FI130542B - Coated, pressed battery and method for producing the same - Google Patents
Coated, pressed battery and method for producing the same Download PDFInfo
- Publication number
- FI130542B FI130542B FI20205192A FI20205192A FI130542B FI 130542 B FI130542 B FI 130542B FI 20205192 A FI20205192 A FI 20205192A FI 20205192 A FI20205192 A FI 20205192A FI 130542 B FI130542 B FI 130542B
- Authority
- FI
- Finland
- Prior art keywords
- cell
- electrochemical cell
- layer
- electrolyte
- printed
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011701 zinc Substances 0.000 claims abstract description 31
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims abstract description 17
- 238000000576 coating method Methods 0.000 claims abstract description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052709 silver Inorganic materials 0.000 claims abstract description 15
- 239000004332 silver Substances 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 238000003825 pressing Methods 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 65
- 239000010949 copper Substances 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 31
- 229910052802 copper Inorganic materials 0.000 claims description 31
- 239000003792 electrolyte Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 11
- 229910001369 Brass Inorganic materials 0.000 claims description 9
- 239000010951 brass Substances 0.000 claims description 9
- 239000010408 film Substances 0.000 claims description 9
- 230000009975 flexible effect Effects 0.000 claims description 6
- 239000011104 metalized film Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 239000002985 plastic film Substances 0.000 claims description 3
- 229920006255 plastic film Polymers 0.000 claims description 3
- 239000007784 solid electrolyte Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 abstract description 6
- 238000009713 electroplating Methods 0.000 abstract 1
- 238000010309 melting process Methods 0.000 abstract 1
- 235000011837 pasties Nutrition 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 33
- 238000000034 method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 11
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 239000012943 hotmelt Substances 0.000 description 5
- 229910001923 silver oxide Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 229910007568 Zn—Ag Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000015927 pasta Nutrition 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- WJZHMLNIAZSFDO-UHFFFAOYSA-N manganese zinc Chemical compound [Mn].[Zn] WJZHMLNIAZSFDO-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- OTCVAHKKMMUFAY-UHFFFAOYSA-N oxosilver Chemical compound [Ag]=O OTCVAHKKMMUFAY-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0436—Small-sized flat cells or batteries for portable equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0468—Compression means for stacks of electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/32—Silver accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0407—Methods of deposition of the material by coating on an electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0414—Methods of deposition of the material by screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0442—Anodisation, Oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
- H01M4/12—Processes of manufacture of consumable metal or alloy electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
- H01M4/28—Precipitating active material on the carrier
- H01M4/29—Precipitating active material on the carrier by electrochemical methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/045—Cells with aqueous electrolyte characterised by aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/44—Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0014—Alkaline electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Esillä olevassa keksinnössä esitellään painettu patteri (10, 20, 30, 40). Patterissa ainakin toinen elektrodi valmistetaan elektrolyyttisesti pinnoittamalla (14, 27, 33). Toinen elektrodi voidaan valmistaa pastamaisesta materiaalista (12, 23, 36) painamalla. Pinnoitemateriaali (14, 27, 33) voi olla sinkkiä anodissa, ja katodin puolella virrankeräin voi koostua hiilestä (22) ja/tai hopeasta (21). Kuumasulatusprosessilla voidaan kiinnittää muovi- tai alumiinikalvo (42) rakenteen päälle hermeettiseksi suojaksi. Keksinnön periaatteella voidaan valmistaa myös UHF-tägi, jossa pinnoitettu elektrodi toimii RF-säteilijänä.The present invention presents a printed radiator (10, 20, 30, 40). In the battery, at least one electrode is produced by electrolytic plating (14, 27, 33). The second electrode can be made from a pasty material (12, 23, 36) by pressing. The coating material (14, 27, 33) may be zinc on the anode, and on the cathode side the current collector may consist of carbon (22) and/or silver (21). A plastic or aluminum film (42) can be fixed on top of the structure as a hermetic protection with the hot melting process. Using the principle of the invention, a UHF tag can also be manufactured, where the coated electrode acts as an RF emitter.
Description
PINNOITETTU, PAINETTU PATTERI JA SEN VALMISTUSMENETELMÄCOATED, PRINTED COOLER AND ITS MANUFACTURING METHOD
Tekniikan alaEngineering
Keksintö liittyy painettaviin sähköisiin rakenteisiin, ja etenkin painettaviin sähköä va- rastoiviin rakenteisiin eli painettuihin akkuihin tai pattereihin, joilla on lisäksi mahdol- — lisesti jousto-ominaisuuksia.The invention is related to printable electrical structures, and especially to printable electricity-storing structures, i.e. printed batteries or batteries, which also have possibly flexible properties.
Keksinnön taustaBackground of the invention
Nykyisissä painettavasti valmistettavissa akku- eli ts. patterirakenteissa on ollut mo- nia rakenteellisia, valmistusteknisiä ja ominaisuuksiin liittyviä ongelmia, ja samoin kustannuksiin liittyviä haasteita. Näitä käsitellään seuraavassa, yleisen rakenneku- — vauksen ohella.There have been many structural, manufacturing technical and property-related problems in the current printable battery, i.e. battery structures, as well as challenges related to costs. These are discussed below, along with a general structural description.
Painettu patteri koostuu yleensä anodipastasta ja katodipastasta sekä elektrolyy- tistä, joka kuljettaa ioneja elektrodien välillä. Näiden lisäksi rakenteessa voi olla mu- kana virrankeräimet, ellei elektrodi itse toimi virrankeräimenä hyvän johtavuutensa vuoksi. Kaupallisissa pattereissa on yleensä joko metalli- tai muovikuori, joka sitoo — materiaalit paketiksi ja tekee rakenteen ilmatiiviiksi.A printed battery usually consists of an anode paste and a cathode paste and an electrolyte that transports ions between the electrodes. In addition to these, the structure can include current collectors, unless the electrode itself functions as a current collector due to its good conductivity. Commercial radiators usually have either a metal or plastic shell, which binds the materials into a package and makes the structure airtight.
Painettu rakenne voi olla koplanaarinen (engl. coplanar; samassa tasossa oleva) tai ns. stäkki (engl. stack; pinomainen, pinottu tai kerrosmainen). Kun pyritään ohueen rakenteeseen, on koplanaarinen parempi, mutta se käyttää suuremman pinta-alan — kuin stäkki. Parempi kapasiteetti ja pienempi sisäinen vastus saadaan stäkkiraken- teella, mutta paksut anodi- ja katodikerrokset vaikeuttavat valmistusta. Suurin ra- kenteellinen ongelma on sekä sisäinen että kerrosten välinen adheesio (eli tarttu- vuus) ja toisaalta kerrosten murtuminen. Tavoitteena on saada aikaan ohut ja tai-The printed structure can be coplanar or so-called stack (eng. stack; stacked, stacked or layered). When aiming for a thin structure, coplanar is better, but it uses a larger surface area — than a stack. Better capacity and lower internal resistance can be obtained with a stack structure, but the thick anode and cathode layers make manufacturing difficult. The biggest structural problem is both internal and inter-layer adhesion (i.e. stickiness) and, on the other hand, layer breakage. The goal is to achieve thin and or-
N puisa rakenne, jonka kapasiteetti on mahdollisimman suuri. Edellisistä seikoista joh-N wooden structure with the largest possible capacity. From the previous points,
N 25 — tuen painettujen rakenteiden kapasiteetti on yleensä murto-osa teoreettisesta ts. <Q laskennallisesta kapasiteetista.N 25 — the capacity of the printed structures of the support is usually a fraction of the theoretical i.e. <Q calculated capacity.
NOF
E Painettavissa pastoissa käytetään yleisesti sideaineita, jotka pitävät pastan ka-E Printable pastas generally use binders that keep the pasta
N sassa, mutta samalla heikentävät kapasiteettia. Tyypillinen anodipasta sisältää 50 2 30 —85% sinkkipartikkeleita, jotka sidotaan esim. CMC:llä (ts. karboksimetyyliselluloo-N in sass, but at the same time they weaken the capacity. A typical anode paste contains 50 2 30 —85% zinc particles, which are bound with e.g. CMC (i.e. carboxymethyl cellulose
S salla) toisiinsa. Koska painetussa patterissa ei ole mahdollista sitoa rakennetta ul-S salla) to each other. Since in a printed radiator it is not possible to bind the structure ul-
N koisilla tavoilla, tulee sideaineen olla riittävän hyvä myös seuraavien kerrosten eli elektrolyytin ja katodipastan painamista varten. Geelimäisen elektrolyytin käyttö li- sää valmistusteknisiä ongelmia erityisesti stäkkirakenteessa. Kiinteä elektrolyytti on mekaanisesti kestävämpi ratkaisu, mutta sen ongelmana on heikko ionijohtavuus, mikä lisää sisäistä resistanssia ja rajoittaa kapasiteettia.In the same way, the binder must also be good enough for printing the following layers, i.e. electrolyte and cathode paste. The use of a gel-like electrolyte increases manufacturing technical problems, especially in the stack structure. A solid electrolyte is a mechanically more durable solution, but its problem is poor ion conductivity, which increases the internal resistance and limits the capacity.
Tunnetussa tekniikassa on esitelty julkaisu EP 1655794 (”Chen 1”) marraskuulta 2004. Chen 1 kuvaa stack-tyyppistä piirilevyrakennetta, jossa patenttivaatimukset 7—12 käsittelevät sekundääristä patteria. Rakenne käsittää molemmat elektrodit substraatti & metallikalvo -tyyppisinä rakenteina. Elektrodikerrosten välissä on piiri- levykerros laminoituna kerroksena. Tuplaelektrodirakenne ja elektrolyytti ovat suo- jakuoren sisällä. Substraatti voi olla perinteistä PCB-materiaalia, mutta se voi olla — myös joustavaa, rullattavissa olevaa materiaalia. Anodi/katodimetalleina käytetään kuparia ja alumiinia. Piirilevykerros voi olla ns. FPC-piiriä eli joustavaa piirilevyä.In the prior art, publication EP 1655794 ("Chen 1") from November 2004 is presented. Chen 1 describes a stack-type printed circuit board structure, in which patent claims 7-12 deal with a secondary battery. The structure includes both electrodes as substrate & metal film type structures. Between the electrode layers is a circuit board layer as a laminated layer. The double electrode structure and the electrolyte are inside the protective shell. The substrate can be a traditional PCB material, but it can be — also a flexible, rollable material. Copper and aluminum are used as anode/cathode metals. The circuit board layer can be so-called FPC circuit, i.e. flexible circuit board.
Chen 1:n esimerkissä tekstin lopussa anodi ja katodi mainitaan molemmat pasta- tyyppisinä materiaaleina.In Chen 1's example at the end of the text, the anode and cathode are both mentioned as paste-type materials.
Toisessa julkaisussa US 2016/0308173 (”Neudecker”) mainitaan kpl:ssa [0051], — että katodi voi olla asetettu substraatille esim. slurry coating-periaatteella, joka on yksi ”non-vapor phase deposition method”:eista (tapoja listattu lukuisia). Kpl:tIn another publication US 2016/0308173 ("Neudecker"), it is mentioned in section [0051], — that the cathode can be placed on the substrate using, for example, the slurry coating principle, which is one of the "non-vapor phase deposition methods" (many ways listed ). Pcs
[0052]-[0057] myös kuvaavat katodipastaan liittyviä asioita. Anodi puolestaan kpl:sta [0071] lähtien mainitaan tehtävän esim. sputteroinnilla tai CVD-menetelmällä (ts. kemiallinen kaasufaasipinnoitus; engl. Chemical Vapour Deposition). Jousta- — vuus mainitaan kpl:ssa [0088] kahdessa kohtaa. Neudeckerin ongelmana on, että se toteutetaan ohutkalvoilla, joilla ei saada riittävää kapasiteettia ja tähän liittyvät valmistusprosessit ovat kalliita. Lisäksi Neudecker käyttää höyrystettyä elektrolyyt- tiä, jossa höyrystäminen on kallis tapa lisätä materiaalia.[0052]-[0057] also describe matters related to cathode paste. The anode, on the other hand, starting from section [0071] is mentioned to be done by e.g. sputtering or the CVD method (i.e. chemical vapor deposition; English: Chemical Vapor Deposition). Flexibility is mentioned in section [0088] in two places. Neudecker's problem is that it is implemented with thin films that do not have sufficient capacity and the related manufacturing processes are expensive. In addition, Neudecker uses vaporized electrolyte, where vaporization is an expensive way to add material.
Tunnetun tekniikan painettuihin pattereihin liittyy siis monia merkittäviä ongelmia, — jotka liittyvät sekä valmistustekniikkaan, kustannuksiin että tuotteistamiseen, jaThe printed radiators of the known technology are therefore associated with many significant problems, — related to both manufacturing technology, costs and productization, and
N myös tuotteiden haluttuihin ominaisuuksiin.N also to the desired properties of the products.
NOF
S YhteenvetoS Summary
LOLO
- Esillä olevassa keksinnössä on ratkottu mainittuja ongelmia esittelemällä uuden- = tyyppinen painettu patterirakenne. > 30 Toisin sanoen, esillä olevassa keksinnössä esitellään painettu patteri, eli ts. sähkö-- In the present invention, the mentioned problems have been solved by introducing a new type of printed radiator structure. > 30 In other words, the present invention presents a printed battery, i.e. an electric
S kemiallinen kenno. Kennon tunnusmerkkinä on se, että ainakin yksi kennon elekt-S chemical cell. The hallmark of the cell is that at least one of the cell's electrical
N rodeista on valmistettu pinnoittamalla elektrolyyttisesti metallia johtavan kerroksen päälle, jossa kenno on valmistettu joustavalle alustalle.N rods are made by electrolytically plating metal on top of a conductive layer, where the cell is made on a flexible substrate.
Esillä olevan keksinnön mukaisen sähkökemiallisen kennon eräässä sovelluksessa kennon rakenne on koplanaarinen.In one application of the electrochemical cell according to the present invention, the structure of the cell is coplanar.
Keksinnön eräässä sovelluksessa kennon rakenne on kerrosmainen.In one application of the invention, the structure of the cell is layered.
Keksinnön eräässä sovelluksessa elektrolyytti on painettu tai dispensoitu pinnoite- — tun kerroksen päälle valmistetun huokoisen separaattorikerroksen päälle.In one application of the invention, the electrolyte is printed or dispensed on top of the porous separator layer produced on top of the coated layer.
Keksinnön eräässä sovelluksessa kenno on suojattu metalloidulla kalvolla tai PET- muovikalvolla siten, että kalvo kiinnitetään liimalla alimpaan johtavaan kerrokseen.In one application of the invention, the cell is protected with a metallized film or a PET plastic film in such a way that the film is attached with glue to the lowest conductive layer.
Keksinnön eräässä sovelluksessa metalloitu kalvo on alumiinia.In one application of the invention, the metallized film is aluminum.
Keksinnön eräässä sovelluksessa mainittu alin johtava kerros on kuparia. —Keksinnön eräässä sovelluksessa elektrolyyttisesti valmistettu pinnoite on sinkkiä.In one application of the invention, the mentioned lowest conducting layer is copper. —In one application of the invention, the electrolytically produced coating is zinc.
Keksinnön eräässä sovelluksessa johtavan kerroksen päälle muodostetaan mes- sinkikerros ennen elektrolyyttistä pinnoittamista metallilla.In one application of the invention, a brass layer is formed on top of the conductive layer before electrolytic coating with the metal.
Keksinnön eräässä sovelluksessa toinen kennon elektrodeista muodostuu pasta- maisesta levitettävästä materiaalista. — Keksinnön eräässä sovelluksessa elektrolyytti valmistetaan painamalla tai dispen- soimalla, ja elektrolyytti on joko kiinteä elektrolyytti tai halutun aineen vesiliuos.In one application of the invention, one of the electrodes of the cell consists of a paste-like spreadable material. — In one application of the invention, the electrolyte is produced by pressing or dispensing, and the electrolyte is either a solid electrolyte or an aqueous solution of the desired substance.
Keksinnön eräässä sovelluksessa elektrolyytti on kaliumhydroksidin, KOH, vesi- liuos.In one application of the invention, the electrolyte is an aqueous solution of potassium hydroxide, KOH.
Keksinnön eräässä sovelluksessa koplanaarisessa rakenteessa painetun elektro-In one application of the invention, the printed electro-
O CL . . oo s NN oO C L . . yes s NN o
N 20 — lyytin päälle tai kerrosmaisessa rakenteessa katodin virrankeräimen päälle on sijoi- & tettu dielektrinen suojaava kerros. <QN 20 — a dielectric protective layer is placed on top of the lyte or on top of the current collector of the cathode in a layered structure. <Q
O Keksinnön eräässä sovelluksessa pinnoitettu elektrodi on muotoiltu siten, että seO In one application of the invention, the coated electrode is shaped so that it
I toimii radiotaajuisena säteilijänä. =I works as a radio frequency emitter. =
N Keksinnön eräässä sovelluksessa kennon seed-layerin materiaali on RA-kuparia o 25 (Rolled Annealed copper).N In one application of the invention, the material of the seed layer of the cell is RA copper o 25 (Rolled Annealed copper).
OO
N Keksinnön eräässä sovelluksessa ainakin yksi kennon elektrodeista on seos, yhdis- telmä tai laminoitu rakenne ensimmäisen metallin elektrolyyttisesti valmistetusta pinnoitteesta ja ensimmäisen metallin painamalla valmistettavasta, pastamaisesta oksidista, ja kenno on järjestetty valmistuksen yhteydessä ladattavaksi olennaisesti täyteen kapasiteettiin.N In one application of the invention, at least one of the electrodes of the cell is a mixture, combination or laminated structure of an electrolytically produced coating of the first metal and a paste-like oxide of the first metal produced by pressing, and the cell is arranged to be charged to substantially full capacity during manufacture.
Keksinnön eräässä sovelluksessa katodin virrankeräin voidaan valmistaa hopeasta tai hiilestä, tai päällekkäisestä hopeakerroksesta ja hiilikerroksesta.In one application of the invention, the current collector of the cathode can be made of silver or carbon, or of an overlapping layer of silver and a layer of carbon.
Piirustusten lyhyt kuvausA brief description of the drawings
Kuvio 1 esittää keksinnön erästä esimerkkiä perusrakenteen leikkauskuvana ilman suojakalvoa,Figure 1 shows an example of the invention as a section view of the basic structure without a protective film,
Kuvio 2 esittää esimerkkiä koplanaarisen painetun rakenteen kerroksista, — Kuvio 3 esittää esimerkkiä alkalisen sinkki-hopea-kennon (Zn-Ag) rakenteesta ku- parin (Cu) päällä, pinotyyppisenä eli ns. stäkkirakenteena,Figure 2 shows an example of the layers of a coplanar printed structure, — Figure 3 shows an example of the structure of an alkaline zinc-silver cell (Zn-Ag) on copper (Cu), in stack type, i.e. so-called as a stack structure,
Kuvio 4 esittää esimerkkiä painetun patterin hermeettisestä suojauksesta ns. hot- melt-prosessin avulla jaFigure 4 shows an example of the so-called hermetic protection of a printed radiator. using the hot-melt process and
Kuviot 5A-K esittävät esimerkkirakenteita painetusta patterista, jossa pinnoitettu — elektrodi toimii RF-säteilijänä.Figures 5A-K show example structures of a printed battery where a coated electrode acts as an RF emitter.
Keksinnön yksityiskohtainen selostusDetailed description of the invention
Esillä olevassa keksinnössä tuodaan esille edullisempi ratkaisu painetulle patterille, ts. painamalla valmistetulle akulle, patterille tai muulle vastaavalle sähköenergiaa varastoivalle laitteelle. Myöhemmin puhutaan myös kennoista tai akkukennoista, > 20 joka tarkoittaa myös em. laitteita.The present invention presents a more affordable solution for a printed battery, i.e. for a battery, battery or other similar electrical energy storage device manufactured by pressing. Later we also talk about cells or battery cells, > 20 which also means the aforementioned devices.
OO
N Koska patterissa optimaalisin anodimateriaali on puhdasta metallia, on edullista <Q tehdä anodi pinnoittamalla puhdasta metallia johtavan kerroksen päälle. KeksinnönN Since the most optimal anode material in a battery is pure metal, it is advantageous <Q to make the anode by coating pure metal on top of the conductive layer. Invention
N eräässä sovelluksessa näin tehdäänkin. Pinnoitus voidaan tehdä valitulla höyrys-This is what is done in one application. The coating can be done with the selected vapor
E tysmenetelmällä usean eri höyrystysmenetelmän joukosta, kuten esimerkiksiE tation method from among several different vaporization methods, such as for example
N 25 ALD:llä (engl. atomic layer deposition) tai vaihtoehtoisesti sputteroimalla (engl. sput- - tering), mutta elektrolyyttinen pinnoitus on edullisempi ja yleisesti käytetty mene-N 25 with ALD (eng. Atomic layer deposition) or alternatively by sputtering (eng. sputtering), but electrolytic coating is more affordable and a commonly used method
Q telmä teollisuudessa. Se voidaan toteuttaa myös rullaprosessina normaalissa atmo-Q statement in industry. It can also be implemented as a roller process in normal atmo-
OO
N sfäärissä ja sillä saadaan helposti tuotettua anodin vaatima metallikerros johtavan ns. seed-layerin (ns. aloituskerros) päälle lisäämällä prosessiin ns. tankkeja tarvit- — tavamäärä. Edullisin seed-layerin materiaali on kupari silloin, kun kuparia käytetään myös muihin osiin, kuten virtapiirin ja antennin valmistukseen. Seed-layer voi olla myös grafiitti- tai muu johtava polymeeripasta tai johtava muovi edellyttäen, että ma- teriaalin johtavuus riittää elektrolyysin käynnistymiseen. Seed-layer voi olla myös höyrystämällä tai sputteroimalla valmistettu. 5N in the sphere and with it, the metal layer required by the anode can be easily produced, the so-called conductive on top of the seed-layer (the so-called starting layer) by adding the so-called required number of tanks. The most affordable seed-layer material is copper when copper is also used for other parts, such as the production of the circuit and antenna. The seed-layer can also be a graphite or other conductive polymer paste or a conductive plastic, provided that the conductivity of the material is sufficient for electrolysis to start. The seed layer can also be produced by vaporization or sputtering. 5
Stäkkirakenteessa pinnoitetun anodin päälle lisätään joko laminoimalla tai paina- malla huokoinen separaattorikalvo (ts. separaattori tai separaattorikerros), jonka tar- koitus on sitoa elektrolyytti ja estää metallista kasvavien dendriittien muodostumi- nen. Stäkkirakenteessa katodipasta painetaan edelleen separaattorikalvon päälle.A porous separator film (i.e. separator or separator layer) is added on top of the coated anode in the stack structure, either by lamination or by pressing, the purpose of which is to bind the electrolyte and prevent the formation of dendrites growing from the metal. In the stack structure, the cathode paste is still pressed onto the separator membrane.
Pinnoitetun anodin käyttö on myös mahdollista koplanaarisessa rakenteessa, ja täl- löin katodi painetaan anodin rinnalle ja elektrolyytti näiden molempien päälle.The use of a coated anode is also possible in a coplanar structure, and in this case the cathode is pressed next to the anode and the electrolyte on top of both of them.
Kuviossa 1 on esitetty yksi mahdollinen sinkkimangaanipatterin (Zn-Mn) 10 ra- kenne koplanaarisena. Patterin 10 (eli kennon) rakenteessa alimmaisena näkyy ho- — peasta ja hiilestä tässä esimerkissä valmistettava virrankeräin 11 (engl. current col- lector). Tämä virrankeräin voi olla siis muodostettu siten, että alempana on hopea- kerros (Ag), jonka päälle on sijoitettu hiilestä muodostettu virrankeräinkerros (C).Figure 1 shows one possible coplanar structure of the zinc-manganese battery (Zn-Mn) 10. In the structure of the battery 10 (i.e. the cell), the current collector 11 (engl. current collector) made of silver and carbon in this example can be seen as the lowest. This current collector can therefore be formed in such a way that there is a silver layer (Ag) below, on top of which a current collector layer (C) made of carbon is placed.
Positiivinen akkunapa 15 on tässä esimerkissä ensimmäisellä kuparijohtimella 17 kytketty virrankeräimeen 11. Virrankeräimen 11 päällä on katodipasta 12, joka ei — siis ulotu koko rakenteen leveydelle, kuten ei myöskään virrankeräin 11. Koska ra- kenne on koplanaarinen, osien 11 ja 12 vieressä suunnilleen samassa tasossa on katodipastasta katsoen erilliseksi sijoitettu sinkkilevy 14, joka toimii anodina. Zn- anodin 14 alapuolella on kuparinen virrankeräin 19. Eräässä sovelluksessa voidaan ajatella, että Cu-virrankeräin 19 on ikään kuin substraatti, ja anodin 14 muodostaa —tämän substraatin päälle muodostettu pinnoite, joka voi olla sinkkiä. Näin muodos- tuu Zn-anodi 14 Cu-virrankeräimen 19 päälle, jossa anodi 14 ei kuitenkaan fyysisestiIn this example, the positive battery pole 15 is connected to the current collector 11 with the first copper conductor 17. On top of the current collector 11 is a cathode paste 12, which does not — therefore, extend over the entire width of the structure, nor does the current collector 11. Since the structure is coplanar, next to the parts 11 and 12 in approximately the same plane is a zinc plate 14 placed separately from the cathode paste, which acts as an anode. Below the Zn anode 14 is a copper current collector 19. In one application, it can be thought that the Cu current collector 19 is like a substrate, and the anode 14 is formed by a coating formed on top of this substrate, which can be zinc. In this way, the Zn anode 14 is formed on top of the Cu current collector 19, where the anode 14, however, does not physically
S ole kontaktissa osiin 11 tai 12. Virrankeräimen 19 kytkentäjohtimena negatiiviseenS not in contact with parts 11 or 12. Current collector 19 as the connection wire to the negative
N akkunapaan 16 toimii toinen kuparijohdin 18. Lopuksi katodipastan 12 ja sink-Another copper conductor 18 is connected to the battery terminal 16. Finally, the cathode paste 12 and zinc
N kianodin 14 päälle on sijoitettu tasomainen koko rakenteen leveyden suuruinen 0 30 — elektrolyyttikerros 13. Elektrolyyttikerros 13 on kontaktissa sekä katodiin 12 ettäOn top of the N cyanode 14 is placed a planar electrolyte layer 13 with the width of the entire structure 0 30. The electrolyte layer 13 is in contact with both the cathode 12 and
I anodiin 14. Koska rakenne on koplanaarinen, sen paksuus voidaan pitää suhteelli- - sen ohuena. & 3 Mahdollisia sinkkipinnoitteen 14 valmistustapoja Cu-virrankeräimen 19 päälle on ku-I to anode 14. Since the structure is coplanar, its thickness can be considered relatively thin. & 3 Possible manufacturing methods of the zinc coating 14 on the Cu current collector 19 are shown in
S 35 — vattu yksityiskohtaisemmin myöhemmin.S 35 — covered in more detail later.
Kuviossa 2 on kuvattuna eräs keksinnön mukainen koplanaarinen esimerkkira- kenne 20 (eli kenno) kerrokset eriteltynä, ja nähtynä suoraan sivulta poikkileikkaus- kuvana. —Katodin virrankeräimen (kuviossa 2 vasemmalla) muodostavat kerrokset hopeaa 21 ja hiiltä 22, jossa hopeakerros on alempana. Hiilikerroksen 22 päälle voidaan sijoit- taa katodipasta 23. Vastaavan anodin puolen (kuviossa oikealla) muodostavat ku- parinen virrankeräin 26, jonka päällä on pinnoitteena sinkkikerros, jossa Zn siis muodostaa anodin 27. Katodipastan yläreuna voi olla samalla korkeudella kuin sink- — kisen anodin yläreuna, mutta näin ei tarvitse olla (kuten kuviossa). Näiden molem- pien osien 23, 27 päälle voidaan painaa elektrolyytti 24, jonka materiaalista ku- vaamme myöhemmin erilaisia esimerkkejä. Lopuksi painetun elektrolyytin 24 päälle sijoitetaan dielektrinen suojaava kerros 25. — Eräänä keksinnön vaihtoehtona on lisätä elektrolyytti 24 painamisen sijasta dispen- soimalla.Figure 2 shows a coplanar example structure 20 according to the invention (i.e. cell) with the layers separated and seen directly from the side as a cross-sectional view. —The current collector of the cathode (on the left in Figure 2) is formed by layers of silver 21 and carbon 22, where the silver layer is lower. A cathode paste 23 can be placed on top of the carbon layer 22. The side of the corresponding anode (on the right in the figure) is formed by a copper current collector 26, which is coated with a layer of zinc, where Zn therefore forms the anode 27. The top edge of the cathode paste can be at the same height as the top edge of the zinc anode. , but this does not have to be the case (as in the figure). Electrolyte 24 can be printed on both of these parts 23, 27, the material of which we will describe different examples of later. Finally, a dielectric protective layer 25 is placed on top of the printed electrolyte 24. — One alternative of the invention is to add the electrolyte 24 by dispensing instead of printing.
Kun patteri integroidaan piirilevyrakenteeseen, on edullista käyttää kuparijohdinta myös virrankeräimenä. Keksinnön eräässä sovelluksessa valitaankin kupari virran- — keräimen materiaaliksi. Alkalipatterissa kupari saattaa reagoida elektrolyytin kanssa ja lyhentää elinikää (alkaliparisto perustuu sinkin ja mangaanidioksidin, MnO>, väli- seen reaktioon). Sinkin avulla on mahdollista muodostaa messinkikerros (messinki on kuparin ja sinkin seos halutulla sekoitussuhteella) kuparin ja sinkin väliin, joka estää kuparin korroosion. Tällöin sinkin pinnoitus pitää tehdä kahdessa osassa, joi- den valissa sinkki muunnetaan messingiksi korkean lämmön tai muun suuritehoisen energian, kuten valosintrauksen (engl. fotonic sintering), plasma- tai koronakäsitte-When the radiator is integrated into the circuit board structure, it is advantageous to use a copper conductor also as a current collector. In one application of the invention, copper is selected as the current collector material. In an alkaline battery, copper may react with the electrolyte and shorten the lifespan (an alkaline battery is based on the reaction between zinc and manganese dioxide, MnO>). With the help of zinc, it is possible to form a layer of brass (brass is a mixture of copper and zinc with the desired mixing ratio) between copper and zinc, which prevents copper corrosion. In this case, the zinc coating must be done in two parts, in which the zinc is converted to brass using high heat or other high-power energy, such as photonic sintering, plasma or corona treatment.
S lyn avulla, keksinnön eräässä sovelluksessa.With the help of S ly, in one application of the invention.
OO
NOF
N Kuviossa 3 esitetään puolestaan esimerkki alkalisen Zn-Ag-kennon rakenteesta 0 30 — kuparin päällä, pinotyyppisenä eli ns. stäkkirakenteena. Rakenne kuvaa siis kennoaN Figure 3, on the other hand, shows an example of the structure of an alkaline Zn-Ag cell 0 30 — on copper, in stack type, i.e. so-called as a stack structure. The structure therefore describes a cell
I 30, nähtynä suoraan sivulta poikkileikkauskuvana. Anodiin liittyvä virrankeräin 31a = on alimpana vasemmalla, ja tämä toimii patterin miinuselektrodina. Tämän päälle & on sijoitettu messinkikerros 32a. Messingin 32a päälle voidaan pinnoittaa sinkkiäI 30, seen directly from the side as a cross-sectional view. The anode-related current collector 31a = is at the bottom left, and this acts as the battery's negative electrode. A brass layer 32a is placed on top of this &. Zinc can be coated on brass 32a
S tiivis kerros halutulla menetelmällä, eli näin syntyy pinnoitettu sinkkikerros 33, jokaS tight layer with the desired method, i.e. this is how a coated zinc layer 33 is created, which
S 35 — toimii anodina. Virrankeräimen (-) 31a, messinkikerroksen 32a ja sinkkikerroksen 33 ympärille valmistetaan separaattorikalvo 34, jonka tehtävä on erottaa anodi 33 ja katodi 36, mutta kuitenkin mahdollistaa varauskuljettajien kulku lävitseen. Tässä rakenteessa separaattorikalvo 34 on siis huokoinen ja kyllästetty elektrolyytillä, eli kaliumhydroksidilla (KOH). Varsinainen elektrolyytti (tässä esimerkissä siis kalium- hydroksidia) näkyy alueissa 35a ja 35b, eli elektrolyytti leviää näistä alueista kylläs- tämään alapuolellaan ja sivuillaan olevan separaattorikalvon 34 alueen. —Separaattorikalvon 34 päälle ja myös sivulle (ml. elektrolyyttialueet 35a—b) asetel- laan tämän jälkeen katodipasta 36. Katodin virrankeräin 37 puolestaan valmistetaan katodipastan 36 päälle ja myös sivulle. Katodin virrankeräin 37 on tässä esimerkissä hopeaa (Ag). Katodin virrankeräimen 37 jälkeen tulevat vielä messinkikerros 32b, ja virrankeräin 31b, jossa jälkimmäinen toimii patterin pluselektrodina. Katodin virran- — keräimen 37 päälle rakenteen päällimmäiseksi kerrokseksi voidaan sijoittaa vielä dielektrinen suojaava kerros 38.S 35 — acts as an anode. A separator film 34 is made around the current collector (-) 31a, the brass layer 32a and the zinc layer 33, the function of which is to separate the anode 33 and the cathode 36, but still allows charge carriers to pass through. In this structure, the separator membrane 34 is therefore porous and saturated with an electrolyte, i.e. potassium hydroxide (KOH). The actual electrolyte (potassium hydroxide in this example) is visible in areas 35a and 35b, i.e. the electrolyte spreads from these areas to saturate the area of the separator membrane 34 below and on the sides. —The cathode paste 36 is then placed on top of the separator membrane 34 and also on the side (including the electrolyte areas 35a-b). The cathode current collector 37 is silver (Ag) in this example. After the current collector 37 of the cathode comes the brass layer 32b, and the current collector 31b, where the latter acts as the positive electrode of the battery. A dielectric protective layer 38 can be placed on top of the current collector 37 of the cathode as the uppermost layer of the structure.
Alkalinen elektrolyytti 35a—b mahdollistaa siis kuvion 3 mukaisen alkalisen 2Zn-Ag- kennon eli -patterin.Alkaline electrolyte 35a-b thus enables the alkaline 2Zn-Ag cell or battery according to Figure 3.
On huomattavaa, että kuvion 3 rakenne ja materiaalivalinnat ovat vain eräs mahdol- linen esimerkki. Samoin mitat kuviossa ovat vain suuntaa antavia, ja monet muutkin mittasuhteet osien välillä ovat mahdollisia. — Seuraavaksi esitetään esimerkki painetun patterin hermeettisestä suojaamisesta kuumasulatusprosessin (engl. "hot-melt process”) avulla ja viittaamme kuvioon 4.It should be noted that the structure and material choices in Figure 3 are only one possible example. Similarly, the dimensions in the pattern are only indicative, and many other dimensions between the parts are possible. — Next, an example of the hermetic protection of a printed radiator using the hot-melt process is presented and we refer to Figure 4.
Kuvio 4 esittää siis suoraan ylhäältä päin sähkökemiallista kennoa 40. Käyttämällä alapuolista kuparikerrosta 41 hermeettisenä suojana ja lisäämällä patterin päällim- mäiseksi suojaavaksi kerrokseksi esim. muovi- tai alumiinikalvo 42, saadaan patte- — rista hermeettisesti suojattu. Muovi voi olla PET-muovia. Suojaus voidaan prässätä alustaan kuumasulatusliimalla 43 (eli engl. hot-melt adhesive) tai vastaavan tyyppi-Figure 4 therefore shows the electrochemical cell 40 directly from above. By using the lower copper layer 41 as a hermetic protection and adding e.g. a plastic or aluminum film 42 as the top protective layer of the radiator, the battery is hermetically protected. The plastic can be PET plastic. The protection can be pressed onto the substrate with hot-melt adhesive 43 or a similar type
S sellä materiaalilla kuvion 4 mukaisesti (pilkutetut alueet). Kuumasulatusalueet 43S with that material as shown in Figure 4 (dotted areas). Hot melting areas 43
N (ts. hot-melt-tyyppiset materiaalialueet) voidaan painaa rullaprosessissa ja PET/AI-N (i.e. hot-melt type material areas) can be printed in a roll process and PET/AI
N kalvo 42 voidaan laminoida kohdistettuna myös rullaprosessissa. Osa 44 on positii- 0 30 vinen elektrodi ”+” (esim. hiiltä; vinoviivoitettu alue), ja varsinaisesta kuparikerrok-N film 42 can be laminated aligned also in the roll process. Part 44 is the positive electrode "+" (e.g. carbon; diagonally hatched area), and from the actual copper layer
I sesta 41 erkaneva kuparinen alue voi toimia samalla negatiivisena elektrodina ”—”. a & Primäärikennossa anodi sisältää metallia ja katodi metallioksidia. Sekundääriken-The copper area separating from I 41 can act as a negative electrode at the same time "—". a & In a primary cell, the anode contains metal and the cathode metal oxide. Secondary
S nossa on mahdollista valmistaa myös katodi pinnoittamalla puhdasta metallia, jokaIt is also possible to make a cathode by coating pure metal, which
S 35 — latausprosessissa oksidoidaan. Tällöin anodin tulee olla johtavaa metallioksidia, esi- merkiksi ZnO + Zn tai ZnO + hiili (Sup-P). Latausprosessi voidaan tehdä ennen lo- pullista valmistusta ns. bulkkina, tai se voidaan tehdä valmiille kennolle. Pinnoitta- malla molemmat elektrodit, esimerkiksi katodi hopealla ja anodi sinkillä sekä lisäämällä anodille johtava ZnO-kerros, saadaan aikaan ladattava kenno eräässä keksinnön esimerkissä. Käyttämällä piirilevytekniikasta sinänsä tunnettuja väliaikai- sia maskeja on mahdollista pinnoittaa molemmat elektrodit samalle substraatille erikseen eri metalleilla. Edellä kuvatulla tavalla on mahdollista tehdä hybridikenno, joka on osittain primäärikenno, mutta jota voidaan myös ladata. Siinä voi olla pin- noitettu sinkki + painettu ZnO-pasta anodilla, ja hopea + hopeaoksidi katodilla. Kun kennoa ladataan, pelkistyy ZnO anodilla sinkiksi (Zn) samalla, kun hopea (Ag) oksi- doituu ensin monovalenttiseksi ja seuraavassa vaiheessa divalenttiseksi hopeaok- sidiksi (Ag20). Tällaisen hybridikennon etuna on elektrodien hyvä johtavuus ja pa- rempi mekaaninen lujuus kuin pelkästään painetuilla pastoilla valmistetuilla ken- noilla.S 35 — is oxidized in the charging process. In this case, the anode must be a conductive metal oxide, for example ZnO + Zn or ZnO + carbon (Sup-P). The charging process can be done before final manufacturing, so-called in bulk, or it can be done for a finished cell. By coating both electrodes, for example the cathode with silver and the anode with zinc, and by adding a conductive ZnO layer to the anode, a rechargeable cell is obtained in one example of the invention. By using temporary masks known per se from circuit board technology, it is possible to coat both electrodes on the same substrate separately with different metals. As described above, it is possible to make a hybrid cell, which is partly a primary cell, but which can also be charged. It can have coated zinc + printed ZnO paste on the anode, and silver + silver oxide on the cathode. When the cell is charged, ZnO is reduced to zinc (Zn) at the anode, while silver (Ag) is first oxidized to monovalent and in the next step to divalent silver oxide (Ag20). The advantage of such a hybrid cell is the good conductivity of the electrodes and better mechanical strength than with cells made only with printed pastes.
Kennolle on tunnusomaista se, että se on ladattavissa, mutta sillä on jo osittainen lataus (ts. se on jo osittain ladattu) valmistusprosessin ansiosta. Ratkaisu parantaa — kennon mekaanista lujuutta. Useimmat patterirakenteet ovat ns. katodirajoitteisia.A cell is characterized by the fact that it is rechargeable, but already has a partial charge (ie it is already partially charged) due to the manufacturing process. The solution improves — the mechanical strength of the cell. Most radiator structures are so-called cathode-limited.
Koska katodimateriaalit ovat yleensä puolijohtavia metallioksideja, on niiden johta- vuus heikompi kuin metallisten anodien. Katodipastaan on lisättävä johtavaa hiiltä ja usein myös elektrolyyttiä, jotta ionien liikkuvuus katodissa paranee. Painetussa katodissa on oltava myös sideainetta, jolla pasta saadaan kiinni virrankeräimeen —(koplanaarinen rakenne) tai separaattoriin (stäkkirakenne) ja sideaineen tarttuvuus em. pintoihin on patterin toiminnan kannalta oleellista. Erityisesti stäkkirakenteessa pinnoitetulla anodilla saavutetaan parempi mekaaninen lujuus verrattuna rakentee- seen, jossa molemmat elektrodit ovat pastoja. Jos rakenteeseen tehdään kuvion 4 mukaisesti kiinnityspisteitä separaattoriin, voidaan hot-melt-tyyppisessä proses- — sissa kiinnittää suojakalvo ko. alueisiin separaattorissa, mikä tekee rakenteen kes- tävämmäksi tässä keksinnön sovelluksessa. Tällä menetelmällä voidaan elektro-Since cathode materials are usually semiconducting metal oxides, their conductivity is weaker than that of metal anodes. Conductive carbon and often electrolyte must be added to the cathode paste in order to improve the mobility of ions in the cathode. The printed cathode must also contain a binding agent, with which the paste can be attached to the current collector (coplanar structure) or to the separator (stacked structure), and the adhesiveness of the binding agent to the aforementioned surfaces is essential for the operation of the battery. Especially in a stack structure, better mechanical strength is achieved with a coated anode compared to a structure where both electrodes are pastes. If fixing points for the separator are made in the structure according to Figure 4, a protective film can be attached in a hot-melt type process. to areas in the separator, which makes the structure more durable in this application of the invention. With this method, electro-
S lyytti ja katodipasta sitoa paremmin alustaan, mutta samalla menetetään kiinni-S lyte and cathode paste bond better to the substrate, but at the same time lose the
N tysalueiden verran tehollista pinta-alaa. Sama menetelmä toimii myös koplanaari-Effective surface area equivalent to N working areas. The same method also works for coplanar
N sessa rakenteessa. 0 30N in that structure. 0 30
I Keksinnön eräässä esimerkissä elektrodimateriaali voi olla myös sekoitus elektro- = lyyttisesti pinnoitetusta materiaalista ja painetusta materiaalista. Esimerkiksi pai- & nettu anodipasta voidaan vielä pinnoittaa sinkillä tai hopeaoksidi-katodi voidaan pin-I In one example of the invention, the electrode material can also be a mixture of electrolytically coated material and printed material. For example, the printed anode paste can still be coated with zinc, or the silver oxide cathode can be
S noittaa hopealla. Lopputuloksena voi olla kenno, jossa molemmat elektrodit ovatS bewitches with silver. The end result can be a cell with both electrodes
S 35 — puoliksi latautuneina. Tässä tapauksessa kenno ladataan täyteen ennen käyttöön- ottoa joko erillisessä rullaprosessissa tai valmiina kennona. Hopeaoksidikennon ta- pauksessa katodi voi olla myös sekoitus hopeaoksidia ja hopeapartikkeleita, ja anodi voi olla pinnoitettua sinkkiä ja ZnO-pastaa. Tällöin molempien elektrodien sisäinen johtavuus on hyvä, millä on positiivinen vaikutus patterin suorituskykyyn.S 35 — half loaded. In this case, the cell is fully charged before commissioning, either in a separate roll process or as a finished cell. In the case of a silver oxide cell, the cathode can also be a mixture of silver oxide and silver particles, and the anode can be coated zinc and ZnO paste. In this case, the internal conductivity of both electrodes is good, which has a positive effect on the performance of the battery.
Toimiakseen ideaalisesti on molempien elektrodien metalli/oksidisuhde oltava tasa- painossa.To work ideally, the metal/oxide ratio of both electrodes must be in balance.
Keksinnön eräässä sovelluksessa patterin pinnoitettu elektrodi on muotoiltu siten, että se toimii radiotaajuisena säteilijänä. Tässä esimerkissä kuvataan sitä, miten kyseessä olevalla tavalla voidaan valmistaa tehokkaasti esim. aktiivinen UHF-tägi (UHF = ultrakorkeat taajuudet). Muotoilemalla patteri radiaattorin (eli säteilijän) eh- doilla saavutetaan hyvä materiaalin käyttöaste. Koska elektrodien muoto ei vaikuta patterin kapasiteettiin, ainoastaan pinta-alalla on merkitystä, ja patteri voidaan muo- — toilla kuvioiden 5A-K esimerkkien mukaisesti. Esitetyt rakenteet ja mitat ovat aino- astaan eräitä mahdollisia esimerkkejä. Koska korkeat taajuudet kulkevat vain joh- teen pinnassa (engl. ns. skin effect), on pinnoitetun metallin johtavuus painettuun ja huonosti johtavaan katodimateriaaliin verrattuna merkittävästi suurempi. Jos pinnoi- tetun alueen ns. seed-layer on kuparia, tarvitaan vain muutaman mikrometrin ker- ros kuparia, jolloin pinnoitettu metalli, kuten esim. Zn, ei enää vaikuta säteilytehoon, koska sinkin johtavuus on n. 3,5 kertaa heikompi kuin kuparin. Jos seed-layer on heikommin johtava, tarvitaan sinkkiä 4-5 um:n paksuinen kerros UHF-taajuuksilla.In one application of the invention, the coated electrode of the battery is shaped in such a way that it functions as a radio frequency emitter. This example describes how to effectively manufacture, for example, an active UHF tag (UHF = ultra high frequencies) in the manner in question. By designing the radiator according to the conditions of a radiator (i.e. radiator), a good utilization rate of the material is achieved. Since the shape of the electrodes does not affect the capacity of the battery, only the surface area matters, and the battery can be shaped according to the examples in Figures 5A-K. The structures and dimensions shown are only some possible examples. Since high frequencies travel only on the surface of the conductor (so-called skin effect), the conductivity of the coated metal is significantly higher compared to the printed and poorly conductive cathode material. If the so-called the seed-layer is copper, only a layer of copper of a few micrometers is needed, in which case the coated metal, such as e.g. Zn, no longer affects the radiation power, because the conductivity of zinc is approx. 3.5 times weaker than that of copper. If the seed-layer is less conductive, a 4-5 um thick layer of zinc is needed at UHF frequencies.
Katodimateriaalin muut sähköiset ominaisuudet vaikuttavat kuitenkin radiaattorin suunnitteluun eikä niitä voida jättää huomiotta. Esim. mangaanioksidin vaimennus- — ominaisuudet kasvavat yli 1 GHz:n taajuuksilla. Markkinoilla olevat patteriavusteisetHowever, other electrical properties of the cathode material affect the design of the radiator and cannot be ignored. For example, the damping properties of manganese oxide increase at frequencies above 1 GHz. Battery assisted ones on the market
UHF-tägit perustuvat erilliseen radiaattoriin ja erilliseen patteriin, mikä aiheuttaa yli- määräisiä kustannuksia ja vaikeuttaa tuotantovolyymien skaalausta ja lisäävät kus- tannuksia. Suunnittelussa on huomioitava patterin purkautumisesta mahdollisesti johtuvat katodin muutokset, jotka voivat aiheuttaa säteilytehon vaimentumista ja li- — säksi täytyy huomioida patteriterminaalien vaikutus itse radiaattorin toimintaan.UHF tags are based on a separate radiator and a separate radiator, which causes excessive costs and makes it difficult to scale production volumes and increases costs. The design must take into account possible cathode changes due to the discharge of the battery, which can cause a reduction in radiation power, and in addition, the effect of the battery terminals on the operation of the radiator itself must be taken into account.
SS
Edullisin ratkaisu on käyttää seed-layerinä ns. RA-kuparia (engl. Rolled AnnealedThe most affordable solution is to use the so-called seed layer RA copper (Rolled Annealed
N copper), jolloin antennin teho on paras tägin taustapuolelta eikä pinnoituksessa syn-N copper), in which case the antenna's power is best on the back side of the tag and not in the coating syn-
LO tyvä karkea materiaalin pinta aiheuta ylimääräisiä häviöitä. Keksinnön eräässä so- - 30 — velluksessa valitaankin seed-layerin materiaaliksi RA-kupari. Tässä tapauksessa tä- = gin liima laminoidaan patterimateriaalien päälle ja tägi asennetaan tavallaan nurin-LO base rough material surface cause additional losses. In one embodiment of the invention, RA copper is selected as the material of the seed layer. In this case, the tag's glue is laminated on top of the radiator materials and the tag is installed upside down in a way
N päin. Kun liimakerros on riittävän paksu, voidaan kyseessä oleva tägi asentaa me-N facing. When the adhesive layer is thick enough, the tag in question can be installed with
LO tallipintaan.LO to the stable surface.
SS
N Esillä olevan keksinnön eri sovellusmuotojen etuja käsitellään seuraavaksi. Käyttä- — mällä pinnoitettua anodia, kuten esim. sinkkiä ja pastamaista (engl. slurry) katodia,N The advantages of the various application forms of the present invention are discussed next. — by using a coated anode, such as zinc and a slurry cathode,
saavutetaan seuraavia etuja. Ensinnäkin tehokkaan anodireaktion vuoksi anodin pinta-alaa voidaan pienentää ja katodin pinta-alaa voidaan kasvattaa vastaavalla määrällä. Toiseksi rakenne voidaan tehdä ohuemmaksi, mikä parantaa mekaanista kestävyyttä. Kolmanneksi rakenne on taipuisampi. Neljäntenä etuna pinnoitettuun — metalliin saadaan parempi adheesio (eli tarttuvuus) myös ns. hot-melt-prosessissa.the following benefits are achieved. First, due to the efficient anode reaction, the surface area of the anode can be reduced and the surface area of the cathode can be increased by a corresponding amount. Second, the structure can be made thinner, which improves mechanical strength. Thirdly, the structure is more flexible. As a fourth advantage, better adhesion (i.e. stickiness) to the coated metal is obtained also in the so-called in the hot-melt process.
Tärkeimmät lisäedut ovat rullalta rullalle -prosessin mahdollistuminen (engl. R2R; roll-to-roll), ohut rakenne, korkea kapasiteetti per pinta-ala, matala sisäinen vastus ja rakenteen taipuisuus ilman murtumisen riskiä. Pinnoitetun anodin adheesio on parempi kuin painetun, mikä lisää rakenteellista lujuutta ja mahdollistaa lähes 50 % ohuemmanrakenteen kuin painettu anodi. Mikäli prosessoinnissa tarvitaan korkeita lämpötiloja, voidaan pinnoitetulle anodille valmistaa muita kerroksia korkeammissa lämpötiloissa edellyttäen, että substraatti kestää tämän. Käyttämällä polyimidi/ku- parilaminaattia, päästään lähes 300 asteeseen, jolloin on mahdollista valmistaa pat- terin yhteyteen esim. transistoreita, näyttöjä ja muita aktiivisia komponentteja.The main additional advantages are the possibility of the roll-to-roll process (R2R; roll-to-roll), thin structure, high capacity per surface area, low internal resistance and flexibility of the structure without the risk of breakage. The adhesion of the coated anode is better than that of the printed one, which increases the structural strength and enables a structure almost 50% thinner than the printed anode. If high temperatures are required in the processing, other layers can be prepared for the coated anode at higher temperatures, provided that the substrate can withstand this. By using polyimide/copper laminate, we reach almost 300 degrees, which makes it possible to manufacture e.g. transistors, displays and other active components in connection with the battery.
Esillä olevaa keksintöä ei ole rajoitettu vain edellä oleviin esimerkkeihin, vaan kek- sinnön suojapiiri määräytyy oheisten patenttivaatimusten mukaisena.The present invention is not limited only to the above examples, but the scope of protection of the invention is determined in accordance with the attached patent claims.
OO
NOF
OO
NOF
NOF
<Q<Q
LOLO
NOF
II
Ao aAo a
N oNo
LOLO
OO
NOF
OO
NOF
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20205192A FI130542B (en) | 2020-02-25 | 2020-02-25 | Coated, pressed battery and method for producing the same |
PCT/FI2021/050131 WO2021170909A1 (en) | 2020-02-25 | 2021-02-23 | A coated, printed battery and a method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20205192A FI130542B (en) | 2020-02-25 | 2020-02-25 | Coated, pressed battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
FI20205192A1 FI20205192A1 (en) | 2021-08-26 |
FI130542B true FI130542B (en) | 2023-11-08 |
Family
ID=75438812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI20205192A FI130542B (en) | 2020-02-25 | 2020-02-25 | Coated, pressed battery and method for producing the same |
Country Status (2)
Country | Link |
---|---|
FI (1) | FI130542B (en) |
WO (1) | WO2021170909A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114843430B (en) * | 2022-05-06 | 2024-09-20 | 深圳新源柔性科技有限公司 | Coplanar fractal battery core, module and manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003302288A1 (en) * | 2002-11-27 | 2004-06-18 | Mitsui Mining And Smelting Co., Ltd. | Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same |
US8722235B2 (en) * | 2004-04-21 | 2014-05-13 | Blue Spark Technologies, Inc. | Thin printable flexible electrochemical cell and method of making the same |
US9793536B2 (en) * | 2014-08-21 | 2017-10-17 | Johnson & Johnson Vision Care, Inc. | Pellet form cathode for use in a biocompatible battery |
-
2020
- 2020-02-25 FI FI20205192A patent/FI130542B/en active
-
2021
- 2021-02-23 WO PCT/FI2021/050131 patent/WO2021170909A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
FI20205192A1 (en) | 2021-08-26 |
WO2021170909A1 (en) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108390066B (en) | All-solid-state battery | |
JP5211527B2 (en) | All-solid lithium ion secondary battery and method for producing the same | |
EP2814091B1 (en) | Solid state battery with surface ion-diffusion enhancement coating and method for manufacturing thereof. | |
JP5211526B2 (en) | All-solid lithium ion secondary battery and method for producing the same | |
KR101229903B1 (en) | Negative electrode active material, negative electrode and lithium secondary battery | |
CN103262307B (en) | Lithium secondary battery and method for manufacturing same | |
US20060105243A1 (en) | Composite current collector | |
US20180309163A1 (en) | Bipolar all solid-state battery | |
CN1591959A (en) | Laminated lithium ion secondary cell | |
CN116093337A (en) | Battery cell | |
CN207572477U (en) | Electrode assembly and secondary cell | |
JP2003282064A (en) | Compound current collector | |
EP1331677A2 (en) | Battery and electric double layer capacitor | |
EP3545577A1 (en) | Li-ion based electrochemical energy storage cell | |
US20050233209A1 (en) | Electrical contact for current collectors of electrochemical cells and method therefor | |
US20090297939A1 (en) | Bus bar and secondary battery module including the same | |
CN112514106A (en) | Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery | |
FI130542B (en) | Coated, pressed battery and method for producing the same | |
US10559853B2 (en) | Fast charge apparatus for a battery | |
CN102340035A (en) | Method for manufacturing lithium ion battery lug | |
CN112133957A (en) | Ultrathin metal shell lithium ion battery and preparation method thereof | |
WO2018181662A1 (en) | All-solid-state lithium ion secondary battery | |
CN209912974U (en) | Ultrathin lithium ion battery with metal shell | |
JP2008243761A (en) | Solid thin-film battery | |
EP3218956B1 (en) | Fast charge apparatus for a battery |