JPWO2004049476A1 - Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JPWO2004049476A1
JPWO2004049476A1 JP2004555039A JP2004555039A JPWO2004049476A1 JP WO2004049476 A1 JPWO2004049476 A1 JP WO2004049476A1 JP 2004555039 A JP2004555039 A JP 2004555039A JP 2004555039 A JP2004555039 A JP 2004555039A JP WO2004049476 A1 JPWO2004049476 A1 JP WO2004049476A1
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
current collector
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004555039A
Other languages
Japanese (ja)
Inventor
谷口 和子
和子 谷口
土橋 誠
誠 土橋
坂口 善樹
善樹 坂口
安田 清隆
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2004049476A1 publication Critical patent/JPWO2004049476A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の非水電解液二次電池用負極集電体は、非水電解液二次電池の集電体となり得る金属の箔からなり、該箔各面の粗度が10点平均表面粗さRzで表して3〜10μmであり、単位面積当たりの重量が40〜320g/m2であり、負極活物質として、十分な充放電の可能な金属又は合金が両面又は片面に担持されることを特徴とする。前記金属としては銅、鉄、コバルト、ニッケル、亜鉛若しくは銀又はそれらの金属の合金が好適である。The negative electrode current collector for a non-aqueous electrolyte secondary battery of the present invention is made of a metal foil that can be a current collector of a non-aqueous electrolyte secondary battery, and the roughness of each surface of the foil is an average surface roughness of 10 points. Rz is 3 to 10 μm, the weight per unit area is 40 to 320 g / m 2, and a sufficiently chargeable / dischargeable metal or alloy is supported on both sides or one side as a negative electrode active material. And The metal is preferably copper, iron, cobalt, nickel, zinc, silver, or an alloy of those metals.

Description

本発明は非水電解液二次電池用負極集電体に関し、更に詳しくは充放電に起因するスズやスズ合金などの負極活物質の集電体からの落剥を防止し得る非水電解液二次電池用負極集電体に関する。  The present invention relates to a negative electrode current collector for a non-aqueous electrolyte secondary battery, and more particularly, a non-aqueous electrolyte solution that can prevent peeling of a negative electrode active material such as tin or tin alloy from the current collector due to charge / discharge. The present invention relates to a negative electrode current collector for a secondary battery.

電解銅箔は、チタンやステンレス製のドラムを陰極とし、寸法安定化電極や鉛を陽極として用い、硫酸酸性の硫酸銅電解浴中で電解を行い、析出した銅を箔として巻き取って得られる。この場合、銅箔における、いわゆる光沢面と呼ばれているドラム対向面は、ドラム表面の平滑な状態が転写された平滑な形状となる。一方、いわゆるマット面と呼ばれている析出面は、浴組成や電解条件に応じ平滑な状態から粗度のある状態まで様々となる。つまり、電解銅箔は、必ず一方の面が平滑面となる。このような特徴を有する電解銅箔を更に電解槽中に誘導して、その両面に銅を電析させて両面とも粗面化させる方法が知られている(特開平6−260168号公報参照)。またキャリア箔として用いられる電解銅箔における光沢面に剥離層を形成し、その上に銅を電析させることで、表面が平滑な極薄銅箔を製造する方法も知られている(特開平11−317574号公報)。更に、銅からなるキャリア箔の表面に、有機系剤と金属粒子とが混合した接合界面層を形成し、その接合界面層上に電解銅箔層を形成してなるキャリア箔付電解銅箔も知られている(特開2001−140090号公報参照)。
ところで、電解銅箔を負極集電体として用いた非水電解液二次電池が種々提案されている。例えば厚み9μmの電解銅箔の光沢面の10点平均表面粗さRzを2.00μmとなし、マット面のRzを3.52となした集電体が知られている(特開平9−306504号公報参照)。この集電体には、負極活物質としてカーボンが担持される。この集電体は、一方の面のRzを3.0μmより小さくし且つ該面と他方の面とのRzの差を2.5μm以下とすることで、集電体と負極活物質との接触を良好にしようとするものである。つまり、集電体の各面のRzを小さくすることを発明の特徴としている。しかし、容量の高い負極活物質として近年注目されているスズやスズ合金を用いた場合の検討はなされていない。本発明者らの検討によれば、この集電体にスズやスズ合金を負極活物質として担持させて負極となした場合、該負極においては充放電によって負極活物質の体積膨張が起こり、落剥が生じてしまうことが判明している。
Electrolytic copper foil is obtained by using a drum made of titanium or stainless steel as a cathode, using a dimension stabilizing electrode or lead as an anode, performing electrolysis in a sulfuric acid copper sulfate electrolytic bath, and winding up the deposited copper as a foil. . In this case, the drum facing surface called a so-called glossy surface in the copper foil has a smooth shape in which the smooth state of the drum surface is transferred. On the other hand, the precipitation surface called a so-called mat surface varies from a smooth state to a rough state depending on the bath composition and electrolysis conditions. That is, one surface of the electrolytic copper foil is always a smooth surface. A method is also known in which an electrolytic copper foil having such characteristics is further induced in an electrolytic cell, and copper is electrodeposited on both surfaces to roughen both surfaces (see JP-A-6-260168). . There is also known a method for producing an ultrathin copper foil having a smooth surface by forming a release layer on a glossy surface of an electrolytic copper foil used as a carrier foil and electrodepositing copper on the release layer (Japanese Patent Laid-Open No. Hei. 11-317574). Furthermore, an electrolytic copper foil with a carrier foil is also obtained by forming a bonding interface layer in which an organic agent and metal particles are mixed on the surface of a carrier foil made of copper, and forming an electrolytic copper foil layer on the bonding interface layer. It is known (see JP 2001-140090 A).
By the way, various non-aqueous electrolyte secondary batteries using an electrolytic copper foil as a negative electrode current collector have been proposed. For example, a current collector is known in which a 10-point average surface roughness Rz of a glossy surface of an electrolytic copper foil having a thickness of 9 μm is 2.00 μm and a mat surface Rz is 3.52 (Japanese Patent Laid-Open No. 9-306504). No. publication). This current collector carries carbon as a negative electrode active material. In this current collector, the contact between the current collector and the negative electrode active material is reduced by making the Rz of one surface smaller than 3.0 μm and the difference in Rz between the other surface and 2.5 μm or less. To try to improve. That is, a feature of the invention is to reduce Rz of each surface of the current collector. However, no study has been made on the use of tin or a tin alloy that has been attracting attention in recent years as a negative electrode active material having a high capacity. According to the study by the present inventors, when tin or a tin alloy is supported on the current collector as a negative electrode active material to form a negative electrode, the negative electrode undergoes volume expansion due to charge / discharge in the negative electrode, resulting in a drop. It has been found that peeling occurs.

従って、本発明の目的は、スズやスズ合金を始めとする金属や合金からなる負極活物質が、充放電に起因して集電体から落剥することを防止し得る非水電解液二次電池用負極集電体を提供することを目的とする。
前記目的を達成すべく本発明者らは鋭意検討した結果、前記の特開平9−306504号公報に記載の知見と異なり、負極活物質としてスズやスズ合金を始めとする金属や合金を用いた場合には、集電体として用いられる箔の表面を平滑にするよりも或る程度粗くした方が好適であることを知見した。
本発明は前記知見に基づきなされたものであり、非水電解液二次電池の集電体となり得る金属の箔からなり、該箔各面の粗度が10点平均表面粗さRzで表して3〜10μmであり、単位面積当たりの重量が40〜320g/mであり、負極活物質として、十分な充放電の可能な金属又は合金が両面又は片面に担持されることを特徴とする非水電解液二次電池用負極集電体を提供することにより前記目的を達成したものである。
また本発明は、前記集電体の好ましい製造方法として、
電解によって陰極ドラム周面に前記金属を析出させ、析出した該金属を該周面から剥離してキャリア箔を得、該キャリア箔における析出面に剥離処理を施し、該剥離処理面上に電解によって前記金属を析出させ、析出した該金属を該キャリア箔から剥離してレプリカ箔を得ることを特徴とする非水電解液二次電池用負極集電体の製造方法を提供するものである。
また本発明は、非水電解液二次電池の集電体となり得る金属の箔からなる集電体の両面又は片面に、負極活物質として、十分な充放電の可能な金属又は合金が担持されている非水電解液二次電池用負極において、
前記箔はその各面の粗度が10点平均表面粗さRzで表して3〜10μmであり、単位面積当たりの重量が40〜320g/mであることを特徴とする非水電解液二次電池用負極を提供するものである。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary that can prevent a negative electrode active material made of a metal or an alloy such as tin or a tin alloy from peeling off from a current collector due to charge / discharge. An object is to provide a negative electrode current collector for a battery.
As a result of diligent investigations to achieve the above object, the present inventors have used metals and alloys such as tin and tin alloys as the negative electrode active material, unlike the findings described in JP-A-9-306504. In some cases, it has been found that it is preferable to roughen the surface of the foil used as the current collector to a certain extent, rather than smoothing.
The present invention has been made on the basis of the above knowledge, and is made of a metal foil that can be a current collector of a non-aqueous electrolyte secondary battery. The roughness of each surface of the foil is expressed by an average surface roughness Rz of 10 points. 3 to 10 μm, the weight per unit area is 40 to 320 g / m 2 , and a sufficient charge / dischargeable metal or alloy is supported on both sides or one side as a negative electrode active material. The object is achieved by providing a negative electrode current collector for a water electrolyte secondary battery.
In addition, the present invention provides a preferred method for producing the current collector,
The metal is deposited on the peripheral surface of the cathode drum by electrolysis, and the deposited metal is peeled off from the peripheral surface to obtain a carrier foil. The deposition surface of the carrier foil is subjected to a peeling treatment, and the peeling treatment surface is electrolyzed. The present invention provides a method for producing a negative electrode current collector for a non-aqueous electrolyte secondary battery, wherein the metal is deposited, and the deposited metal is peeled from the carrier foil to obtain a replica foil.
In addition, the present invention supports a sufficiently chargeable / dischargeable metal or alloy as a negative electrode active material on both sides or one side of a current collector made of a metal foil that can be a current collector of a non-aqueous electrolyte secondary battery. In the negative electrode for a non-aqueous electrolyte secondary battery,
The foil has a surface roughness of 10 to 10 μm and an average surface roughness Rz of 3 to 10 μm, and a weight per unit area of 40 to 320 g / m 2. A negative electrode for a secondary battery is provided.

図1(a)〜図1(d)は、本発明の集電体を製造する方法を示す工程図である。
図2(a)〜図2(c)は、図1(a)〜図1(d)に示す製造方法における製造過程での銅箔の表面状態を示す走査型電子顕微鏡写真像である。
図3(a)〜図3(c)は、本発明の集電体を製造する別の方法を示す工程図である。
FIG. 1A to FIG. 1D are process diagrams showing a method for producing a current collector of the present invention.
2 (a) to 2 (c) are scanning electron micrograph images showing the surface state of the copper foil in the manufacturing process in the manufacturing method shown in FIGS. 1 (a) to 1 (d).
FIG. 3A to FIG. 3C are process diagrams showing another method for producing the current collector of the present invention.

以下、本発明をその好ましい実施形態に基づき説明する。本発明の集電体は非水電解液二次電池の集電体となり得る金属から構成されている。特にリチウム二次電池の集電体となり得る金属から構成されていることが好ましい。そのような金属としては例えば銅、鉄、コバルト、ニッケル、亜鉛若しくは銀又はそれらの金属の合金などが挙げられる。これらの金属のうち銅又はその合金を用いることが特に好適である。従って、以下の説明は銅箔を中心に行うこととする。銅箔としては、電解銅箔及び圧延銅箔の何れもが用いられる。これらのうち、銅箔の表面粗さを後述する範囲にすることが容易であり、しかも銅箔を極薄にすることが容易な電解銅箔を用いることが好ましい。電解銅箔は一般に、回転ドラムを陰極として、硫酸酸性の硫酸銅電解浴中で電解を行いドラム周面に銅を析出させ、析出した銅を剥離して得られる。
本発明において用いられる銅箔はその各面の粗度が10点平均表面粗さRz(JIS B0601)で表して3〜10μmという比較的粗いものとなっている。10点平均表面粗さRzとは、銅箔の縦断面曲線から基準長さLだけ抜き取った部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の深さの絶対値の平均値との差を求めたものである。本発明においてはRzを株式会社小坂研究所製表面粗さ・輪郭形状測定器SEF−30Dを用いて測定した。
前述した通り、銅箔の各面はRzが3〜10μm、好ましくは4〜7μmという比較的粗いものとなっている。本発明者らの検討によれば、負極活物質としてスズやスズ合金を用いた場合には、カーボン等を負極活物質として用いた場合と異なり、銅箔の各面が比較的粗い方が好ましいことが判明した。この理由は次の通りであると本発明者らは推測している。スズやスズ合金等の負極活物質は一般に電解によって銅箔からなる集電体上に担持される。或いは該負極活物質の粒子を含むペーストを集電体上に塗布することによって担持される。従って、銅箔の表面が平滑であると活物質の電析層も平滑に形成される。この状態下に電池の充放電に起因して活物質の体積膨張が起こると、体積膨張分の活物質の行き場がなくなり活物質の層にクラックが生じたり、引いては活物質の微粉化や落剥が起こってしまう。これに対して銅箔の表面が比較的粗い場合には、銅箔の表面が平滑な場合に比べて活物質の電析層が粗く形成される。つまり該電析層の表面は比較的凹凸となる。この凹凸は、電池の充放電に起因して活物質の体積膨張が起こった場合に、体積膨張分の活物質の逃げ場を提供することになる。その結果、活物質の微粉化や落剥が起こりにくくなり、電池の寿命が長くなる。
銅箔の各面におけるRzは同じ値である必要はなく、何れの面もが前記範囲内にあればよい。また、銅箔の各面における凹凸状態(表面プロファイル)も同様である必要はない。しかし、各面ともに出来るだけ同様の表面プロファイルを有していることが電池の性能向上の点から好ましい。このような表面プロファイルを有する銅箔の製造方法については後述する。
銅箔の各面のRz値は前述した範囲であることが必要であり、それに加えて各面においては凹凸の大きさ(高さや深さ)が比較的揃っており、例外的に極めて高い凸部や深い凹部が存在しないことが好ましい。これによっても電池の充放電に起因する活物質の微粉化や落剥が起こりにくくなり、電池の寿命が長くなる。このような表面形状を表すパラメータとしては最大高さRmaxが適切である。Rmaxは、粗さ曲線を等分し、各区間毎に最高山頂と最深谷底との間隔を求めたときの5個の値のうち最大の値で定義される。本発明においては銅箔の各面のRmaxが3.3〜11.5μm、特に4.5〜8μmであることが好ましい。
集電体を構成する銅箔はその厚みが小さいことが電池の性能向上の点から好ましい。具体的には銅箔の厚みは5〜20μm、特に8〜15μm程度の極薄状態であることが好ましい。しかし、このような極薄状態の銅箔において、先に述べたRzの値が3〜10μmという比較的大きな値であるということは、銅箔の厚みの定義を不明確にするおそれがある。そこで本発明においては銅箔の厚みに代えて銅箔の単位面積当たりの重量をもって厚みの尺度とすることとする。そして、銅箔はその単位面積当たりの重量が40〜320g/m、特に44〜180g/mであることが好ましい。単位面積当たりの重量と厚みとの変換に際しては銅の密度として8.96g/cmを用いた。
集電体を構成する銅箔はその抗張力が25kgf/mm以上、特に35kgf/mm以上であることが電池組立時の加工性が良好となる点から好ましい。同様の理由により、銅箔はその伸度が2%超20%以下、特に4%以上15%以下であることが好ましい。抗張力及び伸度は、株式会社島津製作所製のオートグラフAG−Iを用い、標点間距離50mm、引張速度50mm/minの条件で測定される。このような機械的特性を有する銅箔は、例えば電解浴中に添加される塩素や膠などの各種添加剤の種類及び/又は濃度を適宜調整することで得られる。
次に本発明の集電体の好ましい製造方法を、引き続き銅箔を例にとり図面を参照しながら説明する。先ず電解によってキャリア銅箔を製造する。電解の方法は既に述べた通りである。即ち、回転ドラムを陰極として用い、硫酸酸性の硫酸銅電解浴中で電解を行いドラム周面に銅を析出させる。析出した銅をドラム周面から剥離することでキャリア銅箔が得られる。このキャリア銅箔は、目的とする銅箔に対する鋳型として用いられるものである。従って、その厚みを比較的大きくして十分な強度を付与することが好ましい。図1(a)に示すように、キャリア銅箔1の断面はその一方の面が平滑な光沢面となっており、他方の面が凹凸のあるマット面1aとなっている。光沢面はドラム周面に対向していた面であり、マット面1aは析出面である。マット面1aは、電解の条件を適宜調整することでRzが3〜10μm程度となるようにしておく。マット面1aの表面状態の一例の電子顕微鏡写真を図2(a)に示す。
次に、キャリア銅箔1のマット面1を剥離処理する。剥離処理剤としては、例えば先に述べた特開平11−317574号公報の段落〔0037〕〜〔0038〕に記載の窒素含有化合物や硫黄含有化合物、特開2001−140090号公報の段落〔0020〕〜〔0023〕に記載の窒素含有化合物や硫黄含有化合物と銅微細粒との混合物などが挙げられる。また剥離処理として、クロメート処理やニッケルめっき処理を行ってもよい。
マット面1に剥離処理を施した後、その上に電解によって銅を析出させる。この電解によって図1(b)に示すように、キャリア銅箔1のマット面上にレプリカ銅箔2が形成される。レプリカ銅箔2はその単位面積当たりの重量が40〜320g/mとなるように形成されるようにする。レプリカ銅箔2におけるキャリア銅箔対向面、つまり、マット面に対向する面(以下、この面を下面という)2bの表面形状は、マット面と相補形状となる。またレプリカ銅箔2における上面2aの表面形状は、電解の条件を適宜調整することでRzが3〜10μm程度となるようにしておく。このような表面形状を得るための電解条件としては、電解浴に例えば硫酸銅系溶液を用いる場合には、例えば銅の濃度を30〜100g/l、硫酸の濃度を50〜200g/l、塩素の濃度を30ppm以下とし、液温を30〜80℃、電流密度を1〜100A/dmとすればよい。電解浴にピロ燐酸銅系溶液を用いる場合には、銅の濃度10〜50g/l、ピロ燐酸カリウムの濃度100〜700g/lとし、液温を30〜60℃、pHを8〜12、電流密度を1〜10A/dmとすればよい。
次に、図1(c)に示すように、剥離処理面においてキャリア銅箔1からレプリカ銅箔2を剥離する。このようにして得られたレプリカ銅箔2においてはその各面のRzが3〜10μmとなる。このレプリカ銅箔2を集電体として用いる。
レプリカ銅箔2における下面2bは、キャリア銅箔1のマット面1aの相補形状となっていることから、下面2bの表面形状は整っておらずスズやスズ合金などの活物質を電析するには多少不適切な場合がある。下面2bの表面状態の一例の電子顕微鏡写真を図2(b)に示す。従って、後加工として、レプリカ銅箔2の下面2b、即ちレプリカ銅箔2におけるキャリア銅箔対向面に、図1(d)に示すように電解によって少量の銅3を析出させて薄層3を形成し、下面2bの表面凹凸形状を整えることが好ましい。また薄層3の形成によって、下面2bの表面凹凸形状が上面2aのそれに近くなるという利点もある。銅の析出の程度は、下面2bの表面に極く薄く且つ均一に薄層3が形成され、しかもRzの値に影響を与えない範囲である2μm又はそれ以下程度とすることが好ましい。このようにして表面形状が整えられた下面2bの状態の一例の電子顕微鏡写真を図2(c)に示す。この後加工されたレプリカ銅箔2を集電体として用いることもできる。
本発明の集電体の別の好ましい製造方法を図3(a)〜図3(c)に示す。この製造方法においては、レプリカ銅箔2を得るまでは先に述べた製造方法に関して説明した図1(a)〜(c)と同様の操作が行われる。但し、レプリカ銅箔2の厚みは数十μm程度としておく。レプリカ銅箔2が得られたら、図3(a)に示すように、レプリカ銅箔2の下面に剥離処理を施す。剥離処理は、キャリア銅箔1のマット面1aに対して行った剥離処理と同様とすることができる。
下面2bに剥離処理を施した後、その面上に電解によって銅を析出させる。この電解によって図3(b)に示すように、レプリカ銅箔2の下面2b上に第2レプリカ銅箔4が形成される。第2レプリカ銅箔4はその単位面積当たりの重量が40〜320g/mとなるように形成されるようにする。第2レプリカ銅箔4におけるレプリカ銅箔対向面、つまり、下面2bに対向する面の表面形状は、下面2bと相補形状となる。換言すれば第2レプリカ銅箔4の上面4aの表面形状は、最初に製造したキャリア銅箔1のマット面1aの形状と同一となる。キャリア銅箔1の製造に関して既に述べた通り、そのマット面1aはRzが3〜10μmとなっているので、第2レプリカ銅箔4の上面4aのRzも3〜10μmとなる。
一方、第2レプリカ銅箔4における下面4aの表面形状は、電解の条件を適宜調整することでRzが3〜10μm程度となるようにしておく。このような表面形状を得るための電解条件は、先に製造してあるレプリカ銅箔2の電解条件と同様とすることができる。
次に、図3(c)に示すように、剥離処理面においてレプリカ銅箔2から第2レプリカ銅箔4を剥離する。このようにして得られた第2レプリカ銅箔4においてはその各面のRzが3〜10μmとなる。また、各面はその表面凹凸形状が近似したものとなる。従って各面はスズやスズ合金を電析するのに適した表面状態となっている。この第2レプリカ銅箔4を集電体として用いることもできる。
本発明の製造方法の更に別法として、図1(c)若しくは図1(d)で得られたレプリカ銅箔2又は図3(c)で得られた第2レプリカ銅箔4の表面に、粗化処理及び/又は防錆処理を施す方法が挙げられる。これらの処理を施すことで、得られた箔の表面に、後述する負極活物質を担持させた場合に、箔と負極活物質との密着性が高まり、電池特性が向上するという利点がある。
粗化処理としては、箔の表面に粒粉状金属を形成するめっき処理を施した後、該粒粉状金属による凹凸形状を損なわないように該粒粉状金属を緻密なめっき層で被覆するめっき処理が挙げられる。前段のめっき処理はいわゆるヤケめっきと呼ばれるものであり、後段のめっき処理はいわゆる被せめっきと呼ばれるものである。このような粗化処理はプリント回路用銅箔の表面を粗化する方法として知られており、例えば特公昭53−39376号公報に開示されている。やけめっきは、限界電流密度近傍の電流により、粒粉状金属を析出させるめっきであり、被せめっきは、限界電流密度程度またはそれ以下の電流によって、粒状ではない緻密なめっき層を、粒粉状金属を被覆するように析出させるめっきである。
防錆処理としては、(i)金属めっき処理、(ii)クロメート処理、(iii)シランカップリング処理などが挙げられる。金属めっき処理では、亜鉛、ニッケル、コバルト又はそれらの合金を箔の表面にめっきして、箔の腐食(本実施形態では銅の腐食)を防止する。銅の腐食の防止の観点からは、亜鉛又は亜鉛合金めっきを行うことが好ましい。具体的には、亜鉛−銅、亜鉛−ニッケル、亜鉛−コバルト、亜鉛−ニッケル−銅、亜鉛−ニッケル−コバルト、亜鉛−銅−錫などの合金めっきが挙げられる。
クロメート処理では、クロム酸又は二クロム酸塩を主成分とする溶液で箔を処理して表面に防錆被膜を形成する。この処理により形成される防錆被膜は、例えば、クロムを含む金属層、銅クロム合金などからなるクロム合金層又は酸化クロム層からなる。クロメート処理は例えばJIS Z 0103に規定されている。
シランカップリング処理では、箔の表面を、シランカップリング剤として一般的に知られているケイ素含有化合物で処理する。例えば、一般式R−SiX(Xはアルコキシ基やハロゲンなどの加水分解性の置換基、Rは有機質と反応し易いビニル基、エポキシ基、アミノ基などの官能基を有する置換基である。)で表される化合物をシランカップリング剤として用いることができる。
粗化処理と防錆処理の順序に特に制限はない。例えば粗化処理のみを行っても良く、或いは前記(i)〜(iii)の何れか一つの防錆処理のみを行ってもよい。また、前記(i)〜(iii)の二つ以上を組み合わせてもよい。例えば金属めっき処理後にクロメート処理又はシランカップリング処理を行うことができる。また、金属めっき処理後にクロメート処理及びシランカップリング処理をこの順で行うこともできる。更に、先ずクロメート処理を行い、次いでシランカップリング処理を行うこともできる。
粗化処理と防錆処理とを組み合わせることもできる。例えば、先ず粗化処理を行い、次いで防錆処理を行うことができる。防錆処理の順序は前述した通りとすることができる。
以上の各方法によって製造された銅箔のそれぞれの面又は片面には負極活物質が担持され非水電解液二次電池用負極となされる。負極活物質としては、十分な充放電の可能な金属又は合金が用いられる。そのような金属又は合金としては、周期律表の第13族元素や第14族元素が挙げられる。例えば、スズ、アルミニウム若しくはゲルマニウム又はそれらの金属の合金が挙げられる。これらのうち、特にスズ又はスズ合金を用いることが好ましい。スズ合金としてはスズ−銅、スズ−ビスマス、スズ−鉄、スズ−コバルト等が挙げられる。これらの金属又は合金は、電解によって銅箔上に析出されることで担持される。或いはこれらの金属又は合金の粒子を含むペーストを集電体上に塗布することによって担持される。かかる負極を備えた非水電解液二次電池は、該負極の他に正極、セパレータ、非水系電解液を含んでいる。電池の形態は円筒型、角形、コイン型、ボタン型等のいずれでもよい。このようにして得られた二次電池においては、充放電を繰り返しても負極における活物質の落剥が防止され、電池の寿命が大幅に長くなる。
本発明は前記実施形態に制限されない。例えば前記実施形態においては、非水電解液二次電池の集電体となり得る金属として、好適な一例である銅を中心に説明したが、本発明は銅に限られず、例えば鉄、コバルト、ニッケル、亜鉛若しくは銀又はそれらの金属の合金などの他の金属や合金にも同様に適用できる。
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。
Hereinafter, the present invention will be described based on preferred embodiments thereof. The current collector of the present invention is made of a metal that can be a current collector of a non-aqueous electrolyte secondary battery. In particular, it is preferably made of a metal that can be a current collector of a lithium secondary battery. Examples of such a metal include copper, iron, cobalt, nickel, zinc, silver, and alloys of these metals. Among these metals, it is particularly preferable to use copper or an alloy thereof. Therefore, the following description will be focused on copper foil. As the copper foil, both electrolytic copper foil and rolled copper foil are used. Among these, it is preferable to use an electrolytic copper foil that makes it easy to make the surface roughness of the copper foil in the range described later and that makes it easy to make the copper foil extremely thin. In general, the electrolytic copper foil is obtained by performing electrolysis in a sulfuric acid copper sulfate electrolytic bath using a rotating drum as a cathode, depositing copper on the peripheral surface of the drum, and peeling the deposited copper.
The copper foil used in the present invention has a relatively rough surface of 3 to 10 μm in terms of the roughness of each surface expressed by 10-point average surface roughness Rz (JIS B0601). The 10-point average surface roughness Rz is the absolute height of the highest peak from the highest peak to the fifth peak measured from the average line of the portion extracted by the reference length L from the longitudinal section curve of the copper foil in the direction of the vertical magnification. The difference between the average value of the values and the average value of the absolute values of the depths of the bottom valley from the lowest valley bottom to the fifth is obtained. In the present invention, Rz was measured using a surface roughness / contour shape measuring instrument SEF-30D manufactured by Kosaka Laboratory Ltd.
As described above, each surface of the copper foil has a relatively rough Rz of 3 to 10 μm, preferably 4 to 7 μm. According to the study by the present inventors, when tin or a tin alloy is used as the negative electrode active material, it is preferable that each surface of the copper foil is relatively rough, unlike when carbon or the like is used as the negative electrode active material. It has been found. The present inventors speculate that the reason is as follows. A negative electrode active material such as tin or tin alloy is generally supported on a current collector made of copper foil by electrolysis. Alternatively, it is supported by applying a paste containing particles of the negative electrode active material on a current collector. Therefore, when the surface of the copper foil is smooth, the electrodeposited layer of the active material is also formed smoothly. Under this condition, when the volume expansion of the active material occurs due to charging / discharging of the battery, the active material has nowhere to go due to the volume expansion and cracks are generated in the active material layer. Delamination will occur. On the other hand, when the surface of the copper foil is relatively rough, the electrodeposited layer of the active material is formed rougher than when the surface of the copper foil is smooth. That is, the surface of the electrodeposition layer is relatively uneven. This unevenness provides an escape area for the volume expansion of the active material when the volume expansion of the active material occurs due to charging / discharging of the battery. As a result, the active material is less likely to be pulverized or peeled off, and the life of the battery is prolonged.
Rz on each surface of the copper foil does not have to be the same value, and any surface may be in the above range. Moreover, the uneven | corrugated state (surface profile) in each surface of copper foil does not need to be the same. However, it is preferable from the viewpoint of improving the battery performance that each surface has the same surface profile as possible. A method for producing a copper foil having such a surface profile will be described later.
The Rz value of each surface of the copper foil needs to be within the above-mentioned range, and in addition, the size (height and depth) of the unevenness is relatively uniform on each surface. It is preferable that no part or deep recess exists. This also makes it difficult for the active material to be pulverized or peeled off due to the charging / discharging of the battery, thereby prolonging the battery life. The maximum height R max is appropriate as a parameter representing such a surface shape. R max is defined as the maximum value among the five values when the roughness curve is equally divided and the interval between the highest peak and the deepest valley is obtained for each section. In the present invention, it is preferable that R max of each surface of the copper foil is 3.3 to 11.5 μm, particularly 4.5 to 8 μm.
The copper foil constituting the current collector is preferably thin from the viewpoint of improving battery performance. Specifically, the thickness of the copper foil is preferably in an extremely thin state of about 5 to 20 μm, particularly about 8 to 15 μm. However, in such an extremely thin copper foil, the above-described value of Rz being a relatively large value of 3 to 10 μm may obscure the definition of the thickness of the copper foil. Therefore, in the present invention, instead of the thickness of the copper foil, the weight per unit area of the copper foil is used as a measure of the thickness. The copper foil preferably has a weight per unit area of 40 to 320 g / m 2 , particularly 44 to 180 g / m 2 . When converting the weight per unit area and the thickness, the density of copper was 8.96 g / cm 3 .
The copper foil constituting the current collector preferably has a tensile strength of 25 kgf / mm 2 or more, particularly 35 kgf / mm 2 or more from the viewpoint of good workability during battery assembly. For the same reason, the elongation of the copper foil is preferably more than 2% and not more than 20%, particularly not less than 4% and not more than 15%. Tensile strength and elongation are measured under the conditions of a distance between gauge points of 50 mm and a tensile speed of 50 mm / min using Autograph AG-I manufactured by Shimadzu Corporation. A copper foil having such mechanical characteristics can be obtained by appropriately adjusting the type and / or concentration of various additives such as chlorine and glue added to the electrolytic bath.
Next, a preferred method for producing the current collector of the present invention will be described with reference to the drawings, taking copper foil as an example. First, a carrier copper foil is produced by electrolysis. The method of electrolysis is as described above. That is, using a rotating drum as a cathode, electrolysis is performed in a sulfuric acid copper sulfate electrolytic bath to deposit copper on the drum peripheral surface. Carrier copper foil is obtained by peeling the deposited copper from the drum peripheral surface. This carrier copper foil is used as a mold for a target copper foil. Therefore, it is preferable to provide a sufficient strength by making the thickness relatively large. As shown in FIG. 1A, the cross section of the carrier copper foil 1 has a smooth glossy surface on one surface and a mat surface 1a having an uneven surface on the other surface. The glossy surface is the surface facing the drum peripheral surface, and the mat surface 1a is a precipitation surface. The mat surface 1a is adjusted so that Rz is about 3 to 10 μm by appropriately adjusting electrolysis conditions. An electron micrograph of an example of the surface state of the mat surface 1a is shown in FIG.
Next, the matte surface 1 of the carrier copper foil 1 is peeled off. Examples of the release treatment agent include nitrogen-containing compounds and sulfur-containing compounds described in paragraphs [0037] to [0038] of JP-A-11-317574 described above, and paragraph [0020] of JP-A-2001-140090. Examples include a mixture of the nitrogen-containing compound or sulfur-containing compound described in [0023] and copper fine particles. Further, as a peeling process, a chromate process or a nickel plating process may be performed.
After the mat surface 1 is subjected to a peeling treatment, copper is deposited thereon by electrolysis. By this electrolysis, a replica copper foil 2 is formed on the mat surface of the carrier copper foil 1 as shown in FIG. The replica copper foil 2 is formed so that the weight per unit area is 40 to 320 g / m 2 . The surface shape of the carrier copper foil facing surface in the replica copper foil 2, that is, the surface facing the mat surface (hereinafter, this surface is referred to as the lower surface) 2b is complementary to the mat surface. Moreover, the surface shape of the upper surface 2a in the replica copper foil 2 is adjusted so that Rz is about 3 to 10 μm by appropriately adjusting the electrolysis conditions. As electrolytic conditions for obtaining such a surface shape, for example, when a copper sulfate-based solution is used in an electrolytic bath, for example, the concentration of copper is 30 to 100 g / l, the concentration of sulfuric acid is 50 to 200 g / l, chlorine The concentration may be 30 ppm or less, the liquid temperature may be 30 to 80 ° C., and the current density may be 1 to 100 A / dm 2 . When using a copper pyrophosphate solution in the electrolytic bath, the copper concentration is 10 to 50 g / l, the potassium pyrophosphate concentration is 100 to 700 g / l, the liquid temperature is 30 to 60 ° C., the pH is 8 to 12, and the current is the density may be set to 1 to 10 a / dm 2.
Next, as shown in FIG.1 (c), the replica copper foil 2 is peeled from the carrier copper foil 1 in a peeling process surface. In the replica copper foil 2 thus obtained, the Rz of each surface is 3 to 10 μm. This replica copper foil 2 is used as a current collector.
Since the lower surface 2b of the replica copper foil 2 has a complementary shape to the mat surface 1a of the carrier copper foil 1, the surface shape of the lower surface 2b is not uniform, and an active material such as tin or tin alloy is electrodeposited. May be somewhat inappropriate. An electron micrograph of an example of the surface state of the lower surface 2b is shown in FIG. Accordingly, as a post-processing, a small amount of copper 3 is deposited by electrolysis on the lower surface 2b of the replica copper foil 2, that is, the carrier copper foil facing surface of the replica copper foil 2, as shown in FIG. It is preferable to form and to arrange the surface irregularity shape of the lower surface 2b. Further, the formation of the thin layer 3 also has an advantage that the surface irregularity shape of the lower surface 2b becomes close to that of the upper surface 2a. The degree of copper deposition is preferably about 2 μm or less, which is a range in which the thin layer 3 is extremely thin and uniformly formed on the surface of the lower surface 2b and does not affect the value of Rz. FIG. 2C shows an electron micrograph of an example of the state of the lower surface 2b whose surface shape is thus adjusted. The replica copper foil 2 processed thereafter can be used as a current collector.
Another preferable method for producing the current collector of the present invention is shown in FIGS. In this manufacturing method, until the replica copper foil 2 is obtained, operations similar to those shown in FIGS. 1A to 1C described with respect to the manufacturing method described above are performed. However, the thickness of the replica copper foil 2 is set to about several tens of μm. When the replica copper foil 2 is obtained, a peeling process is performed on the lower surface of the replica copper foil 2 as shown in FIG. The peeling process can be the same as the peeling process performed on the mat surface 1 a of the carrier copper foil 1.
After performing a peeling process on the lower surface 2b, copper is deposited on the surface by electrolysis. As shown in FIG. 3B, the second replica copper foil 4 is formed on the lower surface 2b of the replica copper foil 2 by this electrolysis. The second replica copper foil 4 is formed so that its weight per unit area is 40 to 320 g / m 2 . The surface shape of the replica copper foil facing surface of the second replica copper foil 4, that is, the surface facing the lower surface 2 b is complementary to the lower surface 2 b. In other words, the surface shape of the upper surface 4a of the second replica copper foil 4 is the same as the shape of the mat surface 1a of the carrier copper foil 1 manufactured first. As already described regarding the manufacture of the carrier copper foil 1, the mat surface 1 a has an Rz of 3 to 10 μm, so the Rz of the upper surface 4 a of the second replica copper foil 4 is also 3 to 10 μm.
On the other hand, the surface shape of the lower surface 4a of the second replica copper foil 4 is set such that Rz is about 3 to 10 μm by appropriately adjusting the electrolysis conditions. The electrolysis conditions for obtaining such a surface shape can be the same as the electrolysis conditions of the replica copper foil 2 manufactured previously.
Next, as shown in FIG.3 (c), the 2nd replica copper foil 4 is peeled from the replica copper foil 2 in a peeling process surface. In the second replica copper foil 4 thus obtained, Rz of each surface thereof is 3 to 10 μm. Each surface has an approximate surface uneven shape. Accordingly, each surface has a surface state suitable for electrodeposition of tin or a tin alloy. The second replica copper foil 4 can also be used as a current collector.
As still another method of the production method of the present invention, on the surface of the replica copper foil 2 obtained in FIG. 1 (c) or FIG. 1 (d) or the second replica copper foil 4 obtained in FIG. 3 (c), The method of performing a roughening process and / or a rust prevention process is mentioned. By performing these treatments, when a negative electrode active material to be described later is supported on the surface of the obtained foil, there is an advantage that the adhesion between the foil and the negative electrode active material is increased and the battery characteristics are improved.
As a roughening treatment, after a plating treatment for forming a granular metal on the surface of the foil is performed, the granular metal is covered with a dense plating layer so as not to impair the irregular shape due to the granular metal. A plating process is mentioned. The former plating process is called so-called burn plating, and the latter plating process is called so-called overlay plating. Such a roughening treatment is known as a method for roughening the surface of a copper foil for printed circuits, and is disclosed in, for example, Japanese Patent Publication No. 53-39376. Burn plating is a plating in which granular metal is deposited by a current in the vicinity of the limit current density, and overplating is a non-granular dense plating layer that is formed in a granular form by a current of about the limit current density or less. It is plating which deposits so that a metal may be covered.
Examples of the antirust treatment include (i) metal plating treatment, (ii) chromate treatment, (iii) silane coupling treatment, and the like. In the metal plating process, zinc, nickel, cobalt, or an alloy thereof is plated on the surface of the foil to prevent foil corrosion (copper corrosion in this embodiment). From the viewpoint of preventing copper corrosion, it is preferable to perform zinc or zinc alloy plating. Specifically, alloy plating such as zinc-copper, zinc-nickel, zinc-cobalt, zinc-nickel-copper, zinc-nickel-cobalt, and zinc-copper-tin can be used.
In the chromate treatment, the foil is treated with a solution containing chromic acid or dichromate as a main component to form a rust preventive coating on the surface. The anticorrosive film formed by this treatment is made of, for example, a chromium-containing metal layer, a chromium alloy layer made of a copper chromium alloy, or a chromium oxide layer. The chromate treatment is defined in JIS Z 0103, for example.
In the silane coupling treatment, the surface of the foil is treated with a silicon-containing compound generally known as a silane coupling agent. For example, R-SiX 3 (X is a hydrolyzable substituent such as an alkoxy group or halogen, and R is a substituent having a functional group such as a vinyl group, an epoxy group, or an amino group that easily reacts with an organic substance. ) Can be used as a silane coupling agent.
There is no restriction | limiting in particular in the order of a roughening process and a rust prevention process. For example, only the roughening treatment may be performed, or only one of the rust prevention treatments (i) to (iii) may be performed. Moreover, you may combine two or more of said (i)-(iii). For example, chromate treatment or silane coupling treatment can be performed after metal plating treatment. In addition, the chromate treatment and the silane coupling treatment can be performed in this order after the metal plating treatment. Furthermore, a chromate treatment can be performed first, followed by a silane coupling treatment.
A roughening process and a rust prevention process can also be combined. For example, a roughening process can be performed first and then a rust prevention process can be performed. The order of the rust prevention treatment can be as described above.
A negative electrode active material is supported on each surface or one surface of the copper foil produced by each of the above methods to form a negative electrode for a non-aqueous electrolyte secondary battery. As the negative electrode active material, a sufficiently chargeable / dischargeable metal or alloy is used. Examples of such metals or alloys include group 13 elements and group 14 elements of the periodic table. For example, tin, aluminum, germanium, or an alloy of these metals can be given. Among these, it is particularly preferable to use tin or a tin alloy. Examples of the tin alloy include tin-copper, tin-bismuth, tin-iron, and tin-cobalt. These metals or alloys are supported by being deposited on the copper foil by electrolysis. Or it is carry | supported by apply | coating the paste containing the particle | grains of these metals or alloys on a collector. A non-aqueous electrolyte secondary battery including such a negative electrode includes a positive electrode, a separator, and a non-aqueous electrolyte in addition to the negative electrode. The form of the battery may be any of a cylindrical shape, a square shape, a coin shape, a button shape and the like. In the secondary battery thus obtained, even if charging and discharging are repeated, the active material on the negative electrode is prevented from peeling off, and the life of the battery is significantly increased.
The present invention is not limited to the embodiment. For example, in the above-described embodiment, description has been made centering on copper, which is a preferred example, as a metal that can be a current collector of a non-aqueous electrolyte secondary battery. However, the present invention is not limited to copper. For example, iron, cobalt, nickel It is equally applicable to other metals and alloys such as zinc or silver or alloys of these metals.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

図1(a)〜(c)に示す方法に従い銅箔を製造した。製造過程におけるキャリア銅箔のマット面のRzは3.2μmであり厚みは18μmであった。得られた銅箔(レプリカ銅箔)の単位面積当たりの重量並びに各面のRz及びRmaxは表1に示す通りである。また同表には銅箔の抗張力及び伸度も併せて記載されている。Copper foil was manufactured according to the method shown to Fig.1 (a)-(c). The Rz of the mat surface of the carrier copper foil in the production process was 3.2 μm and the thickness was 18 μm. Rz and R max of the weight as well as each side per unit area of the resulting copper (replica foil) are shown in Table 1. The table also lists the tensile strength and elongation of the copper foil.

製造過程におけるキャリア銅箔のマット面のRzを4.7μmとし且つ厚みを35μmとする以外は実施例1と同様にして銅箔を得た。得られた銅箔(レプリカ銅箔)の単位面積当たりの重量並びに各面のRz及びRmaxは表1に示す通りである。また同表には銅箔の抗張力及び伸度も併せて記載されている。A copper foil was obtained in the same manner as in Example 1 except that the Rz of the matte surface of the carrier copper foil in the production process was 4.7 μm and the thickness was 35 μm. Rz and R max of the weight as well as each side per unit area of the resulting copper (replica foil) are shown in Table 1. The table also lists the tensile strength and elongation of the copper foil.

図1(a)〜図1(c)に示す工程は実施例2と同様にした。その後、後工程として、レプリカ銅箔の下面に電解によって銅を析出させ薄層を形成した。得られた銅箔(下面に銅の薄層を形成したレプリカ銅箔)の単位面積当たりの重量並びに各面のRz及びRmaxは表1に示す通りである。また同表には銅箔の抗張力及び伸度も併せて記載されている。The steps shown in FIGS. 1A to 1C were the same as those in Example 2. Thereafter, as a post process, copper was deposited on the lower surface of the replica copper foil by electrolysis to form a thin layer. Rz and R max of the weight as well as each side per unit area of the resulting copper (replica copper foil to form a thin layer of copper on the lower surface) are as shown in Table 1. The table also lists the tensile strength and elongation of the copper foil.

図1(a)〜図1(c)に示す工程は実施例2と同様にした。但し、レプリカ銅箔の単位面積当たりの重量は98.6g/mとした。その後、レプリカ銅箔に対して図3(a)〜図3(c)に示す方法に従い第2レプリカ銅箔を得た。得られた銅箔(第2レプリカ銅箔)の単位面積当たりの重量並びに各面のRz及びRmaxは表1に示す通りである。また同表には銅箔の抗張力及び伸度も併せて記載されている。The steps shown in FIGS. 1A to 1C were the same as those in Example 2. However, the weight per unit area of the replica copper foil was 98.6 g / m 2 . Then, 2nd replica copper foil was obtained according to the method shown to Fig.3 (a)-FIG.3 (c) with respect to replica copper foil. Rz and R max of the weight as well as each side per unit area of the resulting copper foil (second replica copper foil) are shown in Table 1. The table also lists the tensile strength and elongation of the copper foil.

実施例5〜8Examples 5-8

図1(a)〜図1(c)に示す工程は実施例2と同様にした。その後、後工程として、粗化処理及び防錆処理をこの順で行った。防錆処理は、亜鉛めっき処理、クロメート処理及びシランカップリング処理をこの順で行った(実施例5)。なお粗化処理におけるヤケめっきは、硫酸:硫酸銅=4:5(重量比)の組成のめっき液を用い、10A/dmの電流密度で10秒間行った。ヤケめっき後、水洗し、被せめっきを行った。被せめっきは、硫酸:硫酸銅=1:4(重量比)の組成のめっき液を用い、5A/dmの電流密度で1分間行った。実施例6は、シランカップリング処理を行わない以外は実施例5と同様である。実施例7は、クロメート処理及びシランカップリング処理を行わない以外は実施例5と同様である。実施例8は、すべての防錆処理を行わない以外は実施例5と同様である。得られた銅箔(レプリカ銅箔)の単位面積当たりの重量並びに各面のRz及びRmaxは表1に示す通りである。また同表には銅箔の抗張力及び伸度も併せて記載されている。
〔比較例1〕
実施例1におけるキャリア銅箔をそのまま用いた。
〔比較例2〕
実施例2におけるキャリア銅箔をそのまま用いた。
〔性能評価〕
実施例1〜4並びに比較例1及び2で得られた銅箔の表面に、電解によってスズを析出させ、電極を作製した。スズの析出量は14.6g/mとした。また実施例5〜8で得られた銅箔の表面に、スズペーストを塗布して電極を作成した。スズの担持量は44.5g/mとした。得られた電極を用いて以下の通り非水電解液二次電池を作製した。以下の方法で、不可逆容量(%)、初期容量(mAh/g)、20サイクル容量維持率(%)及び10サイクル時の充放電効率(%)を評価した。結果を表1及び2に示す。
<非水電解液二次電池の作製>
対極として金属リチウムを用い、また作用極として前記で得られた電極を用い、両極をセパレーターを介して対向させた。更に非水電解液としてLiPF/エチレンカーボネートとジエチルカーボネートの混合溶液(1:1容量比)を用いて通常の方法によって非水電解液二次電池を作製した。
<不可逆容量>
〔1−(初回放電容量/初回充電容量)〕×100
すなわち、充電したが放電できず、活物質に残存した容量を示す。
<初期容量>
初回の放電容量を示す。
<20サイクル容量維持率>
(20サイクル容量維持率)={(20サイクル目の放電容量)/(最大放電容量)}×100
<10サイクル時の充放電効率>
(10サイクル時の充放電効率)={(10サイクル目の放電容量)/(10サイクル目の充電容量)}×100

Figure 2004049476
Figure 2004049476
表1及び表2に示す結果から明らかなように、各実施例で得られた銅箔を負極の集電体として用いた二次電池は、比較例の銅箔を負極の集電体として用いた二次電池と同程度の不可逆容量及び初期容量を示し、更に20サイクル容量維持率及び充放電効率が比較例の二次電池よりも向上していることが判る。特に、銅箔にスズめっきを施して負極を作製した実施例1〜4と、銅箔にスズペーストを塗布して負極を作製した実施例5〜8とで、20サイクル容量維持率がほぼ同等であること、即ちサイクル特性がほぼ同等であることに留意すべきである。スズをペーストで塗布すると、めっきする場合に比較してスズと銅箔との密着性が低下しやすい、つまりサイクル特性が低下しやすい。しかし実施例5〜8では、粗化処理を行っており、それによって銅箔とスズとの密着性が高まっているので、実施例1〜4とほぼ同等のサイクル特性を達成している。The steps shown in FIGS. 1A to 1C were the same as those in Example 2. Thereafter, as a post-process, roughening treatment and rust prevention treatment were performed in this order. For the rust prevention treatment, galvanization treatment, chromate treatment and silane coupling treatment were carried out in this order (Example 5). The burn-off plating in the roughening treatment was performed for 10 seconds at a current density of 10 A / dm 2 using a plating solution having a composition of sulfuric acid: copper sulfate = 4: 5 (weight ratio). After the burnt plating, the plate was washed with water and covered. The covering plating was performed for 1 minute using a plating solution having a composition of sulfuric acid: copper sulfate = 1: 4 (weight ratio) at a current density of 5 A / dm 2 . Example 6 is the same as Example 5 except that the silane coupling treatment is not performed. Example 7 is the same as Example 5 except that chromate treatment and silane coupling treatment are not performed. Example 8 is the same as Example 5 except that no rust prevention treatment is performed. Rz and R max of the weight as well as each side per unit area of the resulting copper (replica foil) are shown in Table 1. The table also lists the tensile strength and elongation of the copper foil.
[Comparative Example 1]
The carrier copper foil in Example 1 was used as it was.
[Comparative Example 2]
The carrier copper foil in Example 2 was used as it was.
[Performance evaluation]
Tin was deposited on the surfaces of the copper foils obtained in Examples 1 to 4 and Comparative Examples 1 and 2 by electrolysis to produce electrodes. The precipitation amount of tin was 14.6 g / m 2 . Moreover, the tin paste was apply | coated to the surface of the copper foil obtained in Examples 5-8, and the electrode was created. The supported amount of tin was 44.5 g / m 2 . Using the obtained electrode, a non-aqueous electrolyte secondary battery was produced as follows. The irreversible capacity (%), initial capacity (mAh / g), 20 cycle capacity retention rate (%), and charge / discharge efficiency (%) at 10 cycles were evaluated by the following methods. The results are shown in Tables 1 and 2.
<Production of non-aqueous electrolyte secondary battery>
Metal lithium was used as the counter electrode, and the electrode obtained above was used as the working electrode, and both electrodes were opposed to each other via a separator. Further, a nonaqueous electrolyte secondary battery was produced by a conventional method using a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and diethyl carbonate as a nonaqueous electrolyte.
<Irreversible capacity>
[1- (initial discharge capacity / initial charge capacity)] × 100
That is, it indicates the capacity remaining in the active material after being charged but not discharged.
<Initial capacity>
Indicates the initial discharge capacity.
<20 cycle capacity maintenance rate>
(20 cycle capacity retention rate) = {(20th cycle discharge capacity) / (maximum discharge capacity)} × 100
<Charge / discharge efficiency at 10 cycles>
(Charge / discharge efficiency at 10th cycle) = {(discharge capacity at 10th cycle) / (charge capacity at 10th cycle)} × 100
Figure 2004049476
Figure 2004049476
As is clear from the results shown in Tables 1 and 2, the secondary battery using the copper foil obtained in each example as the negative electrode current collector was used as the negative electrode current collector. It can be seen that the irreversible capacity and initial capacity are comparable to those of the secondary battery, and that the 20-cycle capacity retention rate and the charge / discharge efficiency are improved compared to the secondary battery of the comparative example. In particular, Examples 1 to 4 in which a negative electrode was produced by applying tin plating to a copper foil and Examples 5 to 8 in which a negative electrode was produced by applying a tin paste to a copper foil had almost the same 20 cycle capacity retention rate. It should be noted that the cycle characteristics are almost the same. When tin is applied as a paste, the adhesion between tin and the copper foil is likely to be lower than in the case of plating, that is, the cycle characteristics are likely to be reduced. However, in Examples 5-8, since the roughening process is performed and the adhesiveness of copper foil and tin is increasing by it, the cycling characteristics substantially equivalent to Examples 1-4 are achieved.

本発明の非水電解液二次電池用負極集電体によれば、スズやスズ合金を始めとする金属や合金からなる負極活物質が、充放電に起因して集電体から落剥することを防止することができる。従って、この集電体を用いた二次電池は充放電を繰り返しても劣化率が低く寿命が大幅に長くなる。  According to the negative electrode current collector for a non-aqueous electrolyte secondary battery of the present invention, the negative electrode active material made of metal or alloy including tin and tin alloy is peeled off from the current collector due to charge and discharge. This can be prevented. Therefore, the secondary battery using the current collector has a low deterioration rate and a long life even when charging and discharging are repeated.

Claims (13)

非水電解液二次電池の集電体となり得る金属の箔からなり、該箔各面の粗度が10点平均表面粗さRzで表して3〜10μmであり、単位面積当たりの重量が40〜320g/mであり、負極活物質として、十分な充放電の可能な金属又は合金が両面又は片面に担持されることを特徴とする非水電解液二次電池用負極集電体。It consists of a metal foil that can be a current collector of a non-aqueous electrolyte secondary battery, the roughness of each surface of the foil is 3 to 10 μm in terms of 10-point average surface roughness Rz, and the weight per unit area is 40 A negative electrode current collector for a non-aqueous electrolyte secondary battery, which is ˜320 g / m 2 and has a sufficient charge / dischargeable metal or alloy supported on both sides or one side as a negative electrode active material. 抗張力が25kgf/mm以上であり、伸度が2%超20%以下である請求の範囲第1項記載の非水電解液二次電池用負極集電体。The negative electrode current collector for a nonaqueous electrolyte secondary battery according to claim 1, wherein the tensile strength is 25 kgf / mm 2 or more and the elongation is more than 2% and 20% or less. 前記負極活物質が、スズ、アルミニウム若しくはゲルマニウム又はそれらの金属の合金からなる請求の範囲第1項記載の非水電解液二次電池用負極集電体。The negative electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is made of tin, aluminum, germanium, or an alloy of these metals. 前記金属又は合金が、銅又はその合金からなる請求の範囲第1項記載の非水電解液二次電池用負極集電体。The negative electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal or alloy is made of copper or an alloy thereof. 前記金属又は合金が、鉄、コバルト、ニッケル、亜鉛若しくは銀又はそれらの金属の合金からなる請求の範囲第1項記載の非水電解液二次電池用負極集電体。The negative electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal or alloy comprises iron, cobalt, nickel, zinc, silver, or an alloy of these metals. 請求の範囲第1項記載の非水電解液二次電池用負極集電体の製造方法であって、
電解によって陰極ドラム周面に前記金属を析出させ、析出した該金属を該周面から剥離してキャリア箔を得、該キャリア箔における析出面に剥離処理を施し、該剥離処理面上に電解によって前記金属を析出させ、析出した該金属を該キャリア箔から剥離してレプリカ箔を得ることを特徴とする非水電解液二次電池用負極集電体の製造方法。
A method for producing a negative electrode current collector for a nonaqueous electrolyte secondary battery according to claim 1, comprising:
The metal is deposited on the peripheral surface of the cathode drum by electrolysis, and the deposited metal is peeled off from the peripheral surface to obtain a carrier foil. The deposition surface of the carrier foil is subjected to a peeling treatment, and the peeling treatment surface is electrolyzed. A method for producing a negative electrode current collector for a non-aqueous electrolyte secondary battery, wherein the metal is deposited, and the deposited metal is peeled from the carrier foil to obtain a replica foil.
前記レプリカ箔を得た後、該レプリカ箔における前記キャリア箔対向面に、電解によって少量の前記金属を析出させて該キャリア箔対向面の表面凹凸形状を整える請求の範囲第6項記載の非水電解液二次電池用負極集電体の製造方法。The non-aqueous solution according to claim 6, wherein after obtaining the replica foil, a small amount of the metal is deposited by electrolysis on the carrier foil facing surface of the replica foil to adjust the surface irregularity shape of the carrier foil facing surface. A method for producing a negative electrode current collector for an electrolyte secondary battery. 前記レプリカ箔を得た後、該レプリカ箔における前記キャリア箔対向面に剥離処理を施し、該剥離処理面上に電解によって前記金属を析出させ、析出した該金属を該レプリカ箔から剥離して第2レプリカ箔を得る請求の範囲第6項記載の非水電解液二次電池用負極集電体の製造方法。After obtaining the replica foil, the surface of the replica foil facing the carrier foil is stripped, the metal is deposited on the stripped surface by electrolysis, and the deposited metal is stripped from the replica foil. The method for producing a negative electrode current collector for a nonaqueous electrolyte secondary battery according to claim 6, wherein a two-replica foil is obtained. 非水電解液二次電池の集電体となり得る金属の箔からなる集電体の両面又は片面に、負極活物質として、十分な充放電の可能な金属又は合金が担持されている非水電解液二次電池用負極において、
前記箔はその各面の粗度が10点平均表面粗さRzで表して3〜10μmであり、単位面積当たりの重量が40〜320g/mであることを特徴とする非水電解液二次電池用負極。
Nonaqueous electrolysis in which a sufficiently chargeable / dischargeable metal or alloy is supported as a negative electrode active material on both sides or one side of a current collector made of a metal foil that can be a current collector of a nonaqueous electrolyte secondary battery In the negative electrode for a liquid secondary battery,
The foil has a surface roughness of 10 to 10 μm and an average surface roughness Rz of 3 to 10 μm, and a weight per unit area of 40 to 320 g / m 2. Negative electrode for secondary battery.
前記負極活物質が、スズ、アルミニウム若しくはゲルマニウム又はそれらの金属の合金からなる請求の範囲第9項記載の非水電解液二次電池用負極。The negative electrode for a non-aqueous electrolyte secondary battery according to claim 9, wherein the negative electrode active material is made of tin, aluminum, germanium, or an alloy of these metals. 前記金属又は合金が、銅又はその合金からなる請求の範囲第9項記載の非水電解液二次電池用負極。The negative electrode for a nonaqueous electrolyte secondary battery according to claim 9, wherein the metal or alloy is made of copper or an alloy thereof. 前記金属又は合金が、鉄、コバルト、ニッケル、亜鉛若しくは銀又はそれらの金属の合金からなる請求の範囲第9項記載の非水電解液二次電池用負極。The negative electrode for a non-aqueous electrolyte secondary battery according to claim 9, wherein the metal or alloy comprises iron, cobalt, nickel, zinc, silver, or an alloy of these metals. 請求の範囲第9項記載の非水電解液二次電池用負極を備えてなることを特徴とする非水電解液二次電池。A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to claim 9.
JP2004555039A 2002-11-27 2003-11-25 Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same Pending JPWO2004049476A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002344612 2002-11-27
JP2002344612 2002-11-27
PCT/JP2003/015043 WO2004049476A1 (en) 2002-11-27 2003-11-25 Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same

Publications (1)

Publication Number Publication Date
JPWO2004049476A1 true JPWO2004049476A1 (en) 2006-03-30

Family

ID=32375961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004555039A Pending JPWO2004049476A1 (en) 2002-11-27 2003-11-25 Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2004049476A1 (en)
AU (1) AU2003302288A1 (en)
WO (1) WO2004049476A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876221B1 (en) * 2004-10-06 2006-12-22 Batscap Sa BATTERY MODULE COMPRISING AN ENERGY STORAGE ELEMENT WHOSE CONTACT IS EFFECTED BY CLAMPING LAYERS BETWEEN THEM
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing negative electrode for lithium secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
JP5043338B2 (en) 2006-01-19 2012-10-10 パナソニック株式会社 Lithium secondary battery
JP4470917B2 (en) 2006-06-29 2010-06-02 ソニー株式会社 Electrode current collector, battery electrode and secondary battery
JP5090028B2 (en) * 2007-03-16 2012-12-05 福田金属箔粉工業株式会社 Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP2009231072A (en) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP5546957B2 (en) * 2010-06-09 2014-07-09 古河電池株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101606251B1 (en) * 2011-06-28 2016-03-24 후루카와 덴키 고교 가부시키가이샤 Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
KR20150077943A (en) * 2013-12-30 2015-07-08 일진머티리얼즈 주식회사 Copper foil, electric component and battery comprising the foil
KR101695236B1 (en) * 2013-12-30 2017-01-11 일진머티리얼즈 주식회사 Copper foil, electric component and battery comprising the foil
KR102669501B1 (en) * 2016-08-23 2024-05-24 에스케이넥실리스 주식회사 Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
FI130542B (en) * 2020-02-25 2023-11-08 Elcoflex Oy Coated, pressed battery and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JP4632272B2 (en) * 2000-01-06 2011-02-16 日立マクセル株式会社 Lithium secondary battery and electrolytic copper foil
JP2002157996A (en) * 2000-11-20 2002-05-31 Sony Corp Negative electrode and battery using it
JP2002280073A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
JP2002313319A (en) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery

Also Published As

Publication number Publication date
WO2004049476A1 (en) 2004-06-10
AU2003302288A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
JP5417458B2 (en) Copper foil for secondary battery negative electrode current collector
JP3644542B1 (en) Anode current collector for non-aqueous electrolyte secondary battery
KR101606251B1 (en) Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
JP5090028B2 (en) Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP3429319B2 (en) Battery case and surface treated steel sheet for battery case
JP6486392B2 (en) Electrolytic copper foil, electrode including the same, secondary battery including the same, and manufacturing method thereof
JP5598884B2 (en) Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
JPWO2004049476A1 (en) Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
KR20170018342A (en) Metal foil for current collector, current collector, and method for manufacturing metal foil for current collector
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
JP4630072B2 (en) Copper foil for lithium secondary battery electrode, method for producing the copper foil, electrode for lithium secondary battery using the copper foil, and lithium secondary battery
WO2020204018A1 (en) Surface-treated plate for alkaline secondary battery, and method for manufacturing same
JP4948654B2 (en) Copper foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
WO2018180088A1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2011225987A (en) Copper (alloy) foil for negative electrode collector of lithium ion secondary battery and method for producing the same, and negative electrode of lithium ion secondary battery and method for producing the negative electrode
JP3678347B2 (en) Battery case and surface-treated steel sheet for battery case
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
WO2022014668A1 (en) Electrolytic iron foil
WO2005057693A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery