Locked Loop)シンセサイザ、オートキャリブレーション付PGA(Programmable Gain Amplifier)、IQ変調器/復調器、オフセットPLL、VCO(Voltage−Controlled Oscillator)などをモノリシックに集積したワンチップの半導体素子が組み込まれている。
一方、携帯電話機は、その持ち運びが便利なように小型・軽量化が要請されている。この結果、高周波パワーモジュールなどの半導体装置もより小型・軽量化が望まれている。
半導体装置は、そのパッケージの形態によって種々のものがあるが、その一つとして、絶縁性樹脂の封止体(パッケージ)の裏面(実装面)にリード(外部電極端子)を露出させ、封止体の側面に長くリードを突出させないノンリード型半導体装置が知られている。
ノンリード型半導体装置としては、封止体の裏面の対向する2辺に沿ってリードを露出させるSON(Small Outline Non−Leaded Package)や、封止体の裏面の4辺側にリードを露出させるQFN(Quad Flat Non−Leaded Package)がある。小型でリード曲がりが発生しないノンリード型半導体装置については、例えば特開2001−313363号公報に記載されている。
この文献に記載されている樹脂封止型半導体装置は、半導体チップを固定するダイパッドとワイヤを接続するワイヤボンディング部とを有するアイランドがあり、ダイパッド上に半導体チップが固定され、半導体チップの各電極端子は、リードやアイランドのワイヤボンディング部に接続される構造になっている。ダイパッドとワイヤボンディング部との間に空隙部を設けて熱ストレスによるボンディングされたワイヤの外れや切断を防止している。このような構造では、半導体チップのアース端子とアイランドをワイヤで接続することによって、アイランドをアースリードとしてプリント基板などに接続できる。
また、特開平11−251494号公報には、半導体素子搭載部をグランドとする携帯電話機などに用いられるリード構造がガルウィング型となる高周波デバイスについて記載されている。この技術では、半導体素子の電極とリードをワイヤで接続する以外に、ダイパッドをグランド電極として利用するため、半導体素子の電極と半導体素子搭載部とをワイヤで接続している(以降、この接続をダウンボンディングと呼ぶ)。ダウンボンディングするため、半導体素子搭載部は半導体素子よりも大きく、また実装状態では、半導体素子の外側に半導体素子搭載部の周縁部分が突出し、この部分にワイヤが接続される構造になっている。
他方、本出願人においては、高周波パワーモジュールをノンリード型半導体装置に組み込み、かつグランド電位の安定化のために、高周波パワーモジュールを構成する各回路部のグランド端子をワイヤを介してタブに電気的に接続する手法の採用を検討した。ダウンボンディングを採用することにより、外部電極端子の数を少なくでき、パッケージの小型化が図れ、最終的には半導体装置の小型化が図れる。
しかし、無線通信系(通信システム)を用途とする高周波パワーモジュールでは、以下のような問題が発生することが判明した。
携帯電話機の受信系では、アンテナで捕らえた信号は低雑音増幅器(LNA)で増幅されるが、入力信号は極めて微弱である。このため、各回路部、特に周期的に動作する発振器の動作に応じて共通端子であるタブの電位、すなわちグランド電位が変動し、これに起因して一部の回路部との間でクロストークが発生し、出力が変動して良好な通話ができなくなる。
特に、リード間クロストークによる誘起電流、またはグランド電位の変動による信号波形の歪みが通信システムから出力され、この出力信号が使用中の通信システムに入ってしまい雑音となる。
このようなグランド電位の変動、およびクロストークの影響を受け易い回路部は、低雑音増幅器(LNA)以外では、例えば、高周波を扱うRFVCO(高周波電圧制御発振器)などがある。
つまり、低雑音増幅器(LNA)や高周波電圧制御発振器(RFVCO)は、グランド電位の変動、およびクロストークの影響などを受け易く、これによって、高周波パワーモジュールを搭載した携帯電話機などの電子装置の高周波特性が損ねることが問題である。
本発明の目的は、無線通信装置などを用途とする高周波パワーモジュールが搭載された電子装置において、高周波特性を向上させる電子装置を提供することにある。
本発明の他の目的は、信頼性の向上を図る電子装置(無線通信装置)を提供することにある。
本発明の他の目的は、低雑音増幅器や高周波電圧制御発振器などの回路部が、他の回路部のグランド電位の変動によるクロストークの影響を受け難くできる半導体装置を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
Mobile communication devices (mobile terminals) such as mobile phones are configured to be compatible with a plurality of communication systems. That is, a plurality of circuit systems are incorporated in a transceiver (front end) of a mobile phone so as to perform transmission / reception of a plurality of communication systems. For example, a dual-band communication system is known as a system that enables a call between mobile phones (for example, cellular phones) having different communication systems (systems).
As for the dual band method, for example, a dual band method and a dual band by GSM (Global System for Mobile Communications) having a carrier frequency band of 880 to 915 MHz and DCS-1800 (Digital Cellular System 1800) having a carrier frequency band of 1710 to 1785 MHz. High frequency power amplifiers are known.
Japanese Patent Application Laid-Open No. 11-186922 discloses a multiband mobile communication device that can be used for a mobile phone system such as PCN (Personal Communications Network: DCS-1800), PCS (Personal Communications Service: DCS-1900), and GSM. It is disclosed.
Further, at the front end of a mobile phone, a high frequency analog signal processing circuit for GSM is modularized. For example, there is a dual-band or triple-band RF (Radio Frequency) power module for GSM using a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor).
The dual-band method processes signals of two communication systems such as GSM and DCS1800, and the triple-band method processes signals of three communication systems such as GSM, DCS (Digital Cellular System) 1800 and PCS1900. Is. GSM900 or GSM850 is incorporated as GSM.
The high-frequency power module includes an LNA, a mixer, a PLL (Phase-Locked Loop) synthesizer, a PGA (Programmable Gain Amplifier) with auto calibration, an IQ modulator / demodulator, an offset PLL, a VCO (Voltage-Controlled Oscillator), and the like. One-chip semiconductor elements monolithically integrated are incorporated.
On the other hand, mobile phones are required to be small and light so that they can be easily carried. As a result, semiconductor devices such as high-frequency power modules are also desired to be smaller and lighter.
There are various types of semiconductor devices depending on the form of the package, and as one of them, the lead (external electrode terminal) is exposed on the back surface (mounting surface) of the sealing body (package) of insulating resin and sealed. 2. Description of the Related Art Non-lead type semiconductor devices are known in which a lead does not protrude long on the side of a body.
As a non-lead type semiconductor device, SON (Small Outline Non-Leaded Package) that exposes leads along two opposite sides of the back surface of the sealing body, or QFN that exposes leads on the four sides of the back surface of the sealing body. (Quad Flat Non-Leaded Package). A non-lead type semiconductor device which is small and does not generate lead bending is described in, for example, Japanese Patent Application Laid-Open No. 2001-313363.
The resin-encapsulated semiconductor device described in this document has an island having a die pad for fixing a semiconductor chip and a wire bonding portion for connecting a wire. The semiconductor chip is fixed on the die pad, and each electrode of the semiconductor chip The terminal is structured to be connected to the wire bonding portion of the lead or island. An air gap is provided between the die pad and the wire bonding portion to prevent the bonded wire from being disconnected or cut due to thermal stress. In such a structure, by connecting the ground terminal of the semiconductor chip and the island with a wire, the island can be connected to a printed circuit board or the like as a ground lead.
Japanese Laid-Open Patent Publication No. 11-251494 describes a high-frequency device in which a lead structure used in a mobile phone or the like having a semiconductor element mounting portion as a ground is a gull wing type. In this technology, in addition to connecting the electrode of the semiconductor element and the lead with a wire, in order to use the die pad as a ground electrode, the electrode of the semiconductor element and the semiconductor element mounting portion are connected with a wire (hereinafter, this connection is referred to as “connection”). Called down bonding). In order to down bond, the semiconductor element mounting portion is larger than the semiconductor element, and in the mounted state, the peripheral portion of the semiconductor element mounting portion protrudes outside the semiconductor element, and a wire is connected to this portion.
On the other hand, in the present applicant, the high-frequency power module is incorporated in the non-lead type semiconductor device, and the ground terminal of each circuit unit constituting the high-frequency power module is electrically connected to the tab via the wire in order to stabilize the ground potential. We considered the adoption of a method to connect to. By adopting down bonding, the number of external electrode terminals can be reduced, the size of the package can be reduced, and finally the size of the semiconductor device can be reduced.
However, it has been found that the following problems occur in a high-frequency power module that uses a wireless communication system (communication system).
In a mobile phone reception system, a signal captured by an antenna is amplified by a low noise amplifier (LNA), but the input signal is extremely weak. For this reason, the potential of the tab, which is a common terminal, that is, the ground potential, fluctuates according to the operation of each circuit unit, particularly an oscillator that operates periodically, and this causes crosstalk between some circuit units. Occurs and the output fluctuates, making it impossible to make a good call.
In particular, an induced current due to crosstalk between leads or a distortion of a signal waveform due to a change in ground potential is output from the communication system, and this output signal enters the communication system in use and causes noise.
Examples of such a circuit unit that is easily affected by fluctuations in ground potential and crosstalk include an RFVCO (High Frequency Voltage Controlled Oscillator) that handles high frequencies, other than a low noise amplifier (LNA).
In other words, the low noise amplifier (LNA) and the high frequency voltage controlled oscillator (RFVCO) are easily affected by fluctuations in the ground potential and crosstalk, thereby causing the high frequency of an electronic device such as a mobile phone equipped with a high frequency power module. The problem is that the characteristics are impaired.
An object of the present invention is to provide an electronic device that improves high-frequency characteristics in an electronic device equipped with a high-frequency power module for use in a wireless communication device or the like.
Another object of the present invention is to provide an electronic device (wireless communication device) that improves reliability.
Another object of the present invention is to provide a semiconductor device in which circuit portions such as a low noise amplifier and a high-frequency voltage controlled oscillator are hardly affected by crosstalk due to a change in ground potential of other circuit portions.
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。
本発明は、複数のリードと、主面および裏面を有するタブと、複数の電極端子およびそれぞれが複数の半導体素子によって構成される複数の回路部を有する半導体チップと、前記複数の電極端子と前記リードとを接続する複数の導電性のワイヤと、前記複数の電極端子と前記タブの主面とを接続して前記複数の電極端子に第1の電位を供給する複数の導電性のワイヤとを有する半導体装置と、前記半導体装置が実装され、第1の配線層と第2の配線層とを備えており、前記第1の配線層と第2の配線層とに開口する複数の貫通孔に配置されてそれぞれの前記配線層の配線を接続する共通配線が設けられた配線基板とを有し、前記半導体チップは前記タブの主面に固定されており、前記回路部は、前記リードを介して外部信号が入力される第1の回路部と、前記タブと前記導電性のワイヤを介して接続される第2の回路部とを含んでおり、前記複数の電極端子は、前記第1の回路部に前記外部信号を入力する第1の電極端子と、前記第1の回路部に固定電位を供給する第2の電極端子とを有しており、前記複数のリードは、前記外部信号を伝達する第1のリードと、前記第1のリードの両側に配置された第2のリードとを含んでおり、前記第1のリードと前記第1の電極端子とを接続する前記導電性のワイヤの両側に前記第2のリードと前記第2の電極端子とを接続する前記導電性のワイヤが配置されており、前記タブと前記配線基板の前記共通配線とが接続されている。
また、本発明は、絶縁性樹脂からなる封止体と、前記封止体の周囲に沿って配置され、前記封止体の内外に亘って設けられた複数のリードと、主面および裏面を有するタブと、主面および裏面を有しており、その主面上に複数の電極端子と、それぞれが複数の半導体素子によって構成される複数の回路部とを有する半導体チップと、前記複数の電極端子と前記リードとを接続する複数の導電性のワイヤと、前記複数の電極端子と前記タブの主面とを接続して前記複数の電極端子に第1の電位を供給する複数の導電性のワイヤとを有し、前記半導体チップは前記タブの主面に固定されており、前記回路部は、前記リードを介して外部信号が入力される第1の回路部と、前記タブと前記導電性のワイヤを介して接続される第2の回路部とを含んでおり、前記複数の電極端子は、前記第1の回路部に前記外部信号を入力する第1の電極端子と、前記第1の回路部に固定電位を供給する第2の電極端子とを有しており、前記複数のリードは、前記外部信号を伝達する第1のリードと、前記第1のリードの両側に配置された第2のリードとを含んでおり、前記第1のリードと前記第1の電極端子とを接続する前記導電性のワイヤの両側に前記第2のリードと前記第2の電極端子とを接続する前記導電性のワイヤが配置されている。
The following is a brief description of an outline of typical inventions disclosed in the present application.
The present invention includes a plurality of leads, a tab having a main surface and a back surface, a plurality of electrode terminals and a semiconductor chip having a plurality of circuit portions each constituted by a plurality of semiconductor elements, the plurality of electrode terminals, A plurality of conductive wires connecting leads, and a plurality of conductive wires connecting the plurality of electrode terminals and the main surface of the tab to supply a first potential to the plurality of electrode terminals. A semiconductor device having the first wiring layer and the second wiring layer, the plurality of through-holes opening in the first wiring layer and the second wiring layer. And a wiring board provided with a common wiring for connecting the wirings of the respective wiring layers, the semiconductor chip is fixed to the main surface of the tab, and the circuit portion is connected via the leads. The first external signal is input A plurality of electrode terminals for inputting the external signal to the first circuit unit; and a second circuit unit connected to the tab and the conductive wire. 1 electrode terminal and a second electrode terminal for supplying a fixed potential to the first circuit portion, wherein the plurality of leads include a first lead for transmitting the external signal, Second leads disposed on both sides of one lead, and the second leads and the two sides on both sides of the conductive wire connecting the first lead and the first electrode terminal. The conductive wire connecting the second electrode terminal is disposed, and the tab and the common wiring of the wiring board are connected.
Further, the present invention includes a sealing body made of an insulating resin, a plurality of leads arranged along the periphery of the sealing body, and provided over the inside and outside of the sealing body, and a main surface and a back surface. A semiconductor chip having a tab having a main surface and a back surface, a plurality of electrode terminals on the main surface, and a plurality of circuit portions each composed of a plurality of semiconductor elements, and the plurality of electrodes A plurality of conductive wires connecting the terminals and the leads, a plurality of conductive wires connecting the plurality of electrode terminals and the main surface of the tab to supply a first potential to the plurality of electrode terminals; The semiconductor chip is fixed to the main surface of the tab, and the circuit portion includes a first circuit portion to which an external signal is input through the lead, the tab, and the conductive material. Including a second circuit portion connected via a wire The plurality of electrode terminals include a first electrode terminal that inputs the external signal to the first circuit portion, and a second electrode terminal that supplies a fixed potential to the first circuit portion. The plurality of leads include a first lead for transmitting the external signal, and second leads disposed on both sides of the first lead, and the first lead and the first lead The conductive wire that connects the second lead and the second electrode terminal is disposed on both sides of the conductive wire that connects one electrode terminal.

図1は本発明の実施の形態1の半導体装置の一例である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図、図2は図1に示す高周波パワーモジュールの構造を示す断面図、図3は図1に示す高周波パワーモジュールの構造を示す平面図、図4は図1に示す高周波パワーモジュールに組み込まれる半導体チップにおける回路構成の一例をブロック的に示す平面図、図5は図1に示す高周波パワーモジュールにおける外部電極端子と半導体チップの低雑音増幅器などの各回路部との結線状態の一例を示す平面図、図6は図1に示す高周波パワーモジュールの組み立て手順の一例を示す製造プロセスフロー図、図7は図1に示す高周波パワーモジュールの製造で使用するリードフレームの構造の一例を示す平面図、図8は図7に示すリードフレームにおける単位リードフレームパターンの一例を示す部分拡大平面図、図9は図1に示す高周波パワーモジュールの組み立てにおけるダイボンディング状態の一例を示す部分断面図、図10は図1に示す高周波パワーモジュールの組み立てにおけるワイヤボンディング状態の一例を示す部分断面図、図11は図1に示す高周波パワーモジュールの組み立てにおける樹脂封止後の構造の一例を示す部分断面図、図12は図1に示す高周波パワーモジュールが組み込まれた電子装置の一例である携帯電話機の回路構成を示すブロック図、図13は図1に示す高周波パワーモジュールの携帯電話機(電子装置)における実装構造の一例を示す部分断面図、図14は本発明の電子装置に組み込まれる配線基板のモジュール実装部の端子パターンの一例を示す部分平面図、図15は図14に示す配線基板に高周波パワーモジュールを搭載した際のA−A断面の構造の一例を示す断面図、図16は図15に示す実装構造の封止体の一部を切り欠いて示す平面図、図17は変形例の配線基板に高周波パワーモジュールを実装した際の実装構造を示す断面図、図18は他の変形例の配線基板のモジュール実装部の端子パターンを示す部分平面図、図19は図18に示す配線基板に高周波パワーモジュールを搭載した際のB−B断面の構造を示す断面図、図20は本発明の他の実施の形態(実施の形態2)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図、図21は本発明の他の実施の形態(実施の形態3)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図、図22は本発明の他の実施の形態(実施の形態4)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図、図23は図22に示す高周波パワーモジュールの構造を示す断面図、図24は実施の形態4の高周波パワーモジュールの変形例の構造を示す断面図、図25は本発明の他の実施の形態(実施の形態5)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図、図26は本発明の変形例の電子装置の構造を示す模式構成図である。  FIG. 1 is a plan view showing a structure of a high-frequency power module as an example of a semiconductor device according to Embodiment 1 of the present invention, with a part of a sealing body cut away, and FIG. 2 shows the structure of the high-frequency power module shown in FIG. FIG. 3 is a plan view showing the structure of the high-frequency power module shown in FIG. 1. FIG. 4 is a plan view showing in block form an example of the circuit configuration of the semiconductor chip incorporated in the high-frequency power module shown in FIG. 5 is a plan view showing an example of a connection state between the external electrode terminal and each circuit unit such as a low-noise amplifier of the semiconductor chip in the high-frequency power module shown in FIG. 1, and FIG. 6 is an assembly procedure of the high-frequency power module shown in FIG. FIG. 7 is a plan view showing an example of the structure of a lead frame used in manufacturing the high-frequency power module shown in FIG. 1, and FIG. 9 is a partially enlarged plan view showing an example of a unit lead frame pattern in the lead frame shown, FIG. 9 is a partial sectional view showing an example of a die bonding state in the assembly of the high frequency power module shown in FIG. 1, and FIG. 10 is a high frequency power shown in FIG. FIG. 11 is a partial sectional view showing an example of a wire bonding state in the assembly of the module, FIG. 11 is a partial sectional view showing an example of the structure after resin sealing in the assembly of the high frequency power module shown in FIG. 1, and FIG. FIG. 13 is a partial cross-sectional view showing an example of the mounting structure of the high-frequency power module shown in FIG. 1 in the mobile phone (electronic device); FIG. 14 shows a module mounting portion of a wiring board incorporated in the electronic device of the present invention. FIG. 15 is a partial plan view showing an example of a child pattern, FIG. 15 is a cross-sectional view showing an example of the AA cross-section structure when the high-frequency power module is mounted on the wiring board shown in FIG. 14, and FIG. 16 is a mounting structure shown in FIG. FIG. 17 is a cross-sectional view showing a mounting structure when a high-frequency power module is mounted on a wiring board of a modification, and FIG. 18 is a wiring board of another modification. 19 is a partial plan view showing a terminal pattern of the module mounting portion, FIG. 19 is a cross-sectional view showing the structure of the BB cross section when the high frequency power module is mounted on the wiring board shown in FIG. 18, and FIG. 20 is another embodiment of the present invention. FIG. 21 is a plan view showing a structure of a high-frequency power module according to another embodiment (Embodiment 2) with a part of the sealing body cut away, and FIG. 21 shows a high-frequency power as another embodiment (Embodiment 3) of the present invention. Power module structure sealed FIG. 22 is a plan view showing a structure of a high-frequency power module according to another embodiment (Embodiment 4) of the present invention, with a part of the sealing body cut out. 23 is a cross-sectional view showing the structure of the high-frequency power module shown in FIG. 22, FIG. 24 is a cross-sectional view showing the structure of a modified example of the high-frequency power module of Embodiment 4, and FIG. 25 is another embodiment of the present invention ( FIG. 26 is a schematic configuration diagram showing a structure of an electronic device according to a modification of the present invention. FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
(実施の形態1)
図1〜図19は本発明の実施の形態1の半導体装置の一例である高周波パワーモジュールおよびその高周波パワーモジュールを組み込んだ無線通信装置に係わる図である。図1〜図5は高周波パワーモジュールに係わる図であり、図6〜図11は高周波パワーモジュールの製造方法に係わる図であり、図12〜図19は無線通信装置に係わる図である。
本実施の形態1では、四角形状の封止体(パッケージ)の裏面の実装面に、タブおよびこのタブに連なるタブ吊りリードならびにリード(外部電極端子)が露出するQFN型の半導体装置に本発明を適用した例について説明する。さらに、前記半導体装置の一例として、例えば、高周波パワーモジュール1を取り上げて説明する。
QFN型の高周波パワーモジュール1は、図1および図2に示すように、偏平の四角形状の絶縁性樹脂で形成される封止体(パッケージ)2を有している。この封止体2の内部には四角形状の半導体素子(半導体チップ:チップ)3が埋め込まれている。前記半導体チップ3は四角形状のタブ4のタブ表面(主面)に接着剤5によって固定されている(図2参照)。封止体2の裏面(下面)は実装される面側(実装面)となる。
封止体2の裏面にはタブ4およびタブ4を支持するタブ吊りリード6ならびにリード7(外部電極端子)7の一面(実装面7a)が露出する構造となっている。これらタブ4およびタブ吊りリード6ならびにリード7は、高周波パワーモジュール1の製造において、パターニングした一枚の金属製(例えば、銅製)のリードフレームで形成され、その後切断されて形成される。
従って、本実施の形態1ではこれらタブ4およびタブ吊りリード6ならびにリード7の厚さは同じになっている。しかし、リード7においては、内端部分は裏面を一定の深さエッチングして薄く形成しておくので、この薄いリード部分の下側には封止体2を構成する樹脂が入り込む構造になっている。これにより、リード7は封止体2から脱落し難くなる。
タブ4は、その4隅が細いタブ吊りリード6によって支持される。これらタブ吊りリード6は四角形状の封止体2の対角線上に位置し、四角形状の封止体2の各隅部に外端を臨ませている。封止体2は偏平の四角形体となり、角部(隅部)は面取り加工が施されて斜面2aとなっている(図1参照)。タブ吊りリード6の外端はこの面取り部分に0.1mm以下と僅かに突出している。この突出長さは、リードフレーム状態のタブ吊りリードを切断するときのプレス機械の切断型によって決まり、例えば、0.1mm以下が選択される。
また、図1に示すように、タブ4の周辺には、内端をタブ4に対面させるリード7が四角形の封止体2の各辺に沿って所定間隔で複数配置されている。タブ吊りリード6およびリード7の外端は封止体2の周縁にまで延在している。すなわち、リード7およびタブ吊りリード6は封止体2の内外に亘って延在することになる。リード7の封止体2からの突出長さは、前記タブ吊りリード6と同様にリードフレーム状態のリードを切断するときのプレス機械の切断型によって決まり、例えば、0.1mm以下と僅かに突出する。
また、封止体2の側面は傾斜面2bとなっている(図2参照)。この傾斜面2bは、リードフレームの一面に片面モールドして封止体2を形勢した後、モールド金型のキャビティから封止体2を抜き取る際、抜き取りを容易にするためにキャビティの側面を傾斜面にした結果によるものである。なお、図1は、封止体2の上部を切り欠いてタブ4、タブ吊りリード6、リード7、半導体チップ3などが見えるようにした模式図である。
また、図1および図4に示すように、半導体チップ3の露出する主面には電極端子9が設けられている。電極端子9は、半導体チップ3の主面において、四角形の各辺に沿ってほぼ所定ピッチに設けられている。この電極端子9は導電性のワイヤ10を介してリード7の内端側に接続されている。
タブ4は半導体チップ3に比較して大きく形成され、図8に示すように、その主面の中央に半導体素子固定領域である半導体素子搭載部4aを有するとともに、この半導体素子搭載部4aの外側、すなわちタブ4の周縁部分にワイヤ接続領域4bを有している。そして、この半導体素子搭載部4aに半導体チップ3が固定される。また、ワイヤ接続領域4bには、一端が半導体チップ3の電極端子9に接続される導電性のワイヤ10の他端が接続されている。特に、タブ4に接続されるワイヤ10をダウンボンディングワイヤ10aと呼称する。ワイヤボンディング装置によって電極端子9とリード7との間のワイヤボンディングおよび電極端子9とタブ4との間のワイヤボンディングを行うことから、ワイヤ10もダウンボンディングワイヤ10aも同じ材質のものである。
ダウンボンディング構造の採用の目的は、一般的にはタブ4を利用した半導体チップ内の各回路部のグランド電位(第1の電位)の共通化である。タブ4を共通のグランド端子とし、このタブ4と、グランド電極端子となる多くの電極端子9とをワイヤ10を介して接続することによって、封止体2の周囲に沿って並ぶ外部電極端子であるリード7(ピン)の数を少なくし、リード数低減による封止体2の小型化を図ることができる。これは半導体装置である高周波パワーモジュール1の小型化に繋がる。
次に、本実施の形態1の高周波パワーモジュール1に搭載される半導体チップ3の回路構成について説明する。図4は、半導体チップ3における各回路部の配置を示す模式的レイアウト図である。半導体チップ3の主面には、辺に沿って電極端子(パッド)9が配置されている。そして、これら電極端子9の内側に領域を分けて各回路部が配置されている。図4に示すように、半導体チップ3の中央にはADC/DAC&DCオフセット用制御論理回路部35が配置され、その左側にはミキサ26,64と3個のLNA(低雑音増幅器)24が並び、上側にはRFVCO(第2の回路部)44が位置し、右側には上から下に掛けてRFシンセサイザ(第2の回路部)41、VCXO(第2の回路部)50、IFシンセサイザ(第2の回路部)42、IFVCO45が並び、下側にはTXVCO(第2の回路部)67が位置している。
また、図5は、各回路部(第1の回路部および第2の回路部)とその電極端子9との関係、電極端子9とリード7のワイヤ10による結線状態を示す。ワイヤ10は電極端子9とリード7を結線するワイヤ10と、電極端子9とタブ4を結線するダウンボンディングワイヤ10aが示されている。
特定回路部11(第1の回路部)である3個のLNA24に着目すると、外付け部品である帯域通過フィルタ23(図12参照)と繋がる予定のリード7、すなわちSignalと左側に記載されたリード(第1のリード)7と、LNA24の信号用の電極端子(第1の電極端子)9とがワイヤ10を介して接続されている。電極端子9からワイヤ10を介してリード7に至る信号配線は1つのLNA24に対して2本ずつ設けられ、この2本の信号配線の両側は、特定回路部11であるLNA24のグランド用の電極端子(第2の電極端子)9がワイヤ10を介してグランド用のリード7(第2のリードであり、図中GNDと左側に記載されたリード7)に接続されてグランド配線が形成されている。
その際、本実施の形態1の高周波パワーモジュール1では、2本の信号配線の両側のグランド用のリード(第2のリード)7は、固定電位が供給されるものであり、前記固定電位の一例としてグランド電位の場合を表している。
これにより、隣接する他のVCOなどの第2の回路部のリード7とLNA24のリード7の間が固定電位(ここでは、固定されたグランド電位)のリード7によって電磁シールドされる。また、隣接するLNA24同士も固定電位のリード7によって電磁シールドされる。
また、図12に示すように、アンテナ20から入ってくる微弱信号を増幅するLNA24に比較して、ベースバンドチップ22から出力される電気信号を処理する送信系の各回路部(例えば、オフセットPLL、TXVCO67など)においては、その電気信号が前記微弱信号に比較して大きいために、グランド電位の変動やクロストークによるノイズにより強いという特性を持つ。そこで、送信系の回路部へのグランド電位の供給は、各VCOなどとタブ4を介して共通にすることにより、リード7の数を減らす事ができ、高周波パワーモジュール1(半導体装置)の小型化を図ることができる。
さらに、LNA24は、半導体チップ3の主面上に形成された配線間でのクロストークによる信号の劣化を防ぐために、例えば、PGA28(図12参照)など、LNA24によって増幅された信号を扱う回路、または送信系の回路などと比較して前記配線の長さが短くなる様に、電極端子9のより近くに配置するのが好ましい。
次に、本実施の形態1の高周波パワーモジュール1は、図3に示すように、各リード7とリード7の間、およびリード7とタブ吊りリード6との間には封止体2を形成する際発生するレジンバリが存在している。このレジンバリ部分は、高周波パワーモジュール1の製造において、図7に示すリードフレーム13の一面に片面モールドして封止体2を形成する際発生するものである。
モールド後、不要リードフレーム部分を切断するが、この際のリード7やタブ吊りリード6の切断時に同時にレジンバリも切断されるため、レジンバリの外縁はリード7の縁やタブ吊りリード6の縁と一緒になり、一部のレジンバリが各リード7とリード7の間、およびリード7とタブ吊りリード6との間に残留することになる。
また、本実施の形態1では封止体2の裏面はタブ4、タブ吊りリード6およびリード7の裏面(実装面)よりも引っ込んだ構造になっている。これは、トランスファモールドにおける片面モールドにおいて、モールド金型の上下型間に樹脂製のシートを張り、このシートにリードフレーム13の一面が接触するようにしてモールドを行うことから、シートがリードフレーム13の隙間で食い込むようになるため、封止体2の裏面は引っ込む形になる。
また、トランスファモールドによる片面モールド後、リードフレーム13の表面に表面実装用のメッキ膜を形成する。このため、高周波パワーモジュール1の封止体2の裏面に露出するタブ4、タブ吊りリード6およびリード7の表面は、図示はしないがメッキ膜を有することになる。
このようにリード7やタブ吊りリード6の裏面である実装面が突出し、封止体2の裏面が引っ込むオフセット構造では、実装基板80(図13参照)などの配線基板に高周波パワーモジュール1を表面実装する場合、半田83の濡れ領域が特定されるため半田実装が良好となる特長がある。
次に、本実施の形態1の高周波パワーモジュール1の製造方法について、図6〜図11を参照しながら説明する。図6のフローチャートに示すように、高周波パワーモジュール1は、リードフレーム準備(S101)、チップボンディング(S102)、ワイヤボンディング(S103)、封止(モールド:S104)、メッキ処理(S105)、不要リードフレーム切断除去(S106)の各工程を経て製造される。
図7は本実施の形態1によるQFN型の高周波パワーモジュール1を製造する際使用するマトリクス構成のリードフレーム13の模式的平面図である。
このリードフレーム13は、単位リードフレームパターン14がX方向に沿って20行、Y方向に沿って4列配置され、1枚のリードフレーム13から80個の高周波パワーモジュール1を製造することができる。リードフレーム13の両側には、リードフレーム13の搬送や位置決めなどに使用するガイド孔15a,15b,15cが設けられている。
また、各列の左側には、トランスファモールド時、ランナーが位置する。そこでランナー硬化レジンをエジェクターピンの突き出しによってリードフレーム13から引き剥がすため、エジェクターピンが貫通できるエジェクターピン孔16が設けられている。また、このランナーから分岐し、キャビティに流れるゲート部分で硬化したゲート硬化レジンをエジェクターピンの突き出しによってリードフレーム13から引き剥がすため、エジェクターピンが貫通できるエジェクターピン孔17が設けられている。
図8は単位リードフレームパターン14の一部を示す平面図である。単位リードフレームパターン14は、実際に製造するパターンであることから、模式図である図1や図2などとは必ずしも一致しない部分が有る。
単位リードフレームパターン14は矩形枠状の枠部18を有している。この枠部18の4隅からタブ吊りリード6が延在し、中央のタブ4を支持するパターンとなっている。枠部18の各辺の内側から内方に向かって複数のリード7が延在し、その内端はタブ4の外周縁に近接している。タブ4およびリード7の主面には、チップボンディングやワイヤボンディングのために図示しないメッキ膜が設けられている。
また、リード7はその先端側裏面は、ハーフエッチングされて薄くなっている(図2参照)。なお、リード7やタブ4などは、その周縁が、主面の幅が裏面の幅よりも広くなるような斜めの面とし、逆台形断面に形成して封止体2から抜け難くする構造としてもよい。これは、エッチングやプレスによっても製造することができる。
また、図8に示すように、タブ4の主面において、中央の四角形領域は半導体素子搭載部4a(二点鎖線枠で囲まれる領域)となり、その外側の領域はワイヤ接続領域4bとなる。
このようなリードフレーム13を準備した後、図9に示すように、各単位リードフレームパターン14のタブ4の半導体素子搭載部4aに接着剤5を介して半導体チップ3を固定(チップボンディング)する(S102)。
その後、図10に示すように、ワイヤボンディングを行い、半導体チップ3の電極端子9とリード7の先端を導電性のワイヤ10で接続するとともに、所定の電極端子9とタブ4のワイヤ接続領域4bとを導電性のダウンボンディングワイヤ10aで接続する(S103)。ワイヤ10やダウンボンディングワイヤ10aは、例えば金線を使用する。
ワイヤボンディング後、常用のトランスファモールドによる片面モールドを行い、リードフレーム13の主面に図11に示す絶縁性樹脂による封止体2を形成する(S104)。封止体2はリードフレーム13の主面側の半導体チップ3、リード7などを被う。図8において、二点鎖線枠で示す部分が封止体2が形成される領域である。
その後、図示はしないが、メッキ処理を行う(S105)。この結果、リードフレーム13の裏面には図示しないメッキ膜が形成される。このメッキ膜は、高周波パワーモジュール1の表面実装時の接合材として使用されるものであり、例えば、半田メッキ膜である。前記メッキ膜を形成する工程に代えて、予めリードフレーム13の表面全面にPdメッキが施された物を使用しても良く、その際、特にPdメッキされたリードフレーム13を用いる場合には前記封止後のメッキ工程を省略することができ、製造工程の簡略化をし、製造コストを削減することができる。
その後、不要なリードフレーム部分を切断除去し(S106)、図1に示すような高周波パワーモジュール1を製造する。図8に示す二点鎖線枠の封止体2の僅か外側で、図示しないプレス機械の切断型によってリード7およびタブ吊りリード6を切断する。切断型の構造により、リード7およびタブ吊りリード6は封止体2から僅か外れた位置で切断するが、この外れた位置の封止体2からの距離は、例えば0.1mm以下とされる。リード7およびタブ吊りリード6の封止体2からの突出長さは、引っ掛かり防止などの点では短い程よい。この突出長さはプレス機械の切断型の変更で0.1mm以上では自由に選択できる。
ここで、高周波パワーモジュール1の各部の寸法の一例を挙げる。リードフレーム13(タブ4、タブ吊りリード6、リード7)の厚さは0.2mm、半導体チップ3の厚さは0.28mm、高周波パワーモジュール1の厚さは1.0mm、リード7の幅は0.2mm、リード7の長さは0.5mm、タブ4のワイヤ接続箇所(点)は搭載された半導体チップ3の端から1.0mm、また、タブ4とリード7のとの間隔は0.2mmである。
なお、従来の高周波パワーモジュールでは、発振器などの高周波信号を出力する回路部で、先に説明したようにグランド電位の変動によってクロストークが発生し、それぞれの回路部での出力変動や信号波形の歪みが発生するおそれがある。また、デュアルバンドやトリプルバンドなど複数の通信回路を有する高周波パワーモジュールにおいては、動作中の通信回路の影響で動作させていない通信回路に誘起電流が発生し、この誘起電流が雑音として動作中の通信回路に入り込むおそれがある。
さらに、入力信号配線同士のクロストークによってもそれぞれの回路部での出力変動や信号波形の歪みが発生するおそれがあり、特に入力信号の小さいアンテナからの外部信号入力用リードにおいては、隣接するリード間でのクロストークの影響を極力避ける必要が有る。
そこで、本実施の形態1の高周波パワーモジュール1では、図5に示すように、第1の回路部である特定回路部11に外部信号を伝達する導電性のワイヤ10の両側に、例えばグランド電位などの固定電位が供給される導電性のワイヤ10が配置されている。
すなわち、図5に示す高周波パワーモジュール1において、LNA(低雑音増幅器)24の電極端子9からワイヤ10を介してリード7に至る信号配線は、その両側にグランド電位などの固定電位が供給される導電性のワイヤ10が配置されており、これによって、LNA24の信号配線は電磁シールドされ、その結果、前記信号配線はクロストークを受け難くなる。なお、固定電位は、グランド電位に限定されるものではなく、固定された電位であればよい。
ここで、本実施の形態1における高周波パワーモジュール1は、例えば、携帯電話機のトリプルバンド用の高周波パワーモジュールであることから、図5に示すように特定回路部11はLNA(低雑音増幅器)24であり、かつトリプルバンドであることから、アンテナ20(図12参照)に繋がるLNA24も3個配置されている。
単一のLNA24が本発明で言う狭義の特定回路部11となる。すなわち、各LNA24のアンテナ20からの入力信号配線は、図5に示すように、それぞれ2本となっている。そして、この2本の信号配線を電磁シールドするために、2本の信号用リードと他の信号用リードとの間、好ましくは2本の信号用リードの両側にそれぞれ固定電位(本実施の形態1ではグランド電位)のリード7(ワイヤ10)を配置している。
なお、入力信号配線を2本にして差動入力構成にすると、入力信号配線の2本に同程度のクロストークによる影響が出てノイズ(クロストーク)を相殺(キャンセル)することができる。ここでは、図5に示すように、3個のLNA24を囲んだ矩形枠部分を広義の特定回路部11とする。
この特定回路部11では、半導体チップ3において、他の回路部から絶縁分離された領域に各LNA24が形成されている。そして、各LNA24のグランド電位は共通になっている。これは、デュアル通信システム、トリプル通信システムでは、一つの通信システム(通信系)を使用している間、残りの通信システムはアイドリング状態となっていることから、アイドリング状態になっている通信システムに属するLNA24によるグランド電位に対する影響が小さいため、各々別個の通信システムに属するLNA同士のグランド電極およびグランド配線を共通化しても、お互いに及ぼす悪影響が小さいからである。しかし、必要ならば、各LNAごとにアイソレーションを施して、各LNAのグランド電位を独立とさせる構成でもよい。
次に、本実施の形態1の電子装置の構造について説明する。本実施の形態1の電子装置は、本実施の形態1の高周波パワーモジュール1が搭載された実装構造を含むものであり、例えば、携帯電話機などの無線通信装置69である。
図13は本実施の形態1の半導体装置(高周波パワーモジュール)1の携帯電話機における実装状態の基本構造を示す模式的断面図である。
無線通信装置69(図12参照)である携帯電話機の実装基板(配線基板)80の主面には高周波パワーモジュール1を搭載するために、高周波パワーモジュール1のリード7およびタブ4に対応して配線に連なるランド81およびタブ接続用端子であるタブ固定部82が設けられている。そこで、高周波パワーモジュール1のリード7およびタブ4が前記ランド81およびタブ固定部82に一致して重なるように高周波パワーモジュール1を位置決めして載置する。そして、この状態で高周波パワーモジュール1のリード7およびタブ4の裏面に予め形成しておいた半田メッキ膜を一時的に溶融(リフロー)してリード7およびタブ4を半田83で接続(実装)する。
ここで、トリプルバンド構成の携帯電話機の回路構成(機能構成)について図12を参照しながら簡単に説明する。すなわち、この携帯電話機は、例えば、900MHz帯のGSM通信方式と、1800MHz帯のDCS1800通信方式と、1900MHz帯のPCS1900通信方式の信号処理を行うことができる。
図12のブロック図では、アンテナ20にアンテナスイッチ21を介して接続する送信系と、受信系とを示しており、送信系および受信系はいずれもベースバンドチップ22に接続されるものである。
受信系は、アンテナ20、アンテナスイッチ21,このアンテナスイッチ21に並列に接続される3個の帯域通過フィルタ23、前記帯域通過フィルタ23にそれぞれ接続される低雑音増幅器(LNA)24、前記3個のLNA24に接続されかつ並列に接続される可変増幅器25を有する。この2つの可変増幅器25には、それぞれミキサ26、ローパスフィルタ27、PGA28、ローパスフィルタ29、PGA30、ローパスフィルタ31、PGA32、ローパスフィルタ33、復調器34が接続される。PGA28、PGA30、PGA32はADC/DAC&DCオフセット用制御論理回路部35によって制御される。また、2つのミキサ26は90度位相変換器40で位相制御される。
図12において、90度位相変換器40および2つのミキサ26によって構成されるI/Q変調器は、各バンド帯域に対応するために、3つのLNA24に対応してそれぞれ設けられるが、図12においては、簡略化のために1つにまとめて書いてある。
半導体チップ3には、信号処理ICとしてRFシンセサイザ41およびIF(Intermediate)シンセサイザ42からなるシンセサイザが設けられている。RFシンセサイザ41はバッファ43を介してRFVCO44に接続され、RFVCO44がRFローカル信号を出力するように制御する。バッファ43には、直列に2つのローカル信号用分周器37,38が接続され、それぞれの出力端にはスイッチ48,49が接続されている。RFVCO44から出されたRFローカル信号はスイッチ48の切替えによって90度位相変換器40に入力される。このRFローカル信号によって90度位相変換器40はミキサ26を制御する。
RFVCO44の信号出力モードはRxモードの場合、GSMでは3780〜3840MHz、DCSでは3610〜3760MHz、PCSでは3860〜3980MHzである。またTxモードはGSMでは3840〜3980MHz、DCSでは3580〜3730MHz、PCSでは3860〜3980MHzである。
IFシンセサイザ42は分周器46を介してIFVCO(中間波電圧制御発振器)45に接続され、IFVCO45がIFローカル信号を出力するように制御する。IFVCO45による出力信号の周波数は各通信方式共に640MHzである。また、RFシンセサイザ41およびIFシンセサイザ42によってVCXO(電圧制御水晶発振器)50を制御し、基準信号を出力し、ベースバンドチップ22に送る。
受信系ではシンセサイザおよびADC/DAC&DCオフセット用制御論理回路部35によってIF信号を制御し、復調器34によってベースバンドチップ信号(I,Q信号)に変換してベースバンドチップ22に送る。
送信系は、ベースバンドチップ22から出力されるI,Q信号を入力信号とする2つのミキサ61と、この2つのミキサ61の位相を制御する90度位相変換器62と、2つのミキサ61の出力を加算する加算器63と、加算器63の出力をいずれも入力とするミキサ64およびDPD(デジタルフェーズディテクタ)65と、ミキサ64およびDPD65の出力を共に入力とするループフィルタ66と、ループフィルタ66の出力を共に入力とする二つのTXVCO(送信波電圧制御発信器)67と、2つのTXVCO67の出力を共に入力とするPAモジュール68と、アンテナスイッチ21とからなっている。ループフィルタ66は外付け部品である。
ミキサ61、90度位相変換器62および加算器63によって直交変調器を構成する。90度位相変換器62は分周器46に分周器47を介して接続され、IFVCO45から出力されるIFローカル信号によって制御される。
2つのTXVCO67の出力はカプラー70によって電流を検出される。この検出信号は増幅器71を介してミキサ72に入力される。ミキサ72はスイッチ49を介してRFVCO44から出力されるRFローカル信号を入力する。ミキサ72の出力信号は加算器63の出力信号とともにミキサ64およびDPD65に入力される。ミキサ64とDPD65によってオフセットPLL(Phase−Locked Loop)を構成する。ミキサ72による出力信号の周波数は各通信方式共に80MHzである。
2つのTXVCO67のうちの一方のTXVCO67はGSM通信方式用であり、出力信号の周波数は880〜915MHzである。また、他のTXVCO67はDCS・PCS通信方式用であり、出力信号の周波数は1710〜1785MHz、または1850〜1910MHzである。PAモジュール68は低周波用パワーモジュールと高周波用パワーモジュールを内蔵し、低周波用パワーモジュールは880〜915MHzの信号を出力するTXVCO67からの信号を受けて増幅処理し、高周波用パワーモジュールは1710〜1785MHz、または1850〜1910MHzの信号を出力するTXVCO67からの信号を受けて増幅処理し、アンテナスイッチ21に送る。
本実施の形態1の高周波パワーモジュール1にはロジック回路60もモノリシックに形成され、出力信号をベースバンドチップ22に送る。
本実施の形態1の高周波パワーモジュール1は、図12において太線で囲った部分の各回路部がモノリシックに形成されていることになる。そして、3個のLNA24の部分が、本実施の形態1における特定回路部11になる(図4、図5参照)。これら各回路部を模式的に一部示したものが、図4および図5の半導体チップ3のブロック平面図である。
アンテナ20で受信された無線信号(電波)は電気信号に変換され、受信系の各素子で順次処理されてベースバンドチップ22に送られる。また、ベースバンドチップ22から出力された電気信号は、送信系の各素子で順次処理されてアンテナ20から電波として放射される。
図14〜図16は本実施の形態1の高周波パワーモジュール1の携帯電話機における実装構造の詳細を示す図である。
図14は高周波パワーモジュール1が実装される実装基板80の端子パターンを示すものであり、実装基板80の主面には、タブ接続用端子であるタブ固定部82が形成され、さらに、タブ固定部82の外側の周囲に、高周波パワーモジュール1の各リード7と接続される複数のランド81が形成され、図15に示すように、実装基板80の主面の高周波パワーモジュール1と接続する箇所以外は、絶縁膜であるソルダレジスト91によって覆われている。
実装基板80には、主面の第1の配線層86(タブ固定部82やランド81など)や内層の第2の配線層87や第3の配線層88などが形成されており、スルーホール84は、何れかの配線層同士を接続するように所望の配線層に開口する貫通孔に導体が配置されて形成されたものであり、前記導体はメッキなどで形成される場合が多い。
図14において、チップ3内の回路の構成が省略されているが、チップ3内の回路の構成および接続するリード7の配置は図5に記載された構成に該当するものであり、LNA24に接地電位を供給するリード7が(固定電位)として示されており、また、LNA24へ信号を入力するためのリード7がSignalとして示されているものである。
図15に示す実装基板80では、主面にタブ固定部82やランド81などの第1の配線層が形成され、さらに、第2の配線層87として内層GND89、第3の配線層88として内層Vcc90などの各配線層が内部に形成されており、第1の配線層のタブ固定部82と第2の配線層87の内層GND89とが多数のスルーホール84によって接続されている。
なお、図14および図15に示す構造では、タブ固定部82には、その各辺に沿って複数の共通配線であるスルーホール84が配置されて接続されている。すなわち、タブ固定部82の裏面側にその各辺にほぼ沿って並んだ状態で複数のスルーホール84が配置されて各スルーホール84がタブ固定部82に接続されており、したがって、タブ固定部82には多数のスルーホール84を介して内層GND89と同電位の共通のグランド電位(第1の電位)が供給される。
さらに、高周波パワーモジュール1のLNA(第1の回路部)24に固定電位のグランド電位を供給するリード接続用のランド81もスルーホール84を介して内層GND89と接続しているため、図16に示すように、実装基板80に高周波パワーモジュール1を搭載した際には、LNA24には、タブ固定部82からタブ4を介して供給されるグランド電位と共通の同じグランド電位が固定電位としてリード7およびワイヤ10を介して供給されることになる。
ただし、LNA24に供給されるグランド電位については、固定電位が供給されるリード7および電極端子9(第2の電極端子)とは異なった別のリード7からワイヤ10および別の電極端子9(第3の電極端子)を介して供給してもよいし、タブ4に接続したダウンボンディングワイヤ10aを介して供給してもよい。さらに、LNA24に、リード7およびワイヤ10を介して供給されるグランド電位は、タブ4に供給される第1の電位であるグランド電位とは分離させた(接続していない)別のグランド電位であってもよい。
すなわち、実装基板80上において、タブ固定部82に供給する第1の電位であるグランド電位とは接続していない別のグランド電位を供給可能な構造としておき、高周波パワーモジュール1の動作時にはタブ固定部82に供給するグランド電位とは別のグランド電位を、LNA24にリード7およびワイヤ10を介して供給してもよい。いずれの場合においても、LNA24などの特定回路部11のグランドと他の残りの回路部のグランドは、図示はしないが、半導体チップ3内の配線においても層間絶縁膜などによって絶縁分離しておくのが好ましい。これは、チップ3内の配線が、実装基板80上の配線やリードなどと比較してインダクタンスが高いために、チップ3内の配線によってLNA24などの特定回路部11と、他の電源ノイズ源となりうる回路部とを接続すると、電源ノイズの影響によってLNA24の高周波特性が損なわれる可能性があるからである。
なお、高周波パワーモジュール1においてはその封止体2の実装面(裏面)にタブ4および各リード7が露出しており、実装基板80の各ランド81とこれに対応する各リード7とが、さらに、タブ4と実装基板80のタブ接続用端子であるタブ固定部82とが半田83を介して電気的に接続されている。
したがって、このような実装構造の無線通信装置69において、実装基板80の内層GND89と多数のスルーホール84およびタブ固定部82を介して半田接続されたタブ4は、そのグランド電位が十分に低インダクタンス化され、その安定化が図られている。
これにより、LNA24以外のタブ4にダウンボンディングされた第2の回路部を有する発振器などの各電子部品に対して、十分に低インダクタンス化されたグランド電位がダウンボンディングワイヤ10aを介して供給されるため、LNA24などの第1の回路部に供給されるグランド電位に与える影響、およびLNA24などへの入力信号に与える影響を極めて小さくすることができる。
すなわち、実装基板80のスルーホール84は、その1本1本はインダクタンスが大きい。その理由は、スルーホール84はスルーホール内の導電材(例えば銅)がコイルと同様に働き、実装基板80の主面上に形成した配線94,95,96に比較して、そのインダクタンスが大きくなるからである。これは、一般的に実装基板80に形成されたスルーホール84(導電性のプラグ)において、貫通孔の半径に比較して、その内部に形成される導体の膜厚が小さいために、スルーホール84の内部が中空になるためである。こうした問題を解決するために、実装基板80の製造工程において、スルーホール84の内部を導体で充填する技術があるが、こうした技術は実装基板80の製造工程における負荷が大きく、実装基板80のコストを上昇させるため好ましくない。
このように、中空のスルーホール84を有する実装基板80を採用する場合、内層GND89とタブ固定部82とが1つのスルーホール84でしか接続されていないと、タブ4に供給されるグランド電位が十分に低インダクタンス化されず、不安定な状態となり、第2の回路部を有する高周波の発振器のON/OFFなどの切り換えなどによって第1の回路部に影響を及ぼすことになる。さらに、LNA(低雑音増幅器)24は微弱な信号を増幅するため、グランド電位の変動は低雑音増幅器24の出力の変動となるとともに、信号波形の歪みにもつながる。
これに対して、本実施の形態1の無線通信装置69では、高周波パワーモジュール1が実装される実装基板80において、タブ固定部82と内層GND89とがタブ固定部82の近傍で多数のスルーホール84で接続されているため、タブ4に供給されるグランド電位が十分に低インダクタンス化される。
さらに、高周波パワーモジュール1において、第1の回路部を有するLNA(低雑音増幅器)24の電極端子9からワイヤ10を介してリード7に至る信号配線は、その両側にグランド電位などの固定電位が供給される導電性のワイヤ10が配置されているため、LNA24の信号配線は電磁シールドされ、これにより、前記信号配線はクロストークを受け難くい。
したがって、無線通信装置69の高周波特性を向上させることができる。
また、タブ4に供給されるグランド電位を十分に低インダクタンス化することにより、グランド電位が十分に安定するため、図14に記載のように、LNA24にグランド電位(GND)を供給するランド81と接続する配線94を、タブ固定部82と接続してもよい。特に、前記配線94を接続するランド81より内側に配置することにより、ランド81より外側の領域を、その他の配線95や部品を配置する領域として有効に利用することができる。
特に、LNA24へ入力される信号の高周波特性を改善するために、前記LNA24に信号(Signal)を入力するランド81と接続するコイル(L)、容量素子(C)もしくは抵抗素子(R)などの受動素子を配置する場合に、前記のようにグランド電位(GND)を供給するランド81からの配線94を内側に引き込むことによって、前記様々な素子をより信号(Signal)入力用のランド81の近くに配置することができ、高周波特性の改善をより効果的に達成することができる。例えば図14に記載されている例においては、コイル(L)および容量素子(C)を信号(Signal)入力用のランド81の非常に近くに配置することによって、各受動素子と、ランド81との間の配線96の長さを短くすることができるために、損失の小さいインピーダンス整合を達成することができる。
なお、図17は、変形例の実装基板80を用いた場合である。図17に示す実装基板80は、第1の配線層と第2の配線層87のそれぞれの配線を接続する共通配線が、実装基板80の裏面までは到達していないブラインドビア85を採用した例である。
ブラインドビア85を採用した場合、スルーホール84ではスルーホール84内にはんだが流れ込みはんだ不足等の問題をおこすおそれがあるが、ブラインドビア85にすることによりはんだ量を制御しやすくなるという効果を得ることができる。
また、ブラインドビア85が形成された実装基板80に高周波パワーモジュール1を実装した場合であっても、前記スルーホール84の実装基板80の場合と同様の効果を得ることができる。
また、図18に示す変形例の実装基板80は、そのタブ固定部82の全体に亘ってブラインドビア85を設けた場合であり、図19は図18に示す実装基板80上に高周波パワーモジュール1を実装した構造を示すものである。図19に示す実装構造によれば、ブラインドビア85(スルーホール84でもよい)をタブ固定部82の全体に亘って配置したことにより、タブ固定部82と半田接続されるタブ4に供給されるグランド電位をさらに低インダクタンス化することができ、無線通信装置69の高周波特性もさらに向上させることができる。
本実施の形態1によれば、高周波パワーモジュール1などの半導体装置において、LNA(低雑音増幅器)24などの第1の回路部に外部信号を伝達する導電性のワイヤ10の両側に、グランド電位などの固定電位が供給される導電性のワイヤ10が配置され、かつシンセサイザやVCOなどの第2の回路部とタブ4とを接続して前記第2の回路部にグランド電位(第1の電位)を供給する複数の導電性のダウンボンディングワイヤ10aが設けられており、さらに、この半導体装置を実装する構造において、タブ4と実装基板80の複数のスルーホール84(共通配線)とが面積の大きなタブ固定部82上で半田83を介して接続されていることにより、タブ4は十分にグランド電位が低インダクタンス化された状態となる。
これによって、前記第2の回路部のタブ4におけるグランド電位も安定した状態となり、タブ4におけるグランド電位の変動を低減することができる。例えば、周期的に動作する発振器などの第2の回路部の動作に応じたグランド電位の変動を低減でき、これに起因したクロストークの発生も防ぐことができる。
また、前記第1の回路部に外部信号を伝達する導電性のワイヤ10の両側に、固定電位が供給される導電性のワイヤ10が配置されるため、外部信号を伝達する導電性のワイヤ10の電位が固定電位の導電性のワイヤ10によって電磁シールドされた状態を形成できる。これによって、前記第2の回路部でグランド電位の変動が起こったとしても、前記第1の回路部は、前記第2の回路部のグランド電位の変動の影響を受け難い。
その結果、本実施の形態1のように、高周波パワーモジュール1などの半導体装置が組み込まれた携帯電話機などの無線通信装置69(電子装置)において、LNA(低雑音増幅器)24などの回路部への電源ノイズおよび信号ノイズの入力を減らすことができ、これにより、無線通信装置69の高周波特性を向上させることができる。
また、LNA24などの回路部への電源ノイズおよび信号ノイズの入力を減らすことができるため、無線通信装置69の信頼性および品質を向上させることができる。
すなわち、無線通信装置69において出力変動や歪みのない良好な通話が可能になる。
また、半導体装置である高周波パワーモジュール1において、LNA(低雑音増幅器)24の電極端子9からワイヤ10を介してリード7に至る信号配線はその両側にグランド配線が配置されて電磁シールドされていることから、他の回路部の信号の入出力によるクロストークを受け難くすることができる。
さらに、高周波パワーモジュール1は、タブ4が封止体2の裏面に露出していることから、半導体チップ3で発生した熱をタブ固定部82を介して効果的に実装基板80に放散することができる。これにより、この高周波パワーモジュール1を組み込んだ無線通信装置69の動作の安定化を図ることができる。
また、高周波パワーモジュール1は、タブ4およびリード7が封止体2の裏面に露出するノンリード型半導体装置であることから、高周波パワーモジュール1の小型・薄型化が可能になり、軽量化も図れる。したがって、この高周波パワーモジュール1を組み込んだ無線通信装置69の小型・軽量化も可能になる。
また、高周波パワーモジュール1は、半導体チップ3の電極端子9とリード(ピン)7とをワイヤ10で接続するとともに、第1の電位であるグランド電位となるタブ4と半導体チップ3の電極端子(グランド電極端子)9とをダウンボンディングワイヤ10aで接続するダウンボンディング構造となっていることから、外部電極端子となるグランド用のリード7を少なくすることができる。
その結果、ピン数低減による封止体2の小型化が可能になり、高周波パワーモジュール1の小型化が達成できる。
(実施の形態2)
図20は本発明の他の実施の形態(実施の形態2)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図である。
本実施の形態2では、無線通信装置69(図12参照)などの電子装置に搭載される高周波パワーモジュール1に関して、実施の形態1の高周波パワーモジュール1において特定回路部11として3個のLNA(低雑音増幅器)24を有する場合を説明したのに対して、3個のLNA(低雑音増幅器)24に加えて、VCOのうち、高周波を扱うRFVCO44も特定回路部11としたものである。したがって、RFVCO44の全てのグランド用の電極端子9がワイヤ10を介してリード(グランド用のリード)7に接続され、タブ4にはワイヤを介して接続しないものである。
さらに、半導体チップ3の電極端子9からワイヤ10を介してリード7に至る配線において、RFVCO44の2本の信号配線(Signal)の両側に固定電位のグランド配線が配置され、実施の形態1の高周波パワーモジュール1と同様に信号配線の電磁シールドがなされている。
なお、3個のLNA24についても実施の形態1と同様に、それぞれ2本の信号配線(Signal)の両側に固定電位のグランド配線が配置されている。
これにより、LNA24(低雑音増幅器)に加えてRFVCO44(高周波電圧制御発振器)も含めた高周波信号を取り扱う特定回路部11のグランド電位が他の回路部のグランド電位から影響を受け難くなり、高周波パワーモジュール1を搭載した携帯電話機などの無線通信装置69(電子装置)の高周波特性の向上を図ることができる。
(実施の形態3)
図21は本発明の他の実施の形態(実施の形態3)である高周波パワーモジュールの封止体の一部を切り欠いて示す平面図である。
本実施の形態3では、無線通信装置69(図12参照)などの電子装置に搭載される高周波パワーモジュール1において、RFVCO44を外付け部品とし、半導体チップ3にはモノリシックに形成しない例である。このデュアルバンド通信方式では、低雑音増幅器、ミキサ、VCO、シンセサイザ、IQ変調器/復調器、分周器、直交変調器など各回路部をモノリシックに形成したものである。
受信系の二つのミキサはそれぞれ分周器73によって制御され、またこの分周器73は外付け部品であるRFVCO44から出力された高周波の信号を、より低周波の信号に変換するための周波数変換回路である。
したがって、本実施の形態3では、図21に示すように、高周波パワーモジュール1の外側にRFVCO44が存在し、RFVCO44の信号配線(Signal)が2本高周波パワーモジュール1のリード7に接続される。そして、RFVCO44に接続される2つのリード7からワイヤ10を介して半導体チップ3の電極端子9に至る2本の信号配線の両側の電極端子9とリード7とはワイヤ10を介して接続されている。この2本の信号配線の両側の電極端子9は固定電位のグランド用の電極端子9であり、したがって、このグランド用の電極端子9にワイヤ10を介して接続されるリード7も固定電位のグランド用のリード7となっている。これにより、実施の形態2の場合と同様に高周波信号を扱う信号配線も電磁シールドされるとともに、半導体チップ3における他の回路部とはグランド電位が独立した構成になっている。
なお、実施の形態2と同様に、3個のLNA24についてもそれぞれ2本の信号配線(Signal)の両側に固定電位のグランド配線が配置されている。
その結果、本実施の形態3においても、実施の形態2と同様に、RFVCO44のグランド電位の変動に伴う障害は発生しなくなり、したがって、高周波パワーモジュール1を搭載した携帯電話機などの無線通信装置69の高周波特性の向上を図ることができる。
(実施の形態4)
図22および図23は本発明の他の実施の形態(実施の形態4)である高周波パワーモジュールに係わる図であり、図22は高周波パワーモジュールの封止体の一部を切り欠いて示す平面図、図23は図22に示す高周波パワーモジュールの断面図、図24は実施の形態4の高周波パワーモジュールの変形例を示す断面図である。
本実施の形態4は、図22および図23に示すように、共通のグランド端子となるタブ4と、グランド電位とされるリード7を導電性のワイヤ10bで電気的に接続し、リード7をもグランド外部電極端子とするものである。本実施の形態4の高周波パワーモジュール1では、タブ4の裏面が封止体2の裏面(実装面)から露出するため、タブ4をグランド用の外部電極端子として使用できるとともに、タブ4にワイヤ10bを介して接続されたリード7もグランド用の外部電極端子としても使用することができる。
また、本実施の形態4の変形例である図24に示す構造では、タブ4の裏面側をハーフエッチングして薄くしてあることから、片面モールド時、タブ4の裏面側にも封止用樹脂が回り込み、これにより、タブ4はその裏面も封止体2から露出することなく、完全に封止体2内に埋没する。
このような構造では、タブ4は封止体2の裏面に露出しないため、タブ4と図13に示す実装基板80のタブ固定部82とを直接半田を介して接続することができない。そこで、実装基板80において、タブ4にグランド電位を供給するリード7と接続されるランド81に複数のスルーホール84を接続してグランド電位の低インダクタンス化を図っておき、このランド81に接続するリード7とタブ4とを1リード当たり複数のワイヤ10bによって接続し、リード−タブ間のグランド低インダクタンス化を図る。
あるいは、グランド低インダクタンス化されたリード7とタブ4とを直接リードフレーム上のリード材によって繋げた構造とし、これによって、前記同様、リード−タブ間のグランド低インダクタンス化を図る。
このように、タブ4を封止体内に埋め込んだ構造の高周波パワーモジュール1であっても、この高周波パワーモジュール1を搭載した携帯電話機などの無線通信装置69の高周波特性を向上させることができる。
また、図24に示す構造の場合、タブ4がワイヤ10bを介してリード7に接続されていることから、このリード7をグランド用の外部電極端子として使用することができる。なお、タブ4を封止体2内に埋没させる別の構造としては、タブ吊りリードの途中で一段高く階段状に折り曲げる構造としてもよい。
図24に示す変形例の構造においては、ワイヤ10aを介してタブ4に接続するグランド電位供給用の電極端子9の数に比較して、ワイヤ10bを介してタブと接続するリード7の数を少なくすることにより、封止体2の周囲に沿って配列されるリード7の本数を少なくし、半導体装置を小型化することができるとともに、タブ4の裏面が封止体2によって覆われているために、本実施の形態4における高周波パワーモジュール1などの半導体装置を実装基板80(図13参照)上に実装した際に高周波パワーモジュール1の下の領域も実装基板80上の配線を配置するための領域として利用できるという利点がある。したがって、本実施の形態4においては、高周波パワーモジュール1の小型化に併せて、実装基板80などの配線基板上の実装密度を向上できるという利点がある。
(実施の形態5)
図25は本発明の他の実施の形態(実施の形態5)である高周波パワーモジュールの構造を封止体の一部を切り欠いて示す平面図である。
本実施の形態5の高周波パワーモジュール1は、実施の形態1で説明した高周波パワーモジュール1においてLNA24へのグランド電位(第1の電位)の供給を、タブ4とワイヤ10aで接続された第3の電極端子である電極端子9を介して行うものである。
すなわち、本実施の形態5の高周波パワーモジュール1では、これに搭載された半導体チップ3が、LNA24にグランド電位(第1の電位)を供給する電極端子9(第3の電極端子)を有しており、この電極端子9(第3の電極端子)とタブ4とが導電性のワイヤ10aによって接続されている。
したがって、本実施の形態5の高周波パワーモジュール1では、LNA24へのグランド電位(第1の電位)の供給が、信号配線(Signal)の両側の固定電位のリード7を介して行われるのではなく、実装基板80の複数のスルーホール84と接続させることによって、電源供給配線を低インダクタンス化したタブ4を介して行われる。
なお、本実施の形態5の高周波パワーモジュール1においても、LNA24の信号配線(Signal)の両側には、タブ4のグランド電位とは別の固定電位のリード7およびワイヤ10が配置されており、LNA24の信号配線は、実施の形態1の高周波パワーモジュール1と同様に電磁シールドされている。
したがって、本実施の形態5の高周波パワーモジュール1を搭載した携帯電話機などの無線通信装置69においても、その高周波特性の向上を図ることができる。
さらに、本実施の形態5の高周波パワーモジュール1において、電極端子9(第3の電極端子)とタブ4とを接続する導電性のワイヤ10aは、信号配線(Signal)用の電極端子9(第1の電極端子)とリード7(第1のリード)とを接続する導電性のワイヤ10に比較してその長さを非常に短くすることができる。
これにより、LNA24への供給用の電源のワイヤ長が短くなるため、この配線のインピーダンスを小さくすることができ、高周波パワーモジュール1の特性をさらに向上させることができる。
したがって、本実施の形態5の高周波パワーモジュール1を搭載した携帯電話機などの無線通信装置69においてさらにその高周波特性の向上を図ることができる。
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
前記実施の形態1〜5では、共通化した電源電位についてグランド電位についてのみ記載したが、本発明の適用の範囲はグランド電位とそれに関連する構成についてのみに限られる物ではなく、発明を適用する上で適当な電源電位(第1の電位)、例えば電極の共通化をすることによりリード7の数を少なくすることができる電源電位に着目し、その電源電位を供給するための電極端子9やリード7の構成に対して本発明を適用しても良い。
また、前記実施の形態1〜5では、QFN型の半導体装置の製造に本発明を適用した例について説明したが、例えば、SON型半導体装置の製造に対しても本発明を同様に適用でき、同様の効果を有することができる。さらに、本発明の半導体装置、あるいは電子装置に搭載される半導体装置はノンリード型半導体装置に限定されることなく、例えば、封止体2の周囲に沿って、ガルウイング形状に折り曲げられたリードが突出するQFP(Quad Flat Package)やSOP(Small Outline Package)と呼ばれる半導体装置についても同様に適用することができるが、前記QFPやSOPに比較して、封止体2の周囲におけるリードの突出量が小さいQFN型の構造を採用した方が、半導体装置の小型化を達成する上ではより好ましい。
また、前記実施の形態1〜5では、半導体装置が搭載された携帯電話機などの無線通信装置(電子装置)が、予めその本体にアンテナ20が取り付けられた無線通信装置69の場合を取り上げて説明したが、本発明の電子装置は、図26の変形例に示すように、例えば、テレビジョン、セットトップボックスまたはカーナビゲーション装置などのアンテナ92を後から各本体に取り付けるようなアンテナ外付け装置93であってもよく、このアンテナ外付け装置93においても、実施の形態1〜5で説明した高周波パワーモジュール1を組み込むことにより、その高周波特性の向上を図ることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.
(Embodiment 1)
1 to 19 are diagrams relating to a high-frequency power module, which is an example of a semiconductor device according to the first embodiment of the present invention, and a wireless communication device incorporating the high-frequency power module. 1 to 5 are diagrams related to a high-frequency power module, FIGS. 6 to 11 are diagrams related to a manufacturing method of the high-frequency power module, and FIGS. 12 to 19 are diagrams related to a wireless communication apparatus.
In the first embodiment, the present invention is applied to a QFN type semiconductor device in which a tab, a tab suspension lead connected to the tab, and a lead (external electrode terminal) are exposed on a mounting surface on the back surface of a rectangular sealing body (package). An example to which is applied will be described. Further, as an example of the semiconductor device, for example, a high frequency power module 1 will be described.
As shown in FIGS. 1 and 2, the QFN type high frequency power module 1 has a sealing body (package) 2 formed of a flat, rectangular insulating resin. A rectangular semiconductor element (semiconductor chip: chip) 3 is embedded in the sealing body 2. The semiconductor chip 3 is fixed to the tab surface (main surface) of the rectangular tab 4 with an adhesive 5 (see FIG. 2). The back surface (lower surface) of the sealing body 2 is the surface side (mounting surface) to be mounted.
The back surface of the sealing body 2 has a structure in which the tab 4 and the tab suspension lead 6 that supports the tab 4 and one surface (mounting surface 7a) of the lead 7 (external electrode terminal) 7 are exposed. The tab 4, the tab suspension lead 6, and the lead 7 are formed of a single metal (for example, copper) lead frame that is patterned in the manufacture of the high-frequency power module 1, and then cut and formed.
Therefore, in the first embodiment, the thicknesses of the tab 4, the tab suspension lead 6 and the lead 7 are the same. However, in the lead 7, the inner end portion is formed thin by etching the back surface to a certain depth, so that the resin constituting the sealing body 2 enters under the thin lead portion. Yes. This makes it difficult for the lead 7 to fall off the sealing body 2.
The tab 4 is supported by tab suspension leads 6 whose four corners are thin. These tab suspension leads 6 are positioned on diagonal lines of the quadrangular sealing body 2, and have their outer ends facing each corner of the quadrangular sealing body 2. The sealing body 2 is a flat rectangular body, and the corner (corner) is chamfered to form a slope 2a (see FIG. 1). The outer end of the tab suspension lead 6 protrudes slightly to 0.1 mm or less in this chamfered portion. This protrusion length is determined by the cutting die of the press machine when cutting the tab suspension lead in the lead frame state, and for example, 0.1 mm or less is selected.
As shown in FIG. 1, around the tab 4, a plurality of leads 7 whose inner ends are opposed to the tab 4 are arranged at predetermined intervals along each side of the rectangular sealing body 2. The outer ends of the tab suspension lead 6 and the lead 7 extend to the periphery of the sealing body 2. That is, the lead 7 and the tab suspension lead 6 extend over the inside and outside of the sealing body 2. The protruding length of the lead 7 from the sealing body 2 is determined by the cutting die of the press machine when cutting the lead in the lead frame state as in the case of the tab suspension lead 6, and is slightly protruding, for example, 0.1 mm or less. To do.
Further, the side surface of the sealing body 2 is an inclined surface 2b (see FIG. 2). The inclined surface 2b is formed on one surface of the lead frame and molded to form the sealing body 2. Then, when the sealing body 2 is extracted from the mold mold cavity, the side surface of the cavity is inclined to facilitate extraction. This is due to the results of the surface. FIG. 1 is a schematic view in which the upper portion of the sealing body 2 is cut away so that the tab 4, the tab suspension lead 6, the lead 7, the semiconductor chip 3 and the like can be seen.
As shown in FIGS. 1 and 4, an electrode terminal 9 is provided on the exposed main surface of the semiconductor chip 3. The electrode terminals 9 are provided on the main surface of the semiconductor chip 3 at a substantially predetermined pitch along each side of the rectangle. The electrode terminal 9 is connected to the inner end side of the lead 7 via a conductive wire 10.
The tab 4 is formed larger than the semiconductor chip 3, and has a semiconductor element mounting portion 4a which is a semiconductor element fixing region at the center of the main surface thereof as shown in FIG. 8, and the outside of the semiconductor element mounting portion 4a. That is, the wire connection region 4b is provided at the peripheral portion of the tab 4. The semiconductor chip 3 is fixed to the semiconductor element mounting portion 4a. Further, the other end of the conductive wire 10 whose one end is connected to the electrode terminal 9 of the semiconductor chip 3 is connected to the wire connection region 4b. In particular, the wire 10 connected to the tab 4 is referred to as a down bonding wire 10a. Since wire bonding between the electrode terminal 9 and the lead 7 and wire bonding between the electrode terminal 9 and the tab 4 are performed by a wire bonding apparatus, the wire 10 and the down bonding wire 10a are made of the same material.
The purpose of adopting the down bonding structure is to commonly use the ground potential (first potential) of each circuit unit in the semiconductor chip using the tab 4. By using the tab 4 as a common ground terminal and connecting the tab 4 and many electrode terminals 9 serving as ground electrode terminals via wires 10, external electrode terminals arranged along the periphery of the sealing body 2 The number of leads 7 (pins) can be reduced, and the sealing body 2 can be downsized by reducing the number of leads. This leads to miniaturization of the high frequency power module 1 which is a semiconductor device.
Next, the circuit configuration of the semiconductor chip 3 mounted on the high frequency power module 1 of the first embodiment will be described. FIG. 4 is a schematic layout diagram showing the arrangement of each circuit unit in the semiconductor chip 3. On the main surface of the semiconductor chip 3, electrode terminals (pads) 9 are arranged along the sides. And each circuit part is arrange | positioned dividing the area | region inside these electrode terminals 9. FIG. As shown in FIG. 4, an ADC / DAC & DC offset control logic circuit unit 35 is disposed at the center of the semiconductor chip 3, and mixers 26 and 64 and three LNAs (low noise amplifiers) 24 are arranged on the left side thereof. An RFVCO (second circuit unit) 44 is located on the upper side, and an RF synthesizer (second circuit unit) 41, a VCXO (second circuit unit) 50, and an IF synthesizer (second circuit unit) are placed on the right side from top to bottom. 2) and the IFVCO 45 are arranged, and a TXVCO (second circuit part) 67 is located on the lower side.
FIG. 5 shows the relationship between each circuit unit (first circuit unit and second circuit unit) and the electrode terminal 9, and the connection state of the electrode terminal 9 and the lead 7 with the wire 10. As for the wire 10, the wire 10 which connects the electrode terminal 9 and the lead 7 and the down bonding wire 10a which connects the electrode terminal 9 and the tab 4 are shown.
Focusing on the three LNAs 24 that are the specific circuit unit 11 (first circuit unit), the lead 7 that is to be connected to the bandpass filter 23 (see FIG. 12) that is an external component, that is, the Signal, is described on the left side. A lead (first lead) 7 and a signal electrode terminal (first electrode terminal) 9 of the LNA 24 are connected via a wire 10. Two signal wirings extending from the electrode terminal 9 to the lead 7 via the wire 10 are provided for each LNA 24, and both sides of the two signal wirings are ground electrodes of the LNA 24 that is the specific circuit unit 11. A terminal (second electrode terminal) 9 is connected to a ground lead 7 (second lead, that is, a lead 7 described on the left side of GND in the drawing) via a wire 10 to form a ground wiring. Yes.
At that time, in the high frequency power module 1 of the first embodiment, the ground leads (second leads) 7 on both sides of the two signal wirings are supplied with a fixed potential, As an example, the case of the ground potential is shown.
As a result, the lead 7 of the second circuit unit such as another adjacent VCO and the lead 7 of the LNA 24 are electromagnetically shielded by the lead 7 having a fixed potential (here, a fixed ground potential). Adjacent LNAs 24 are also electromagnetically shielded by leads 7 having a fixed potential.
Also, as shown in FIG. 12, each circuit unit (for example, offset PLL) of the transmission system that processes the electrical signal output from the baseband chip 22 as compared with the LNA 24 that amplifies the weak signal coming from the antenna 20. , TXVCO 67, etc.) have a characteristic that the electric signal is larger than the weak signal, and is therefore more resistant to ground potential fluctuations and noise due to crosstalk. Therefore, the supply of the ground potential to the circuit section of the transmission system is made common with each VCO or the like via the tab 4, so that the number of leads 7 can be reduced, and the high-frequency power module 1 (semiconductor device) can be reduced in size. Can be achieved.
Furthermore, the LNA 24 is a circuit that handles signals amplified by the LNA 24, such as PGA 28 (see FIG. 12), in order to prevent signal degradation due to crosstalk between wirings formed on the main surface of the semiconductor chip 3, for example. Alternatively, it is preferable that the wiring is disposed closer to the electrode terminal 9 so that the length of the wiring is shorter than that of a transmission circuit or the like.
Next, in the high frequency power module 1 according to the first embodiment, as shown in FIG. 3, the sealing body 2 is formed between each lead 7 and the lead 7 and between the lead 7 and the tab suspension lead 6. Resin burrs that are generated during the process are present. This resin burr portion is generated when the sealing body 2 is formed by single-side molding on one surface of the lead frame 13 shown in FIG.
After molding, the unnecessary lead frame portion is cut. However, since the resin burr is cut simultaneously with the cutting of the lead 7 and the tab suspension lead 6 at this time, the outer edge of the resin burr is together with the edge of the lead 7 and the tab suspension lead 6. Thus, a part of the resin burr remains between each lead 7 and the lead 7 and between the lead 7 and the tab suspension lead 6.
In the first embodiment, the back surface of the sealing body 2 has a structure in which the back surface (mounting surface) of the tab 4, the tab suspension lead 6 and the lead 7 is retracted. This is because, in a single-sided mold in a transfer mold, a resin sheet is stretched between the upper and lower molds of the mold, and molding is performed such that one surface of the lead frame 13 is in contact with the sheet. Therefore, the back surface of the sealing body 2 is retracted.
Further, after one-side molding by transfer molding, a plating film for surface mounting is formed on the surface of the lead frame 13. For this reason, the surface of the tab 4, the tab suspension lead 6 and the lead 7 exposed on the back surface of the sealing body 2 of the high-frequency power module 1 has a plating film (not shown).
Thus, in the offset structure in which the mounting surface which is the back surface of the lead 7 and the tab suspension lead 6 protrudes and the back surface of the sealing body 2 retracts, the high frequency power module 1 is placed on the surface of the wiring substrate such as the mounting substrate 80 (see FIG. 13). In the case of mounting, since the wet area of the solder 83 is specified, there is a feature that the solder mounting is good.
Next, a method for manufacturing the high-frequency power module 1 according to the first embodiment will be described with reference to FIGS. As shown in the flowchart of FIG. 6, the high-frequency power module 1 includes lead frame preparation (S101), chip bonding (S102), wire bonding (S103), sealing (mold: S104), plating treatment (S105), and unnecessary leads. It is manufactured through each step of frame cutting and removal (S106).
FIG. 7 is a schematic plan view of a lead frame 13 having a matrix configuration used when manufacturing the QFN type high frequency power module 1 according to the first embodiment.
In this lead frame 13, unit lead frame patterns 14 are arranged in 20 rows along the X direction and 4 columns along the Y direction, and 80 high frequency power modules 1 can be manufactured from one lead frame 13. . On both sides of the lead frame 13, guide holes 15a, 15b, and 15c used for conveying and positioning the lead frame 13 are provided.
In addition, a runner is located on the left side of each row during transfer molding. Therefore, in order to peel off the runner curing resin from the lead frame 13 by ejecting the ejector pin, an ejector pin hole 16 through which the ejector pin can penetrate is provided. In addition, an ejector pin hole 17 through which the ejector pin can pass is provided in order to peel off the gate-cured resin, which is branched from the runner and hardened at the gate portion flowing into the cavity, from the lead frame 13 by the protrusion of the ejector pin.
FIG. 8 is a plan view showing a part of the unit lead frame pattern 14. Since the unit lead frame pattern 14 is a pattern that is actually manufactured, there are portions that do not necessarily match the schematic diagrams of FIGS.
The unit lead frame pattern 14 has a frame portion 18 having a rectangular frame shape. The tab suspension leads 6 extend from the four corners of the frame portion 18 so as to support the central tab 4. A plurality of leads 7 extend inward from the inside of each side of the frame portion 18, and the inner ends thereof are close to the outer peripheral edge of the tab 4. On the main surface of the tab 4 and the lead 7, a plating film (not shown) is provided for chip bonding and wire bonding.
Further, the lead 7 has its back surface at the front end side thinned by half etching (see FIG. 2). In addition, the lead 7 and the tab 4 have a structure in which the peripheral edge thereof is an inclined surface whose main surface is wider than the width of the back surface, and is formed in an inverted trapezoidal cross section so that it is difficult to be removed from the sealing body 2. Also good. This can also be produced by etching or pressing.
Further, as shown in FIG. 8, on the main surface of the tab 4, the central square region is the semiconductor element mounting portion 4a (region surrounded by a two-dot chain line frame), and the outer region is the wire connection region 4b.
After preparing such a lead frame 13, as shown in FIG. 9, the semiconductor chip 3 is fixed to the semiconductor element mounting portion 4a of the tab 4 of each unit lead frame pattern 14 via the adhesive 5 (chip bonding). (S102).
Thereafter, as shown in FIG. 10, wire bonding is performed to connect the electrode terminal 9 of the semiconductor chip 3 and the tip of the lead 7 with the conductive wire 10, and the wire connection region 4 b of the predetermined electrode terminal 9 and the tab 4. Are connected by a conductive down-bonding wire 10a (S103). As the wire 10 and the down bonding wire 10a, for example, a gold wire is used.
After the wire bonding, one-side molding is performed by a normal transfer mold, and the sealing body 2 made of an insulating resin shown in FIG. 11 is formed on the main surface of the lead frame 13 (S104). The sealing body 2 covers the semiconductor chip 3 and the leads 7 on the main surface side of the lead frame 13. In FIG. 8, a portion indicated by a two-dot chain line frame is a region where the sealing body 2 is formed.
Thereafter, although not shown, a plating process is performed (S105). As a result, a plating film (not shown) is formed on the back surface of the lead frame 13. This plating film is used as a bonding material at the time of surface mounting of the high-frequency power module 1, and is, for example, a solder plating film. In place of the step of forming the plating film, a material in which the entire surface of the lead frame 13 is previously plated with Pd may be used. In this case, particularly when the lead frame 13 plated with Pd is used, The plating process after sealing can be omitted, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
Thereafter, unnecessary lead frame portions are cut and removed (S106), and the high-frequency power module 1 as shown in FIG. 1 is manufactured. The lead 7 and the tab suspension lead 6 are cut by a cutting die of a press machine (not shown) just outside the sealing body 2 of the two-dot chain line frame shown in FIG. Due to the cutting type structure, the lead 7 and the tab suspension lead 6 are cut at a position slightly deviated from the sealing body 2, and the distance from the sealing body 2 at the deviated position is, for example, 0.1 mm or less. . The projecting length of the lead 7 and the tab suspension lead 6 from the sealing body 2 is preferably as short as possible in terms of prevention of catching. This protrusion length can be freely selected at 0.1 mm or more by changing the cutting die of the press machine.
Here, an example of the dimension of each part of the high frequency power module 1 is given. The lead frame 13 (tab 4, tab suspension lead 6, lead 7) has a thickness of 0.2 mm, the semiconductor chip 3 has a thickness of 0.28 mm, the high frequency power module 1 has a thickness of 1.0 mm, and the width of the lead 7. Is 0.2 mm, the length of the lead 7 is 0.5 mm, the wire connection point (point) of the tab 4 is 1.0 mm from the end of the mounted semiconductor chip 3, and the distance between the tab 4 and the lead 7 is 0.2 mm.
In a conventional high-frequency power module, crosstalk occurs due to a change in ground potential in a circuit unit that outputs a high-frequency signal such as an oscillator as described above, and output fluctuations and signal waveforms in each circuit unit are generated. There is a risk of distortion. Moreover, in a high frequency power module having a plurality of communication circuits such as dual band and triple band, an induced current is generated in a communication circuit that is not operated due to the influence of the operating communication circuit, and this induced current is operating as noise. There is a risk of entering the communication circuit.
Furthermore, crosstalk between input signal wirings may cause output fluctuations and signal waveform distortion in each circuit part. Especially in the case of external signal input leads from antennas with small input signals, adjacent leads It is necessary to avoid the influence of crosstalk between them as much as possible.
Therefore, in the high frequency power module 1 according to the first embodiment, as shown in FIG. 5, for example, a ground potential is provided on both sides of the conductive wire 10 that transmits an external signal to the specific circuit unit 11 that is the first circuit unit. A conductive wire 10 to which a fixed potential is supplied is disposed.
That is, in the high-frequency power module 1 shown in FIG. 5, the signal wiring from the electrode terminal 9 of the LNA (low noise amplifier) 24 to the lead 7 via the wire 10 is supplied with a fixed potential such as a ground potential on both sides. The conductive wire 10 is disposed, whereby the signal wiring of the LNA 24 is electromagnetically shielded, and as a result, the signal wiring is less susceptible to crosstalk. Note that the fixed potential is not limited to the ground potential, and may be any fixed potential.
Here, since the high-frequency power module 1 according to the first embodiment is, for example, a triple-band high-frequency power module for a mobile phone, the specific circuit unit 11 has an LNA (low noise amplifier) 24 as shown in FIG. In addition, since it is a triple band, three LNAs 24 connected to the antenna 20 (see FIG. 12) are also arranged.
The single LNA 24 is the specific circuit section 11 in the narrow sense in the present invention. That is, there are two input signal lines from the antenna 20 of each LNA 24 as shown in FIG. In order to electromagnetically shield the two signal wirings, a fixed potential (in this embodiment) is provided between the two signal leads and the other signal leads, preferably on both sides of the two signal leads. In FIG. 1, a lead 7 (wire 10) having a ground potential is disposed.
Note that when the differential input configuration is made with two input signal wirings, the influence of the same degree of crosstalk is exerted on the two input signal wirings, and noise (crosstalk) can be canceled (cancelled). Here, as shown in FIG. 5, the rectangular frame portion surrounding the three LNAs 24 is defined as the specific circuit unit 11 in a broad sense.
In the specific circuit unit 11, each LNA 24 is formed in a region isolated from the other circuit units in the semiconductor chip 3. The ground potential of each LNA 24 is common. This is because in the dual communication system and the triple communication system, the remaining communication system is in an idling state while one communication system (communication system) is used. This is because the influence of the LNA 24 belonging to the LNA 24 on the ground potential is small, and even if the ground electrodes and the ground wirings of the LNAs belonging to different communication systems are shared, the adverse effect on each other is small. However, if necessary, the configuration may be such that isolation is performed for each LNA so that the ground potential of each LNA is independent.
Next, the structure of the electronic device according to the first embodiment will be described. The electronic device according to the first embodiment includes a mounting structure on which the high-frequency power module 1 according to the first embodiment is mounted. For example, the electronic device is a wireless communication device 69 such as a mobile phone.
FIG. 13 is a schematic cross-sectional view showing the basic structure of the semiconductor device (high frequency power module) 1 according to the first embodiment mounted in a mobile phone.
In order to mount the high frequency power module 1 on the main surface of the mounting substrate (wiring substrate) 80 of the mobile phone which is the wireless communication device 69 (see FIG. 12), it corresponds to the lead 7 and the tab 4 of the high frequency power module 1. A land 81 connected to the wiring and a tab fixing portion 82 which is a tab connection terminal are provided. Therefore, the high frequency power module 1 is positioned and placed so that the lead 7 and the tab 4 of the high frequency power module 1 coincide with and overlap the land 81 and the tab fixing portion 82. In this state, the solder plating film previously formed on the back surface of the lead 7 and the tab 4 of the high-frequency power module 1 is temporarily melted (reflowed), and the lead 7 and the tab 4 are connected (mounted) with the solder 83. To do.
Here, a circuit configuration (functional configuration) of a mobile phone having a triple band configuration will be briefly described with reference to FIG. That is, this mobile phone can perform signal processing of, for example, a 900 MHz band GSM communication system, a 1800 MHz band DCS1800 communication system, and a 1900 MHz band PCS1900 communication system.
The block diagram of FIG. 12 shows a transmission system and a reception system connected to the antenna 20 via the antenna switch 21, and both the transmission system and the reception system are connected to the baseband chip 22.
The receiving system includes an antenna 20, an antenna switch 21, three band pass filters 23 connected in parallel to the antenna switch 21, a low noise amplifier (LNA) 24 connected to the band pass filter 23, and the three pieces. And a variable amplifier 25 connected to the LNA 24 in parallel. A mixer 26, a low-pass filter 27, a PGA 28, a low-pass filter 29, a PGA 30, a low-pass filter 31, a PGA 32, a low-pass filter 33, and a demodulator 34 are connected to the two variable amplifiers 25, respectively. The PGA 28, PGA 30, and PGA 32 are controlled by an ADC / DAC & DC offset control logic circuit unit 35. The two mixers 26 are phase-controlled by a 90-degree phase converter 40.
In FIG. 12, an I / Q modulator constituted by a 90-degree phase converter 40 and two mixers 26 is provided corresponding to three LNAs 24 in order to correspond to each band band. Are grouped together for simplicity.
The semiconductor chip 3 is provided with a synthesizer including an RF synthesizer 41 and an IF (Intermediate) synthesizer 42 as a signal processing IC. The RF synthesizer 41 is connected to the RFVCO 44 via the buffer 43 and controls the RFVCO 44 to output an RF local signal. Two local signal frequency dividers 37 and 38 are connected to the buffer 43 in series, and switches 48 and 49 are connected to respective output terminals. The RF local signal output from the RFVCO 44 is input to the 90-degree phase converter 40 by switching the switch 48. The 90-degree phase converter 40 controls the mixer 26 by this RF local signal.
In the Rx mode, the signal output mode of the RFVCO 44 is 3780 to 3840 MHz for GSM, 3610 to 3760 MHz for DCS, and 3860 to 3980 MHz for PCS. The Tx mode is 3840 to 3980 MHz for GSM, 3580 to 3730 MHz for DCS, and 3860 to 3980 MHz for PCS.
The IF synthesizer 42 is connected to an IFVCO (Intermediate Wave Voltage Controlled Oscillator) 45 via a frequency divider 46, and controls the IFVCO 45 to output an IF local signal. The frequency of the output signal from the IFVCO 45 is 640 MHz for each communication method. Further, a VCXO (voltage controlled crystal oscillator) 50 is controlled by the RF synthesizer 41 and the IF synthesizer 42 to output a reference signal and send it to the baseband chip 22.
In the receiving system, the IF signal is controlled by the synthesizer and the ADC / DAC & DC offset control logic circuit unit 35, converted into a baseband chip signal (I, Q signal) by the demodulator 34, and sent to the baseband chip 22.
The transmission system includes two mixers 61 having I and Q signals output from the baseband chip 22 as input signals, a 90-degree phase converter 62 for controlling the phases of the two mixers 61, and two mixers 61 An adder 63 for adding outputs; a mixer 64 and DPD (digital phase detector) 65 that receive the outputs of the adder 63; a loop filter 66 that receives both outputs of the mixer 64 and DPD 65; and a loop filter It consists of two TXVCOs (transmission wave voltage controlled oscillators) 67 that receive the outputs of 66, a PA module 68 that receives the outputs of the two TXVCOs 67, and the antenna switch 21. The loop filter 66 is an external part.
The mixer 61, the 90-degree phase converter 62, and the adder 63 constitute an orthogonal modulator. The 90-degree phase converter 62 is connected to the frequency divider 46 via the frequency divider 47 and is controlled by the IF local signal output from the IFVCO 45.
The outputs of the two TXVCOs 67 are detected by a coupler 70. This detection signal is input to the mixer 72 via the amplifier 71. The mixer 72 inputs an RF local signal output from the RFVCO 44 via the switch 49. The output signal of the mixer 72 is input to the mixer 64 and the DPD 65 together with the output signal of the adder 63. The mixer 64 and the DPD 65 constitute an offset PLL (Phase-Locked Loop). The frequency of the output signal from the mixer 72 is 80 MHz for each communication method.
One of the two TXVCOs 67 is for the GSM communication system, and the frequency of the output signal is 880 to 915 MHz. The other TXVCO 67 is for the DCS / PCS communication system, and the frequency of the output signal is 1710 to 1785 MHz or 1850 to 1910 MHz. The PA module 68 includes a low-frequency power module and a high-frequency power module. The low-frequency power module receives and amplifies the signal from the TXVCO 67 that outputs a signal of 880 to 915 MHz. The high-frequency power module 1710 A signal from the TXVCO 67 that outputs a signal of 1785 MHz or 1850 to 1910 MHz is received, amplified, and sent to the antenna switch 21.
In the high-frequency power module 1 according to the first embodiment, the logic circuit 60 is also monolithically formed and sends an output signal to the baseband chip 22.
In the high-frequency power module 1 according to the first embodiment, each circuit portion surrounded by a thick line in FIG. 12 is monolithically formed. The portions of the three LNAs 24 become the specific circuit unit 11 in the first embodiment (see FIGS. 4 and 5). FIG. 4 and FIG. 5 are block plan views showing a part of each circuit part schematically.
A radio signal (radio wave) received by the antenna 20 is converted into an electric signal, sequentially processed by each element of the receiving system, and sent to the baseband chip 22. The electric signal output from the baseband chip 22 is sequentially processed by each element of the transmission system and is radiated as a radio wave from the antenna 20.
14-16 is a figure which shows the detail of the mounting structure in the mobile telephone of the high frequency power module 1 of this Embodiment 1. FIG.
FIG. 14 shows a terminal pattern of the mounting substrate 80 on which the high-frequency power module 1 is mounted. A tab fixing portion 82 that is a tab connection terminal is formed on the main surface of the mounting substrate 80, and tab fixing is further performed. A plurality of lands 81 connected to the leads 7 of the high-frequency power module 1 are formed around the outside of the portion 82, and as shown in FIG. 15, places where the main surface of the mounting substrate 80 is connected to the high-frequency power module 1. Other than the above, it is covered with a solder resist 91 which is an insulating film.
The mounting substrate 80 is provided with a first wiring layer 86 (such as a tab fixing portion 82 and a land 81) on the main surface, a second wiring layer 87 and a third wiring layer 88 on the inner layer, and the like. 84 is formed by arranging a conductor in a through-hole opened in a desired wiring layer so as to connect any of the wiring layers, and the conductor is often formed by plating or the like.
In FIG. 14, the circuit configuration in the chip 3 is omitted, but the circuit configuration in the chip 3 and the arrangement of the leads 7 to be connected correspond to the configuration described in FIG. 5, and the LNA 24 is grounded. A lead 7 for supplying a potential is shown as (fixed potential), and a lead 7 for inputting a signal to the LNA 24 is shown as Signal.
In the mounting substrate 80 shown in FIG. 15, the first wiring layer such as the tab fixing portion 82 and the land 81 is formed on the main surface, the inner layer GND 89 as the second wiring layer 87, and the inner layer as the third wiring layer 88. Each wiring layer such as Vcc 90 is formed inside, and the tab fixing portion 82 of the first wiring layer and the inner layer GND 89 of the second wiring layer 87 are connected by a large number of through holes 84.
In the structure shown in FIGS. 14 and 15, the tab fixing portion 82 is connected to a plurality of through holes 84 that are common wirings along each side. That is, a plurality of through holes 84 are arranged on the back surface side of the tab fixing portion 82 so as to be substantially aligned along each side thereof, and each through hole 84 is connected to the tab fixing portion 82. A common ground potential (first potential) having the same potential as that of the inner layer GND 89 is supplied to 82 through a large number of through holes 84.
Further, since the land 81 for lead connection for supplying a fixed ground potential to the LNA (first circuit portion) 24 of the high frequency power module 1 is also connected to the inner layer GND 89 through the through hole 84, FIG. As shown, when the high frequency power module 1 is mounted on the mounting substrate 80, the LNA 24 has the same ground potential that is common to the ground potential supplied from the tab fixing portion 82 via the tab 4 as a fixed potential. And supplied via the wire 10.
However, the ground potential supplied to the LNA 24 is different from the lead 7 and the electrode terminal 9 (second electrode terminal) to which the fixed potential is supplied from another wire 7 and another electrode terminal 9 (first electrode). 3 may be supplied via a down bonding wire 10 a connected to the tab 4. Further, the ground potential supplied to the LNA 24 via the lead 7 and the wire 10 is a different ground potential that is separated (not connected) from the ground potential that is the first potential supplied to the tab 4. There may be.
That is, on the mounting substrate 80, a structure that can supply another ground potential that is not connected to the ground potential that is the first potential supplied to the tab fixing portion 82 is provided, and the tab is fixed when the high-frequency power module 1 is in operation. A ground potential different from the ground potential supplied to the unit 82 may be supplied to the LNA 24 via the lead 7 and the wire 10. In any case, the ground of the specific circuit unit 11 such as the LNA 24 and the grounds of the other circuit units are not illustrated, but the wiring in the semiconductor chip 3 is also insulated and separated by an interlayer insulating film or the like. Is preferred. This is because the wiring in the chip 3 has a higher inductance than the wiring and leads on the mounting substrate 80, so that the wiring in the chip 3 becomes a specific circuit unit 11 such as the LNA 24 and other power source noise sources. This is because the high frequency characteristics of the LNA 24 may be impaired due to the influence of power supply noise.
In the high-frequency power module 1, the tab 4 and each lead 7 are exposed on the mounting surface (back surface) of the sealing body 2, and each land 81 of the mounting substrate 80 and each corresponding lead 7 are Further, the tab 4 and the tab fixing portion 82 which is a tab connection terminal of the mounting substrate 80 are electrically connected via the solder 83.
Therefore, in the wireless communication device 69 having such a mounting structure, the tab 4 soldered to the inner layer GND 89 of the mounting substrate 80 via the numerous through holes 84 and the tab fixing portions 82 has a sufficiently low ground potential. To stabilize it.
As a result, a sufficiently low inductance ground potential is supplied via the down bonding wire 10a to each electronic component such as an oscillator having the second circuit portion down bonded to the tab 4 other than the LNA 24. Therefore, the influence on the ground potential supplied to the first circuit unit such as the LNA 24 and the influence on the input signal to the LNA 24 can be extremely reduced.
That is, each of the through holes 84 of the mounting substrate 80 has a large inductance. The reason is that the through hole 84 has a conductive material (for example, copper) in the through hole that works in the same manner as the coil, and has a larger inductance than the wirings 94, 95, and 96 formed on the main surface of the mounting substrate 80. Because it becomes. This is because the thickness of the conductor formed in the through hole 84 (conductive plug) generally formed in the mounting substrate 80 is smaller than the radius of the through hole. This is because the interior of 84 becomes hollow. In order to solve such a problem, there is a technique of filling the inside of the through hole 84 with a conductor in the manufacturing process of the mounting board 80. However, this technique places a heavy load on the manufacturing process of the mounting board 80, and the cost of the mounting board 80 is high. Is not preferable.
As described above, when the mounting substrate 80 having the hollow through hole 84 is employed, if the inner layer GND 89 and the tab fixing portion 82 are connected by only one through hole 84, the ground potential supplied to the tab 4 is The inductance is not sufficiently reduced and becomes unstable, and the first circuit portion is affected by switching on / off of a high-frequency oscillator having the second circuit portion. Further, since the LNA (low noise amplifier) 24 amplifies a weak signal, the fluctuation of the ground potential becomes the fluctuation of the output of the low noise amplifier 24 and leads to distortion of the signal waveform.
On the other hand, in the wireless communication device 69 of the first embodiment, in the mounting substrate 80 on which the high frequency power module 1 is mounted, the tab fixing portion 82 and the inner layer GND 89 are many through holes in the vicinity of the tab fixing portion 82. Therefore, the ground potential supplied to the tab 4 is sufficiently reduced in inductance.
Further, in the high frequency power module 1, the signal wiring from the electrode terminal 9 of the LNA (low noise amplifier) 24 having the first circuit portion to the lead 7 through the wire 10 has a fixed potential such as a ground potential on both sides thereof. Since the conductive wire 10 to be supplied is disposed, the signal wiring of the LNA 24 is electromagnetically shielded, so that the signal wiring is not easily subjected to crosstalk.
Therefore, the high frequency characteristics of the wireless communication device 69 can be improved.
Moreover, since the ground potential is sufficiently stabilized by sufficiently reducing the inductance of the ground potential supplied to the tab 4, as shown in FIG. 14, the land 81 for supplying the ground potential (GND) to the LNA 24 and The wiring 94 to be connected may be connected to the tab fixing portion 82. In particular, by arranging the wiring 94 inside the land 81 to which the wiring 94 is connected, the region outside the land 81 can be effectively used as a region for arranging other wiring 95 and components.
In particular, in order to improve the high frequency characteristics of a signal input to the LNA 24, a coil (L), a capacitor element (C), a resistance element (R), etc. connected to a land 81 for inputting a signal (Signal) to the LNA When a passive element is arranged, the wiring 94 from the land 81 for supplying the ground potential (GND) is drawn inward as described above, thereby making the various elements closer to the signal (Signal) input land 81. The high frequency characteristics can be improved more effectively. For example, in the example described in FIG. 14, the coil (L) and the capacitive element (C) are arranged very close to the land 81 for signal (Signal) input. Since the length of the wiring 96 between the terminals can be shortened, impedance matching with low loss can be achieved.
FIG. 17 shows a case where a modified mounting board 80 is used. The mounting board 80 shown in FIG. 17 employs a blind via 85 in which the common wiring connecting the wirings of the first wiring layer and the second wiring layer 87 does not reach the back surface of the mounting board 80. It is.
When the blind via 85 is adopted, the solder may flow into the through hole 84 in the through hole 84 and cause problems such as insufficient solder. However, the use of the blind via 85 provides an effect that the amount of solder can be easily controlled. be able to.
Further, even when the high-frequency power module 1 is mounted on the mounting substrate 80 in which the blind via 85 is formed, the same effect as that of the mounting substrate 80 of the through hole 84 can be obtained.
18 is a case where a blind via 85 is provided over the entire tab fixing portion 82, and FIG. 19 shows the high-frequency power module 1 on the mounting substrate 80 shown in FIG. The structure which mounted is shown. According to the mounting structure shown in FIG. 19, the blind via 85 (which may be the through hole 84) is arranged over the entire tab fixing portion 82, so that it is supplied to the tab 4 soldered to the tab fixing portion 82. The ground potential can be further reduced, and the high-frequency characteristics of the wireless communication device 69 can be further improved.
According to the first embodiment, in a semiconductor device such as the high-frequency power module 1, a ground potential is applied to both sides of the conductive wire 10 that transmits an external signal to a first circuit unit such as an LNA (low noise amplifier) 24. A conductive wire 10 to which a fixed potential is supplied is disposed, and a second circuit unit such as a synthesizer or a VCO is connected to the tab 4 to connect the ground potential (first potential) to the second circuit unit. In the structure for mounting the semiconductor device, the tab 4 and the plurality of through holes 84 (common wiring) of the mounting substrate 80 have an area. Since the large tab fixing portion 82 is connected via the solder 83, the tab 4 is in a state where the ground potential is sufficiently reduced in inductance.
As a result, the ground potential at the tab 4 of the second circuit section is also stabilized, and the fluctuation of the ground potential at the tab 4 can be reduced. For example, the fluctuation of the ground potential according to the operation of the second circuit unit such as an oscillator that operates periodically can be reduced, and the occurrence of crosstalk due to this can be prevented.
In addition, since the conductive wire 10 to which a fixed potential is supplied is disposed on both sides of the conductive wire 10 that transmits an external signal to the first circuit portion, the conductive wire 10 that transmits an external signal. Can be formed as an electromagnetic shield by the conductive wire 10 having a fixed potential. As a result, even if the ground potential fluctuates in the second circuit portion, the first circuit portion is hardly affected by the ground potential variation of the second circuit portion.
As a result, as in the first embodiment, in a wireless communication device 69 (electronic device) such as a cellular phone in which a semiconductor device such as the high frequency power module 1 is incorporated, to a circuit unit such as an LNA (low noise amplifier) 24. Thus, the input of power supply noise and signal noise can be reduced, whereby the high frequency characteristics of the wireless communication device 69 can be improved.
In addition, since the input of power supply noise and signal noise to the circuit unit such as the LNA 24 can be reduced, the reliability and quality of the wireless communication device 69 can be improved.
That is, the wireless communication device 69 can perform a good call without output fluctuation or distortion.
Further, in the high frequency power module 1 which is a semiconductor device, the signal wiring from the electrode terminal 9 of the LNA (low noise amplifier) 24 to the lead 7 through the wire 10 is grounded on both sides thereof and is electromagnetically shielded. Therefore, it is possible to make it difficult to receive crosstalk due to input / output of signals of other circuit portions.
Furthermore, since the tab 4 is exposed on the back surface of the sealing body 2, the high frequency power module 1 effectively dissipates the heat generated in the semiconductor chip 3 to the mounting substrate 80 via the tab fixing portion 82. Can do. Thereby, stabilization of operation | movement of the radio | wireless communication apparatus 69 incorporating this high frequency power module 1 can be aimed at.
In addition, since the high frequency power module 1 is a non-lead type semiconductor device in which the tab 4 and the lead 7 are exposed on the back surface of the sealing body 2, the high frequency power module 1 can be reduced in size and thickness and can be reduced in weight. . Therefore, the wireless communication device 69 incorporating the high frequency power module 1 can be reduced in size and weight.
The high-frequency power module 1 connects the electrode terminal 9 of the semiconductor chip 3 and the lead (pin) 7 with a wire 10, and the tab 4 serving as the first potential and the electrode terminal ( Since it has a down-bonding structure in which the ground electrode terminal) 9 is connected by the down-bonding wire 10a, the number of ground leads 7 serving as external electrode terminals can be reduced.
As a result, the sealing body 2 can be reduced in size by reducing the number of pins, and the high-frequency power module 1 can be reduced in size.
(Embodiment 2)
FIG. 20 is a plan view showing the structure of a high-frequency power module according to another embodiment (Embodiment 2) of the present invention, with a part of the sealing body cut away.
In the second embodiment, regarding the high-frequency power module 1 mounted on an electronic device such as the wireless communication device 69 (see FIG. 12), three LNAs (specific circuit units 11) in the high-frequency power module 1 of the first embodiment are used. The case where the low-noise amplifier) 24 is described has been described. In addition to the three LNAs (low-noise amplifiers) 24, the RFVCO 44 that handles high frequencies among the VCOs is also the specific circuit unit 11. Accordingly, all the ground electrode terminals 9 of the RFVCO 44 are connected to the leads (ground leads) 7 via the wires 10 and are not connected to the tabs 4 via the wires.
Further, in the wiring extending from the electrode terminal 9 of the semiconductor chip 3 to the lead 7 via the wire 10, a ground wiring having a fixed potential is arranged on both sides of the two signal wirings (Signals) of the RFVCO 44, and the high frequency according to the first embodiment. Similar to the power module 1, the signal wiring is electromagnetically shielded.
Similarly to the first embodiment, the three LNAs 24 are each provided with fixed potential ground lines on both sides of the two signal lines (Signals).
As a result, the ground potential of the specific circuit section 11 that handles high-frequency signals including the RFVCO 44 (high-frequency voltage controlled oscillator) in addition to the LNA 24 (low-noise amplifier) is less affected by the ground potential of other circuit sections. The high frequency characteristics of a wireless communication device 69 (electronic device) such as a mobile phone equipped with the module 1 can be improved.
(Embodiment 3)
FIG. 21 is a plan view showing a cutout part of a sealing body of a high-frequency power module according to another embodiment (Embodiment 3) of the present invention.
In the third embodiment, in the high-frequency power module 1 mounted on an electronic device such as the wireless communication device 69 (see FIG. 12), the RFVCO 44 is an external component and the semiconductor chip 3 is not formed monolithically. In this dual band communication system, each circuit unit such as a low noise amplifier, a mixer, a VCO, a synthesizer, an IQ modulator / demodulator, a frequency divider, and a quadrature modulator is monolithically formed.
The two mixers in the receiving system are each controlled by a frequency divider 73, and the frequency divider 73 converts a high frequency signal output from the RFVCO 44, which is an external component, into a lower frequency signal. Circuit.
Therefore, in the third embodiment, as shown in FIG. 21, the RFVCO 44 exists outside the high-frequency power module 1, and the signal wiring (Signal) of the RFVCO 44 is connected to the lead 7 of the high-frequency power module 1. The electrode terminals 9 on both sides of the two signal wirings extending from the two leads 7 connected to the RFVCO 44 to the electrode terminals 9 of the semiconductor chip 3 via the wires 10 are connected via the wires 10. Yes. The electrode terminals 9 on both sides of the two signal wires are fixed potential ground electrode terminals 9, and therefore the lead 7 connected to the ground electrode terminal 9 via the wire 10 is also fixed potential ground. It is lead 7 for. As a result, similarly to the second embodiment, the signal wiring for handling the high-frequency signal is also electromagnetically shielded, and the ground potential is independent from the other circuit portions in the semiconductor chip 3.
As in the second embodiment, the fixed potential ground lines are arranged on both sides of the two signal lines (Signals) in the three LNAs 24, respectively.
As a result, also in the present third embodiment, as in the second embodiment, a failure due to the fluctuation of the ground potential of the RFVCO 44 does not occur. Therefore, a wireless communication device 69 such as a mobile phone on which the high frequency power module 1 is mounted. The high frequency characteristics can be improved.
(Embodiment 4)
22 and 23 are diagrams related to a high-frequency power module according to another embodiment (Embodiment 4) of the present invention, and FIG. 22 is a plan view in which a part of the sealing body of the high-frequency power module is cut away. 23 is a cross-sectional view of the high-frequency power module shown in FIG. 22, and FIG. 24 is a cross-sectional view showing a modification of the high-frequency power module according to the fourth embodiment.
In the fourth embodiment, as shown in FIG. 22 and FIG. 23, the tab 4 serving as a common ground terminal and the lead 7 that is set to the ground potential are electrically connected by the conductive wire 10b. Are also ground external electrode terminals. In the high frequency power module 1 according to the fourth embodiment, since the back surface of the tab 4 is exposed from the back surface (mounting surface) of the sealing body 2, the tab 4 can be used as an external electrode terminal for grounding, and the tab 4 can be wired. The lead 7 connected via 10b can also be used as an external electrode terminal for ground.
Further, in the structure shown in FIG. 24 which is a modification of the fourth embodiment, the back side of the tab 4 is half-etched to be thinned. The resin wraps around, whereby the tab 4 is completely buried in the sealing body 2 without exposing the back surface of the tab 4 from the sealing body 2.
In such a structure, since the tab 4 is not exposed on the back surface of the sealing body 2, the tab 4 and the tab fixing portion 82 of the mounting substrate 80 shown in FIG. 13 cannot be directly connected via solder. Therefore, in the mounting substrate 80, a plurality of through holes 84 are connected to the lands 81 connected to the leads 7 for supplying the ground potential to the tab 4 to reduce the inductance of the ground potential, and the land 81 is connected. The lead 7 and the tab 4 are connected by a plurality of wires 10b per lead to reduce the ground between the lead and the tab.
Alternatively, the lead 7 and the tab 4 having a low ground inductance are directly connected by the lead material on the lead frame, thereby reducing the ground inductance between the lead and the tab as described above.
Thus, even with the high-frequency power module 1 having a structure in which the tab 4 is embedded in the sealed body, the high-frequency characteristics of the wireless communication device 69 such as a mobile phone equipped with the high-frequency power module 1 can be improved.
In the case of the structure shown in FIG. 24, since the tab 4 is connected to the lead 7 via the wire 10b, the lead 7 can be used as an external electrode terminal for ground. In addition, as another structure which embeds the tab 4 in the sealing body 2, it is good also as a structure bent one step higher in the middle of a tab suspension lead.
In the structure of the modified example shown in FIG. 24, the number of leads 7 connected to the tab via the wire 10b is smaller than the number of ground potential supply electrode terminals 9 connected to the tab 4 via the wire 10a. By reducing the number, the number of leads 7 arranged along the periphery of the sealing body 2 can be reduced, the semiconductor device can be downsized, and the back surface of the tab 4 is covered with the sealing body 2. Therefore, when a semiconductor device such as the high-frequency power module 1 according to the fourth embodiment is mounted on the mounting substrate 80 (see FIG. 13), wiring on the mounting substrate 80 is also arranged in the region below the high-frequency power module 1. There is an advantage that it can be used as an area for. Therefore, the fourth embodiment has an advantage that the mounting density on the wiring board such as the mounting board 80 can be improved along with the miniaturization of the high-frequency power module 1.
(Embodiment 5)
FIG. 25 is a plan view showing the structure of a high-frequency power module according to another embodiment (Embodiment 5) of the present invention, with a part of the sealing body cut away.
The high-frequency power module 1 according to the fifth embodiment has a third configuration in which the supply of the ground potential (first potential) to the LNA 24 in the high-frequency power module 1 described in the first embodiment is connected to the tab 4 and the wire 10a. This is performed through the electrode terminal 9 which is an electrode terminal of the above.
That is, in the high frequency power module 1 according to the fifth embodiment, the semiconductor chip 3 mounted on the high frequency power module 1 has the electrode terminal 9 (third electrode terminal) for supplying the ground potential (first potential) to the LNA 24. The electrode terminal 9 (third electrode terminal) and the tab 4 are connected by a conductive wire 10a.
Therefore, in the high-frequency power module 1 according to the fifth embodiment, the supply of the ground potential (first potential) to the LNA 24 is not performed via the fixed potential leads 7 on both sides of the signal wiring (Signal). By connecting to the plurality of through holes 84 of the mounting substrate 80, the power supply wiring is performed via the tab 4 with a reduced inductance.
Also in the high frequency power module 1 of the fifth embodiment, leads 7 and wires 10 having a fixed potential different from the ground potential of the tab 4 are arranged on both sides of the signal wiring (Signal) of the LNA 24. The signal wiring of the LNA 24 is electromagnetically shielded similarly to the high frequency power module 1 of the first embodiment.
Therefore, also in the wireless communication device 69 such as a mobile phone equipped with the high frequency power module 1 of the fifth embodiment, the high frequency characteristics can be improved.
Furthermore, in the high frequency power module 1 of the fifth embodiment, the conductive wire 10a that connects the electrode terminal 9 (third electrode terminal) and the tab 4 is the electrode terminal 9 (signal first) for signal wiring (Signal). Compared with the conductive wire 10 connecting the first electrode terminal) and the lead 7 (first lead), the length thereof can be made very short.
Thereby, since the wire length of the power supply for supply to LNA24 becomes short, the impedance of this wiring can be made small and the characteristic of the high frequency power module 1 can be improved further.
Therefore, it is possible to further improve the high frequency characteristics of the wireless communication device 69 such as a mobile phone equipped with the high frequency power module 1 of the fifth embodiment.
Although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. Nor.
In the first to fifth embodiments, only the ground potential is described as the common power supply potential. However, the scope of application of the present invention is not limited to only the ground potential and related configurations, and the invention is applied. Focusing on an appropriate power source potential (first potential), for example, a power source potential that can reduce the number of leads 7 by making electrodes common, an electrode terminal 9 for supplying the power source potential, The present invention may be applied to the configuration of the lead 7.
In the first to fifth embodiments, the example in which the present invention is applied to the manufacture of a QFN type semiconductor device has been described. For example, the present invention can also be applied to the manufacture of a SON type semiconductor device. It can have a similar effect. Further, the semiconductor device mounted on the semiconductor device or the electronic device of the present invention is not limited to the non-lead type semiconductor device, but, for example, a lead bent into a gull wing shape protrudes along the periphery of the sealing body 2. It can also be applied to a semiconductor device called QFP (Quad Flat Package) or SOP (Small Outline Package), but the amount of protrusion of the lead around the sealing body 2 is larger than that of the QFP or SOP. It is more preferable to adopt a small QFN type structure in order to achieve miniaturization of the semiconductor device.
In the first to fifth embodiments, a case where a wireless communication device (electronic device) such as a mobile phone equipped with a semiconductor device is a wireless communication device 69 in which an antenna 20 is attached in advance to the main body will be described. However, as shown in the modification of FIG. 26, the electronic device of the present invention has an antenna external device 93 in which an antenna 92 such as a television, a set top box, or a car navigation device is attached to each main body later. In this antenna external device 93, the high-frequency characteristics can be improved by incorporating the high-frequency power module 1 described in the first to fifth embodiments.

以上のように、本発明の電子装置および半導体装置は携帯電話機などの無線通信装置に使用される。特に、通信システムが複数系統の携帯電話機において、低雑音増幅器のような入力信号が極めて微弱な信号を処理する回路部に前記入力信号を送る信号配線の両側に固定電位の配線を配置するとともに、この半導体装置が実装される配線基板において複数の共通配線により低インダクタンス化されたグランド電位を半導体装置のタブに供給する実装構造を有することにより、1系統の通信システムを使用中、他の系統の通信システムとの間でのクロストークが発生しなくなり、良好な通話が可能な電子装置および半導体装置を提供することができる。  As described above, the electronic device and the semiconductor device of the present invention are used for a wireless communication device such as a mobile phone. In particular, in a mobile phone having a plurality of communication systems, a fixed potential wiring is arranged on both sides of a signal wiring for sending the input signal to a circuit unit that processes a very weak input signal such as a low noise amplifier, In the wiring board on which the semiconductor device is mounted, a mounting structure for supplying a ground potential reduced in inductance by a plurality of common wirings to the tab of the semiconductor device is used. It is possible to provide an electronic device and a semiconductor device in which crosstalk with a communication system does not occur and good communication is possible.

Claims (15)

複数のリードと、主面および裏面を有するタブと、複数の電極端子およびそれぞれが複数の半導体素子によって構成される複数の回路部を有する半導体チップと、前記複数の電極端子と前記リードとを接続する複数の導電性のワイヤと、前記複数の電極端子と前記タブの主面とを接続して前記複数の電極端子に第1の電位を供給する複数の導電性のワイヤとを有する半導体装置と、
前記半導体装置が実装され、第1の配線層と第2の配線層とを備えており、前記第1の配線層と第2の配線層とに開口する複数の貫通孔に配置されてそれぞれの前記配線層の配線を接続する共通配線が設けられた配線基板とを有する電子装置であって、
前記半導体チップは前記タブの主面に固定されており、
前記回路部は、前記リードを介して外部信号が入力される第1の回路部と、前記タブと前記導電性のワイヤを介して接続される第2の回路部とを含んでおり、
前記複数の電極端子は、前記第1の回路部に前記外部信号を入力する第1の電極端子と、前記第1の回路部に固定電位を供給する第2の電極端子とを有しており、
前記複数のリードは、前記外部信号を伝達する第1のリードと、前記第1のリードの両側に配置された第2のリードとを含んでおり、
前記第1のリードと前記第1の電極端子とを接続する前記導電性のワイヤの両側に前記第2のリードと前記第2の電極端子とを接続する前記導電性のワイヤが配置されており、
前記タブと前記配線基板の前記共通配線とが接続されていることを特徴とする電子装置。
Connecting a plurality of leads, a tab having a main surface and a back surface, a plurality of electrode terminals and a semiconductor chip having a plurality of circuit portions each composed of a plurality of semiconductor elements, and the plurality of electrode terminals and the leads A plurality of conductive wires, and a plurality of conductive wires that connect the plurality of electrode terminals and the main surface of the tab to supply a first potential to the plurality of electrode terminals; ,
The semiconductor device is mounted, and includes a first wiring layer and a second wiring layer, and each of the semiconductor devices is disposed in a plurality of through holes opened in the first wiring layer and the second wiring layer. An electronic device having a wiring board provided with a common wiring for connecting wirings of the wiring layer,
The semiconductor chip is fixed to the main surface of the tab,
The circuit unit includes a first circuit unit to which an external signal is input through the lead, and a second circuit unit connected to the tab through the conductive wire,
The plurality of electrode terminals include a first electrode terminal that inputs the external signal to the first circuit unit, and a second electrode terminal that supplies a fixed potential to the first circuit unit. ,
The plurality of leads include a first lead for transmitting the external signal, and second leads disposed on both sides of the first lead,
The conductive wire for connecting the second lead and the second electrode terminal is disposed on both sides of the conductive wire for connecting the first lead and the first electrode terminal. ,
The electronic device, wherein the tab and the common wiring of the wiring board are connected.
請求の範囲第1項記載の電子装置であって、前記共通配線と接続されたタブ接続用端子が、半田を介して前記タブと接続されていることを特徴とする電子装置。The electronic device according to claim 1, wherein a tab connection terminal connected to the common wiring is connected to the tab via solder. 請求の範囲第2項記載の電子装置であって、前記複数の共通配線が前記タブ接続用端子の辺に沿って設けられていることを特徴とする電子装置。3. The electronic device according to claim 2, wherein the plurality of common wires are provided along a side of the tab connection terminal. 請求の範囲第1項記載の電子装置であって、前記複数の電極端子は、前記第1の回路部に前記第1の電位を供給する第3の電極端子を有しており、前記第3の電極端子と前記タブとが前記導電性のワイヤによって接続されていることを特徴とする電子装置。The electronic device according to claim 1, wherein the plurality of electrode terminals include a third electrode terminal that supplies the first potential to the first circuit unit, and The electrode terminal and the tab are connected by the conductive wire. 請求の範囲第4項記載の電子装置であって、前記第3の電極端子と前記タブとを接続する前記導電性のワイヤは、前記第1の電極端子と前記第1のリードとを接続する前記導電性のワイヤより短いことを特徴とする電子装置。5. The electronic device according to claim 4, wherein the conductive wire that connects the third electrode terminal and the tab connects the first electrode terminal and the first lead. An electronic device characterized by being shorter than the conductive wire. 請求の範囲第1項記載の電子装置であって、前記複数の電極端子は、前記第1の回路部に前記第1の電位を供給する第3の電極端子を有しており、前記第3の電極端子と前記リードとが前記導電性のワイヤによって接続されていることを特徴とする電子装置。The electronic device according to claim 1, wherein the plurality of electrode terminals include a third electrode terminal that supplies the first potential to the first circuit unit, and An electronic device, wherein the electrode terminal and the lead are connected by the conductive wire. 請求の範囲第1項記載の電子装置であって、前記第2の電極端子を介して前記第1の回路部に供給される前記固定電位が前記第1の電位であることを特徴とする電子装置。2. The electronic device according to claim 1, wherein the fixed potential supplied to the first circuit portion through the second electrode terminal is the first potential. apparatus. 請求の範囲第1項記載の電子装置であって、前記第1の回路部は、前記リードを介して入力される前記外部信号を増幅する増幅回路であることを特徴とする電子装置。2. The electronic device according to claim 1, wherein the first circuit unit is an amplifier circuit that amplifies the external signal input through the lead. 請求の範囲第1項記載の電子装置であって、前記第2の回路部は、前記第1の回路部によって増幅された信号を処理する機能の少なくとも一部を有することを特徴とする電子装置。2. The electronic device according to claim 1, wherein the second circuit unit has at least a part of a function of processing a signal amplified by the first circuit unit. . 請求の範囲第1項記載の電子装置であって、前記半導体装置は、絶縁性樹脂からなる封止体を有しており、前記封止体には、前記半導体装置を前記配線基板に実装した際に前記配線基板の主面と対向する実装面が形成されており、前記複数のリードは、前記実装面に露出していることを特徴とする電子装置。The electronic device according to claim 1, wherein the semiconductor device has a sealing body made of an insulating resin, and the semiconductor device is mounted on the wiring board in the sealing body. In this case, a mounting surface facing the main surface of the wiring board is formed, and the plurality of leads are exposed to the mounting surface. 請求の範囲第10項記載の電子装置であって、前記封止体の前記実装面に前記タブが露出しており、前記配線基板の前記共通配線と接続されたタブ接続用端子が、半田を介して前記タブと接続されていることを特徴とする電子装置。11. The electronic device according to claim 10, wherein the tab is exposed on the mounting surface of the sealing body, and the tab connection terminal connected to the common wiring of the wiring board is soldered. And an electronic device connected to the tab. 請求の範囲第1項記載の電子装置であって、前記第1の回路部は、無線信号がアンテナを介して変換された電気信号を増幅するための回路であることを特徴とする電子装置。2. The electronic apparatus according to claim 1, wherein the first circuit unit is a circuit for amplifying an electric signal obtained by converting a radio signal through an antenna. 絶縁性樹脂からなる封止体と、
前記封止体の周囲に沿って配置され、前記封止体の内外に亘って設けられた複数のリードと、
主面および裏面を有するタブと、
主面および裏面を有しており、その主面上に複数の電極端子と、それぞれが複数の半導体素子によって構成される複数の回路部とを有する半導体チップと、
前記複数の電極端子と前記リードとを接続する複数の導電性のワイヤと、
前記複数の電極端子と前記タブの主面とを接続して前記複数の電極端子に第1の電位を供給する複数の導電性のワイヤとを有する半導体装置であって、
前記半導体チップは前記タブの主面に固定されており、
前記回路部は、前記リードを介して外部信号が入力される第1の回路部と、前記タブと前記導電性のワイヤを介して接続される第2の回路部とを含んでおり、
前記複数の電極端子は、前記第1の回路部に前記外部信号を入力する第1の電極端子と、前記第1の回路部に固定電位を供給する第2の電極端子とを有しており、
前記複数のリードは、前記外部信号を伝達する第1のリードと、前記第1のリードの両側に配置された第2のリードとを含んでおり、
前記第1のリードと前記第1の電極端子とを接続する前記導電性のワイヤの両側に前記第2のリードと前記第2の電極端子とを接続する前記導電性のワイヤが配置されていることを特徴とする半導体装置。
A sealing body made of an insulating resin;
A plurality of leads disposed along the periphery of the sealing body and provided inside and outside the sealing body;
A tab having a main surface and a back surface;
A semiconductor chip having a main surface and a back surface, a plurality of electrode terminals on the main surface, and a plurality of circuit units each constituted by a plurality of semiconductor elements;
A plurality of conductive wires connecting the plurality of electrode terminals and the leads;
A semiconductor device comprising: a plurality of conductive wires that connect the plurality of electrode terminals and a main surface of the tab and supply a first potential to the plurality of electrode terminals;
The semiconductor chip is fixed to the main surface of the tab,
The circuit unit includes a first circuit unit to which an external signal is input through the lead, and a second circuit unit connected to the tab through the conductive wire,
The plurality of electrode terminals include a first electrode terminal that inputs the external signal to the first circuit unit, and a second electrode terminal that supplies a fixed potential to the first circuit unit. ,
The plurality of leads include a first lead for transmitting the external signal, and second leads disposed on both sides of the first lead,
The conductive wire for connecting the second lead and the second electrode terminal is disposed on both sides of the conductive wire for connecting the first lead and the first electrode terminal. A semiconductor device.
請求の範囲第13項記載の半導体装置であって、前記複数の電極端子は、前記第1の回路部に前記第1の電位を供給する第3の電極端子を有しており、前記第3の電極端子と前記タブとが前記導電性のワイヤによって接続されていることを特徴とする半導体装置。14. The semiconductor device according to claim 13, wherein the plurality of electrode terminals include a third electrode terminal that supplies the first potential to the first circuit portion. The electrode terminal and the tab are connected by the conductive wire. 請求の範囲第13項記載の半導体装置であって、前記複数の電極端子は、前記第1の回路部に前記第1の電位を供給する第3の電極端子を有しており、前記第3の電極端子と前記リードとが前記導電性のワイヤによって接続されていることを特徴とする半導体装置。14. The semiconductor device according to claim 13, wherein the plurality of electrode terminals include a third electrode terminal that supplies the first potential to the first circuit portion. An electrode terminal and the lead are connected by the conductive wire.
JP2004568182A 2003-02-14 2003-02-14 Electronic device and semiconductor device Expired - Fee Related JP4137059B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001526 WO2004073063A1 (en) 2003-02-14 2003-02-14 Electronic device and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2004073063A1 true JPWO2004073063A1 (en) 2006-06-01
JP4137059B2 JP4137059B2 (en) 2008-08-20

Family

ID=32866112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004568182A Expired - Fee Related JP4137059B2 (en) 2003-02-14 2003-02-14 Electronic device and semiconductor device

Country Status (3)

Country Link
JP (1) JP4137059B2 (en)
TW (1) TW200428614A (en)
WO (1) WO2004073063A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746648A3 (en) * 2005-07-22 2008-09-03 Marvell World Trade Ltd. Packaging for high speed integrated circuits
US20070018292A1 (en) 2005-07-22 2007-01-25 Sehat Sutardja Packaging for high speed integrated circuits
JP4770514B2 (en) * 2006-02-27 2011-09-14 株式会社デンソー Electronic equipment
KR101495823B1 (en) 2007-11-26 2015-02-25 각고호우징 게이오기주크 Electronic circuit
US8571229B2 (en) 2009-06-03 2013-10-29 Mediatek Inc. Semiconductor device
KR20120048875A (en) * 2010-11-08 2012-05-16 삼성전자주식회사 Quad flat package with exposed paddle
JP2016174094A (en) * 2015-03-17 2016-09-29 住友電工デバイス・イノベーション株式会社 Semiconductor assembly
EP3088931A1 (en) * 2015-04-30 2016-11-02 LG Innotek Co., Ltd. Lens moving apparatus and camera module and optical device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738011A (en) * 1993-06-29 1995-02-07 Hitachi Ltd Semiconductor integrated circuit device
KR100298692B1 (en) * 1998-09-15 2001-10-27 마이클 디. 오브라이언 Lead frame structure for semiconductor package manufacturing
JP3639505B2 (en) * 2000-06-30 2005-04-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Printed wiring board and semiconductor device
JP4319339B2 (en) * 2000-08-30 2009-08-26 株式会社ルネサステクノロジ Semiconductor device

Also Published As

Publication number Publication date
JP4137059B2 (en) 2008-08-20
WO2004073063A1 (en) 2004-08-26
TWI292208B (en) 2008-01-01
TW200428614A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP5473026B2 (en) Semiconductor device
US7312511B2 (en) Semiconductor device with electrically isolated ground structures
US7149496B2 (en) High-frequency module and radio communication apparatus
US7274923B2 (en) Wireless communication system
US8115295B2 (en) Semiconductor device
US20090309210A1 (en) Semiconductor device and manufacturing method thereof
JP4137059B2 (en) Electronic device and semiconductor device
JP2006180151A (en) Power amplifier module and its manufacturing method
US20070202832A1 (en) Wireless communication system
TWI283471B (en) Semiconductor device and electronic apparatus
WO2003094236A1 (en) Semiconductor device and radio communication apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4137059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees