JP2003282064A - Compound current collector - Google Patents

Compound current collector

Info

Publication number
JP2003282064A
JP2003282064A JP2002079426A JP2002079426A JP2003282064A JP 2003282064 A JP2003282064 A JP 2003282064A JP 2002079426 A JP2002079426 A JP 2002079426A JP 2002079426 A JP2002079426 A JP 2002079426A JP 2003282064 A JP2003282064 A JP 2003282064A
Authority
JP
Japan
Prior art keywords
current collector
metal
resin film
layer
composite current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002079426A
Other languages
Japanese (ja)
Inventor
Takaaki Okamura
高明 岡村
Shinsuke Hirakawa
慎介 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2002079426A priority Critical patent/JP2003282064A/en
Publication of JP2003282064A publication Critical patent/JP2003282064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound current collector of resin and a metal in which junctions of lead wires have only to be put on either a front or back face, and which can be made more lightweight than a metallic foil, and moreover, to provide the compound current collector which can respond also to a demand for thinning. <P>SOLUTION: By forming electric conduction treatment layers 12a and 12b on both faces of a resin film 11 with many through-holes 15, and after forming metal-plating layers 13a, 13b and 13c on the electric conduction treatment layers by an electrolysis metal-plating treatment, the compound current collector has a surface electric resistance of 40 mΩ/cm or less, a tensile strength of 0.8 kg/cm, and a front-back resistance of the electric conduction of 100 mΩ/cm or less, and a formula Y1+Y2+Y3≤0.8×(X1+X2+X3)×Y3/X3 is satisfied further. Here, X1 is the thickness of the resin film (μm), X2 is the thickness (μm) of the electric conduction treatment layer, X3 is the thickness (μm) of the metal- plating layer, Y1 is the weight (mg/cm<SP>2</SP>) of the resin film, Y2 is the weight (mg/cm<SP>2</SP>) of the electric conduction treatment layer, and Y3 is the weight (mg/cm<SP>2</SP>) of the metal-plating layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム系二次電
池等に用いられる複合集電体に関し、特に表裏の通電性
に優れた複合集電体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite current collector used in a lithium secondary battery or the like, and more particularly to a composite current collector having excellent front and back electrical conductivity.

【0002】[0002]

【従来の技術】近年、電話、パソコン、ビデオカメラ等
の電子機器の携帯化に伴い、各種電子機器が小型化さ
れ、リチウム系やニッケル水素系などの内蔵二次電池の
軽量化が強く求められるようになった。例えば、リチウ
ム二次電池は、上記の負極材料をその支持体である負極
集電体に保持してなる負極板、リチウムコバルト複合酸
化物のようにリチウムイオンと可逆的に電気化学反応を
する正極活物質をその支持体である正極集電体に保持し
てなる正極板、電解液を保持するとともに負極板と正極
板との間に介在して両極の短絡を防止するセパレータか
らなっている。
2. Description of the Related Art In recent years, as electronic devices such as telephones, personal computers, and video cameras have become portable, various electronic devices have been downsized, and it has been strongly demanded to reduce the weight of built-in secondary batteries such as lithium or nickel hydride. It became so. For example, a lithium secondary battery is a negative electrode plate obtained by holding the above negative electrode material on a negative electrode current collector that is a support thereof, a positive electrode that reversibly electrochemically reacts with lithium ions like a lithium cobalt composite oxide. It is composed of a positive electrode plate in which an active material is held by a positive electrode current collector which is a support thereof, and a separator which holds an electrolytic solution and is interposed between the negative electrode plate and the positive electrode plate to prevent a short circuit between both electrodes.

【0003】そして、短冊形状又は円筒形状の電池の場
合、上記正極板、セパレータ及び負極板は、いずれも薄
いシートないし箔状に成形されたものを順に積層し、螺
旋状に巻いて電池ケースに収納される。従って、極板
は、一般に活物質又はホスト物質に有機結着剤、導電剤
及び溶剤を混合してペースト状にし、それを支持体表面
に塗布し乾燥後、支持体とともに厚さ方向に加圧成形す
ることによって製造される。従来、極板の集電体として
は、それ自体の導電性が必要であることから、銅、アル
ミニウムなどの金属の箔が用いられていた。
In the case of a strip-shaped or cylindrical battery, the positive electrode plate, the separator, and the negative electrode plate are all formed in the order of thin sheets or foils, and are spirally wound into a battery case. It is stored. Therefore, the electrode plate is generally formed by mixing an active material or a host material with an organic binder, a conductive agent and a solvent to form a paste, coating the paste on the surface of the support, drying the paste, and pressing it in the thickness direction together with the support. It is manufactured by molding. Conventionally, a foil of a metal such as copper or aluminum has been used as the collector of the electrode plate because the collector itself needs conductivity.

【0004】このような電池の軽量化には総電池重量の
相当の部分を占める集電体の軽量化が必要不可欠であ
る。例えば、リチウムポリマー電池では、負極集電体だ
けで電池総重量の約20%前後という負極活物質と同程
度の重量を占め、集電体の軽量化は電池の軽量化に大き
な効果を有する。
In order to reduce the weight of such a battery, it is essential to reduce the weight of the current collector, which occupies a considerable portion of the total weight of the battery. For example, in a lithium polymer battery, the negative electrode current collector alone occupies about 20% of the total battery weight, which is about the same as the negative electrode active material, and the weight reduction of the current collector has a great effect on the weight reduction of the battery.

【0005】集電体を軽量化する試みは、例えば、特開
平5−31494号公報に記載されているように、樹脂
に金属蒸着やスパッタリングして、極薄膜を積層する方
法が提案されているが、この方法では、金属の積層厚の
上限が経済性や樹脂の耐熱性の観点から2000Å程度
が限度であり、導電層が極薄金属層とせざるを得ず、集
電能力が明らかに劣るばかりでなく、経時による電池内
での腐食により部分的に極薄金属層が溶解消失し、集電
能力が一段と低下する問題ばかりでなく、芯体に絶縁体
である樹脂フィルムを用いるため、表裏の金属めっき層
間の通電性が乏しいため、表裏のどちらも集電面とする
ためには、端子と集電体のリード線の接合は、表裏のど
ちらか一面だけで良い一般的な金属箔と異なり、両面に
実施する必要があり工程を複雑にさせると言う、新たな
問題が生じていた。
As an attempt to reduce the weight of the current collector, for example, as described in JP-A-5-31494, there has been proposed a method of laminating an ultrathin film on a resin by vapor deposition of metal or sputtering. However, in this method, the upper limit of the metal laminated thickness is about 2000 Å from the viewpoint of economy and heat resistance of the resin, and the conductive layer must be an extremely thin metal layer, and the current collecting ability is obviously poor. Not only is the problem that the ultra-thin metal layer is partially dissolved and disappeared due to corrosion in the battery over time, and the current collecting ability is further reduced.Because a resin film that is an insulator is used for the core, Since the electrical conductivity between the metal plating layers is poor, to connect both the front and back sides to the current collecting surface, the terminal and the lead wire of the current collector can be joined to either one of the front and back surfaces with a general metal foil. Differently, it needs to be done on both sides Say to the process in complex, new problems have arisen.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、前述
した従来の集電体の問題点を解決することを課題とし、
一般的に集電体として用いられている金属箔と同様に、
リード線の接合は表裏のどちらか一面だけで良く、しか
も金属箔より軽量化が可能な樹脂と金属の複合集電体を
提供することにある。さらには、薄厚化要求にも対応可
能な複合集電体も提供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional current collectors.
Similar to the metal foil generally used as a current collector,
The purpose of the present invention is to provide a composite current collector made of resin and metal, which can be connected to only one side of the front and back, and can be lighter than the metal foil. Another object is to provide a composite current collector that can meet the demand for thinning.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記課題に
対して、鋭意検討した結果、樹脂フィルムに多数の貫通
孔を設け、該多数の貫通孔を有す樹脂フィルムの両面に
導電処理層を形成後、電解めっき処理により適正量の金
属めっき層を形成することにより、表裏金属めっき層が
互いに通電し、リード線の接合は表裏のどちらか一面だ
けで良く、且つ集電機能も良好な複合集電体が得られる
ことを見出したものである。両面の金属めっき層が互い
に通電した理由については、該集電体の貫通孔部の顕微
鏡観察により、めっき時の回り込みや孔内部までの導電
処理層の形成により、単に表裏だけでなく、孔内部まで
表裏の金属めっき層を接合する金属めっき層が形成され
たためと考えられる。また、孔内部を導電処理層で充填
しても表裏の金属めっき層の通電が果たせることを見出
したものである。また該通電性は、ただあれば良いので
はなく、表裏間の電気抵抗が一定レベル以下でなければ
ならないことを見出したものである。さらには、樹脂フ
ィルム、導電処理層、及び金属めっき層の厚みと重量、
金属めっき後の材料の強度と単位長当たりの電気抵抗等
を考慮することにより、該集電体を用いて電池として組
み立てることが容易で、リード線の接合は表裏の一面だ
けで良く、集電体として充分な機能を発揮する、複合集
電体が得られることを見出したものである。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the above problems, and as a result, provided a resin film with a large number of through holes, and performed conductive treatment on both surfaces of the resin film having the large number of through holes. After forming the layer, by forming an appropriate amount of metal plating layer by electrolytic plating, the front and back metal plating layers conduct electricity to each other, and the lead wire can be bonded on only one of the front and back surfaces, and also has a good current collecting function. It was found that such a complex current collector can be obtained. The reason why the metal plating layers on both sides were electrically connected to each other was as follows.By observing the through-hole portion of the current collector with a microscope, the wraparound during plating and the formation of a conductive treatment layer up to the inside of the hole not only on the front and back sides but also inside the hole. This is probably because the metal plating layers that join the metal plating layers on the front and back sides were formed. It was also found that even if the inside of the hole is filled with a conductive treatment layer, the electric current can be fulfilled to the front and back metal plating layers. Further, the present inventors have found that the conductivity is not only necessary, but the electric resistance between the front and back sides must be below a certain level. Furthermore, the thickness and weight of the resin film, the conductive treatment layer, and the metal plating layer,
By taking into consideration the strength of the material after metal plating and the electric resistance per unit length, it is easy to assemble it as a battery using the current collector, and the lead wires need only be joined to the front and back surfaces. It was discovered that a composite current collector can be obtained that exhibits a sufficient function as a body.

【0008】すなわち、本発明の複合集電体は、多数の
貫通孔を有す樹脂フィルムの両面に、導電処理層を形成
し、該導電処理層上に電解めっき処理により金属めっき
層を形成後、表面電気抵抗が40mΩ/cm以下、引張
り強度が0.8kg/cm、表裏通電抵抗が100mΩ
/cm以下であり、さらに下記(1)式を満足すること
を特徴とする。 Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3・・・(1) ここでX1:樹脂フィルムの厚み(μm)、 X2:導電処理層の厚み(μm)、 X3:金属めっき層の厚み(μm)、 Y1:樹脂フィルムの重量(mg/cm2)、 Y2:導電処理層の重量(mg/cm2)、 Y3:金属めっき層の重量(mg/cm2)である。 請求項2に記載の複合集電体は、前記貫通孔が導電処理
層で充填されていることを特徴とする。請求項3に記載
の複合集電体は、前記貫通孔の断面にも導電処理層が形
成されており、さらに該導電処理層の上層に金属めっき
層が形成されていることを特徴とする。請求項4に記載
の複合集電体は、前記金属めっき層がCu,Ni又はA
lを主体にしたものであることを特徴とする。請求項5
に記載の複合集電体は、前記X1,X2,X3が下記
(2)式を満足することを特徴とする。 X1+X2+X3≦9μm・・・(2)
That is, in the composite current collector of the present invention, a conductive treatment layer is formed on both sides of a resin film having a large number of through holes, and a metal plating layer is formed on the conduction treatment layer by electrolytic plating. , Surface electrical resistance of 40 mΩ / cm or less, tensile strength of 0.8 kg / cm, front and back conduction resistance of 100 mΩ
/ Cm or less and further satisfies the following expression (1). Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3 (1) where X1: thickness of resin film (μm), X2: thickness of conductive treatment layer (μm), X3: thickness of metal plating layer ( μm), Y1: weight of resin film (mg / cm 2 ), Y2: weight of conductive treatment layer (mg / cm 2 ), Y3: weight of metal plating layer (mg / cm 2 ). The composite current collector according to claim 2 is characterized in that the through hole is filled with a conductive treatment layer. A composite current collector according to a third aspect of the present invention is characterized in that a conductive treatment layer is formed also on the cross section of the through hole, and a metal plating layer is further formed on the conductive treatment layer. The composite current collector according to claim 4, wherein the metal plating layer is Cu, Ni or A.
It is characterized in that it is mainly composed of l. Claim 5
The composite current collector described in (1) is characterized in that the X1, X2, and X3 satisfy the following expression (2). X1 + X2 + X3 ≦ 9 μm (2)

【0009】[0009]

【発明の実施の形態】(第1の実施の形態)本発明の複
合集電体の第1の実施の形態について詳細に説明する。
図1は、本発明の複合集電体の外観斜視図、図2は、図
1における複合集電体の要部断面図である。図1に示す
ように、本発明の複合集電体10は、担体(芯体)であ
る樹脂フィルム11の両表面上に導電処理層12a、1
2b、それらの上に金属めっき層13a、13bが形成
されており、複合集電体10の片面にはリード線14が
形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) The first embodiment of the composite current collector of the present invention will be described in detail.
FIG. 1 is an external perspective view of the composite current collector of the present invention, and FIG. 2 is a cross-sectional view of a main part of the composite current collector in FIG. As shown in FIG. 1, the composite current collector 10 of the present invention has a conductive film 12a, 1a formed on both surfaces of a resin film 11 which is a carrier (core).
2b, metal plating layers 13a and 13b are formed on them, and a lead wire 14 is formed on one surface of the composite current collector 10.

【0010】さらに、図2に示すように、本発明の複合
集電体10を形成する芯体となる樹脂フィルムには、樹
脂フィルム11を貫通する貫通孔15が多数形成されて
おり、貫通孔15表層には、表裏の導電処理層12a、
12b間に導通を持たせる導通体16が形成されてい
る。
Further, as shown in FIG. 2, a large number of through holes 15 penetrating the resin film 11 are formed in the resin film which is the core forming the composite current collector 10 of the present invention. The 15 surface layers include the front and back conductive treatment layers 12a,
Conductors 16 are formed to provide continuity between the 12b.

【0011】次に、本発明の芯体に用いられる樹脂フィ
ルム11の材質例としては、ポリエチレンテレフタレー
ト(PET)、ポリエチレンナフタレート(PEN)、
ポリプロピレン(PP)、ポリエチレン(PE)、アク
リル酸やマレイン酸等で変性した酸変性オレフィン樹脂
等が好ましく挙げられるが、本発明では、上記材質に特
定されるものではなく、電池の種類、要求される性能等
により決定されるものである。
Next, examples of the material of the resin film 11 used in the core of the present invention include polyethylene terephthalate (PET), polyethylene naphthalate (PEN),
Preferable examples include polypropylene (PP), polyethylene (PE), and acid-modified olefin resin modified with acrylic acid, maleic acid, etc. However, the present invention is not limited to the above materials, but the type of battery and the required It is determined by the performance etc.

【0012】また、樹脂フィルム11の厚みとしては、
一般的には2μm〜20μmの範囲のものが用いられる
が、電池の集電体として要求される特性、例えば機械的
強度、軽量性及び薄厚性等を考慮して決定されるもので
あり、特に限定されるものではない。
The thickness of the resin film 11 is as follows.
Generally, a material having a range of 2 μm to 20 μm is used, but it is determined in consideration of characteristics required as a current collector of a battery, for example, mechanical strength, light weight, thinness, and the like. It is not limited.

【0013】樹脂フィルム11が延伸されているか未延
伸であるか、あるいは結晶化度についても特に限定され
るものではないが、一般的には、集電体に機械的強度を
要求される場合は、延伸フィルムを用いることが好まし
く、導電処理層12a、12bとの密着性を特に要求さ
れる場合には、未延伸フィルムで低結晶化度の樹脂フィ
ルムを用いることが好ましい。
Whether the resin film 11 is stretched or unstretched, or the crystallinity is not particularly limited, but in general, when the collector is required to have mechanical strength, It is preferable to use a stretched film, and when adhesion to the conductive treatment layers 12a and 12b is particularly required, it is preferable to use an unstretched resin film having a low crystallinity.

【0014】本発明に用いる芯体としての樹脂フィルム
11は、図1,図2に示すような多数の貫通孔15を有
する。貫通孔15は、樹脂フィルム11の両面に導電処
理層12a、12bを形成後、さらにその上に形成され
た、表裏の金属めっき層13a、13b間の導電通路と
なる。貫通孔15の孔径や数については、表裏の金属め
っき層13a、13b間の通電性、機械的強度や製造性
等を考慮して決めるべきで、ここでは特に限定するもの
ではない。
The resin film 11 as the core used in the present invention has a large number of through holes 15 as shown in FIGS. The through hole 15 serves as a conductive path between the metal plating layers 13a and 13b on the front and back sides, which are formed on the resin film 11 after the conductive treatment layers 12a and 12b are formed on the both surfaces. The hole diameter and number of the through holes 15 should be determined in consideration of the electrical conductivity between the front and back metal plating layers 13a and 13b, mechanical strength, manufacturability, etc., and are not particularly limited here.

【0015】樹脂フィルム11の貫通孔15は、放電加
工や小径のパンチで樹脂フィルムをプレス加工により打
ち抜いたり、樹脂フィルムを縦横に引っ張ったりして形
成できる。また、樹脂フィルム11の貫通孔15は、例
えば、加熱した多数の針を設けた型を押し当てるなどの
手段によっても形成することができる。しかし、上記方
法以外によっても貫通孔15は形成できるのであり、本
発明では特にその加工法を限定するものではない。
The through hole 15 of the resin film 11 can be formed by punching the resin film by press working with an electric discharge machine or a small diameter punch, or by pulling the resin film vertically and horizontally. The through hole 15 of the resin film 11 can also be formed by a means such as pressing a mold provided with a large number of heated needles. However, the through hole 15 can be formed by a method other than the above method, and the processing method thereof is not particularly limited in the present invention.

【0016】次に、樹脂フィルム11上に形成される導
電処理層12a、12bは、主に樹脂フィルム11の両
面に、導電処理層12a、12bを介して、金属めっき
層13a、13bをその表裏上層に形成させるために設
けられるものである。樹脂フィルム11の貫通孔15内
(断面)にも導電処理層を形成させると、表裏の金属め
っき層13a、13bを電気的に接合する金属めっき層
13cが孔内部にも形成されやすくなり好ましい。
Next, the conductive treatment layers 12a and 12b formed on the resin film 11 are provided on both sides of the resin film 11 with the metal plating layers 13a and 13b on the front and back sides thereof, with the conductive treatment layers 12a and 12b interposed therebetween. It is provided to form an upper layer. It is preferable to form the conductive treatment layer also in the through hole 15 (cross section) of the resin film 11 because the metal plating layer 13c that electrically joins the metal plating layers 13a and 13b on the front and back is easily formed inside the hole.

【0017】導電処理層12a、12bの形成は、導電
性を有するCu,Ni,Al,Ag等を主体とした金属
を、例えば、蒸着、スパッタリング等の手段によって極
薄金属薄膜層とすることができる。また、導電処理層1
2a、12bの形成は、Cu,Ni,Al,Ag等の金
属粉末や、導電剤のカーボン粉末等を主成分とした導電
性塗料や、これらの1種又は2種以上を混合した導電性
塗料等を、貫通孔15が形成された樹脂フィルム11の
表裏上に薄くコーティングして導電性塗膜層とすること
もできるが、要求性能により選択すべきである。さら
に、必要に応じ、前記蒸着、スパッタリング等の手段に
よって形成された極薄金属薄膜層上に、前記コーティン
グ等の手段によって導電性塗膜層を形成させた複合層、
あるいは前記導電性塗膜層上に前記極薄金属薄膜層を形
成させた複合層とすることもできる。また、貫通孔15
内を、前記金属粉末やカーボン粉末等で充填した(埋め
てしまう)後、樹脂フィルム11の表裏上に極薄金属薄
膜層を形成して導電処理層12a、12bとすること
も、表裏の金属めっき層13a、13bを互いに電気的
に接合する上で有効である。
The conductive treatment layers 12a and 12b are formed by using an electrically conductive metal such as Cu, Ni, Al or Ag as an ultrathin metal thin film layer by means such as vapor deposition or sputtering. it can. In addition, the conductive treatment layer 1
The formation of 2a and 12b is carried out by using a conductive paint mainly composed of metal powder such as Cu, Ni, Al, Ag, carbon powder of a conductive agent, etc., or a conductive paint obtained by mixing one or more of these. It is also possible to thinly coat the above on the front and back of the resin film 11 in which the through holes 15 are formed to form a conductive coating film layer, but it should be selected depending on the required performance. Further, if necessary, the vapor deposition, on the ultrathin metal thin film layer formed by means such as sputtering, a composite layer in which a conductive coating film layer is formed by means such as coating,
Alternatively, it may be a composite layer in which the ultrathin metal thin film layer is formed on the conductive coating film layer. Also, the through hole 15
After filling (filling) the inside with the metal powder, carbon powder, or the like, an ultrathin metal thin film layer may be formed on the front and back surfaces of the resin film 11 to form the conductive treatment layers 12a and 12b. This is effective in electrically connecting the plating layers 13a and 13b to each other.

【0018】導電処理層12a、12bの厚みは、その
有する表面電気抵抗が、1.3Ω/cm以下になるよう
に形成されることが好ましい。表面電気抵抗が1.3Ω
/cmを超えると、後述するようにその上に形成させる
金属めっき層13a、13bの均一形成が困難になるか
らである。
The conductive treatment layers 12a and 12b are preferably formed so that the surface electric resistance thereof is 1.3 Ω / cm or less. Surface electrical resistance is 1.3Ω
This is because if it exceeds / cm, it will be difficult to uniformly form the metal plating layers 13a and 13b to be formed thereon as described later.

【0019】次に、前記導電処理層12a、12bの上
層には、電解めっき処理により金属めっき層13a、1
3bが形成されている。金属めっき層を形成する金属の
種類としては、Cu,Ni,Al等の金属を電解でめっ
きしたものが挙げられるが、要求性能により選択すべき
である。本発明の複合集電体を、リチウム系二次電池の
集電体としての負極用として用いる場合はCuを主体と
し、正極用として用いる場合はAlを主体とする金属め
っき層を形成、Ni−MH系二次電池の正負極用の集電
体として用いる場合は、Niを主体とする金属めっき層
を形成するのが一般的である。
Next, metal plating layers 13a, 1a, 1b are formed on the conductive treatment layers 12a, 12b by electrolytic plating.
3b is formed. The kind of metal forming the metal plating layer may be a metal such as Cu, Ni or Al electroplated, but it should be selected according to the required performance. When the composite current collector of the present invention is used for a negative electrode as a current collector of a lithium-based secondary battery, Cu is mainly used, and when it is used for a positive electrode, a metal plating layer is formed mainly of Al. When used as a current collector for the positive and negative electrodes of an MH-based secondary battery, it is common to form a metal plating layer mainly containing Ni.

【0020】これらの金属めっき層13a、13bの厚
みは、めっき後の金属めっき層の表面電気抵抗が40m
Ω/cm以下となるようにすることが好ましい。その理
由は、該表面電気抵抗が40mΩ/cmを超えると、例
え小型の二次電池用集電体に用いても、即ち使用集電体
長が短い用途であっても、抵抗による電池エネルギーの
損失が無視できないほど大きくなるからである。
The thickness of these metal plating layers 13a, 13b is such that the surface electric resistance of the metal plating layer after plating is 40 m.
It is preferable that it be Ω / cm or less. The reason is that if the surface electric resistance exceeds 40 mΩ / cm, the battery energy loss due to the resistance is obtained even if the surface electric resistance is used for a small-sized current collector for a secondary battery, that is, even if the used current collector length is short. Is too large to ignore.

【0021】なお、本発明でいう表面電気抵抗とは、1
cm幅当たりの抵抗であり、導電処理層12a、12b
を形成させた後、あるいは、さらにその上に金属めっき
層13a、13bを形成させた後に、1cm幅のサンプ
ルの測定面上に、1cmの間隔をおいて4mmの面
積の+端子と−端子を1kg/cmの荷重を掛けて
充分に接触させて電気抵抗を測定した値である。上記表
面電気抵抗値の測定には、非測定面の導電処理層及び金
属めっき層を除去して、非測定面の影響をなくすことが
重要である。
The surface electric resistance referred to in the present invention is 1
The resistance per cm width, and the conductive treatment layers 12a and 12b
Or after further forming the metal plating layers 13a and 13b on the measurement surface of the sample having a width of 1 cm, the positive terminal and the negative terminal having an area of 4 mm 2 with an interval of 1 cm. Is a value obtained by measuring the electrical resistance by applying a load of 1 kg / cm 2 and bringing them into sufficient contact. To measure the surface electric resistance value, it is important to remove the conductive treatment layer and the metal plating layer on the non-measurement surface to eliminate the influence of the non-measurement surface.

【0022】また、本発明では表裏の通電抵抗を100
mΩ以下にすることが重要な要件である。通電抵抗が1
00mΩを超えると、リード線14を複合集電体の片面
にしか接合しない場合、非接合面の集電性が顕著に劣
り、電池性能を低下させる要因になるので好ましくな
い。
Further, in the present invention, the conduction resistance on the front and back sides is set to 100.
It is an important requirement to make it below mΩ. Current resistance is 1
When it exceeds 00 mΩ, when the lead wire 14 is bonded to only one surface of the composite current collector, the current collecting property of the non-bonded surface is remarkably deteriorated, which is a factor of lowering battery performance, which is not preferable.

【0023】本発明でいう通電抵抗とは、1cm×1c
mのサイズの+端子を1.5cm×1.5cmにカット
した複合集電体の片面に、1cm×1cmのサイズの−
端子を、+端子がある位置と同位置の他の面にいずれも
1kg/cmの荷重を掛けて充分接触させて電気抵
抗を測定した値である。また、本発明の複合集電体10
においては、複合集電体10の構成要素である樹脂フィ
ルム11、導電処理層12a、12b、金属めっき層1
3a、13bのそれぞれが、下記式(1)の関係を満足
していることが必要である。 Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3・・・(1) ここでX1:樹脂フィルムの厚み(μm)であり、 X2:導電処理層の厚み(μm)であり、 X3:金属めっき層の厚み(μm)であり、 Y1:樹脂フィルムの重量(mg/cm2)であり、 Y2:導電処理層の重量(mg/cm2)であり、 Y3:金属めっき層の重量(mg/cm2)である。
The conduction resistance referred to in the present invention is 1 cm × 1 c
On one side of the composite current collector in which the + terminal of m size is cut into 1.5 cm × 1.5 cm, the − of 1 cm × 1 cm size is formed.
It is a value obtained by measuring the electrical resistance by applying a load of 1 kg / cm 2 to each of the terminals and applying a load of 1 kg / cm 2 to each of the other surfaces at the same position as the + terminal. In addition, the composite current collector 10 of the present invention
In, the resin film 11, the conductive treatment layers 12a and 12b, and the metal plating layer 1 which are the constituent elements of the composite current collector 10
Each of 3a and 13b needs to satisfy the relationship of the following expression (1). Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3 (1) where X1: the thickness of the resin film (μm), X2: the thickness of the conductive treatment layer (μm), and X3: metal plating Layer thickness (μm), Y1: resin film weight (mg / cm 2 ), Y2: conductive treatment layer weight (mg / cm 2 ), Y3: metal plating layer weight (mg / cm 2 ). cm 2 ).

【0024】上記(1)式は、樹脂フィルム、導電処理
層、めっき層の関係を特定することで、従来の金属のみ
からなる集電体に比較して本発明の複合集電体を軽量化
することができる条件式である。さらに具体的には、本
発明の複合集電体の重量が、金属めっき層の金属成分だ
けからなる単なる金属集電体より、同厚みで8割以下の
軽量化を実現可能とする条件式でもある。
The above formula (1) reduces the weight of the composite current collector of the present invention as compared with the conventional current collector made of only metal by specifying the relationship between the resin film, the conductive treatment layer and the plating layer. It is a conditional expression that can be performed. More specifically, even if the weight of the composite current collector of the present invention is 80% or less with the same thickness, it is possible to realize a weight reduction compared with a mere metal current collector consisting of only metal components of the metal plating layer. is there.

【0025】さらに、本発明において必要なことは、か
くして得た複合集電体の引張り強度が0.8kg/cm
以上であることである。該引張り強度が0.8kg/c
m未満になると、集電体を用いて電池を組立時に必要な
テンションにどうしても該集電体が耐えられなくなり、
破断する問題が生じ易くなるため好ましくない。なお、
ここで言う引張り強度とは、1cm幅で10cm長に複
合集電体をカットし、20mm/分の速度で引っ張った
時の降伏点強度を指す。また、集電体に、軽さだけでな
く特別に薄さを要求される場合、X1+X2+X3≦9
μmの条件式を満足することが好ましい。一般的に金属
単体では、9μm以下の金属箔を安定的に製造するのは
困難か、充分な引張り強度が得られないのが実情であ
り、該条件式を満足した本発明の複合集電体は、軽量化
だけでなく薄厚化も可能となり有用性は大である。な
お、本発明の複合集電体は、平面状に限る必要はなく、
要求によっては波状であるか表面に凹凸模様が形成され
たものであっても良い。
Further, what is required in the present invention is that the composite current collector thus obtained has a tensile strength of 0.8 kg / cm.
That is all. The tensile strength is 0.8 kg / c
If it is less than m, the current collector cannot withstand the tension required for assembling the battery using the current collector,
It is not preferable because the problem of breaking easily occurs. In addition,
The tensile strength referred to here means the yield strength when the composite current collector is cut into a length of 1 cm and a length of 10 cm and pulled at a speed of 20 mm / min. If the collector is required not only to be light but also thin, X1 + X2 + X3 ≦ 9
It is preferable that the conditional expression of μm is satisfied. Generally, it is difficult to stably produce a metal foil having a thickness of 9 μm or less from a single metal, or sufficient tensile strength cannot be obtained in reality, and the composite current collector of the present invention satisfying the conditional expression is satisfied. Is not only lightweight, but also thin, which is very useful. Incidentally, the composite current collector of the present invention need not be limited to a planar shape,
Depending on requirements, it may be corrugated or may have an uneven pattern formed on the surface.

【0026】[0026]

【実施例】(実施例1)樹脂フィルムとして、5μm径
の円形状貫通孔を20個/mm形成した4μm厚み
の二軸延伸PETフィルム(X1=4)を用い、その両
面に500ÅずつCuの蒸着層を形成し導電処理層(X
2=0.1)とした。さらに、その両面に、厚み:2μ
mのCuをめっきして金属めっき層(X3=4)を形成
して複合集電体を得た。この場合のY1〜Y3は表1に
示すとおりであった。
Example 1 As a resin film, a 4 μm-thick biaxially stretched PET film (X1 = 4) having 20 μm / mm 2 circular through-holes with a diameter of 5 μm was used, and 500 Å each was formed on each side of Cu film. Of the conductive treatment layer (X
2 = 0.1). Furthermore, thickness: 2μ on both sides
Cu of m was plated to form a metal plating layer (X3 = 4) to obtain a composite current collector. Y1 to Y3 in this case are as shown in Table 1.

【0027】(実施例2)樹脂フィルムとして、15μ
m径の円形状貫通孔を16個/mm形成した20μ
m厚みの二軸延伸PETフィルム(X1=20)を用
い、その両面に平均粒径が0.5μmのAg粉を導電剤
として配合したAg系の塗料を塗布し乾燥して該孔部を
充填するとともに、乾燥厚みが0.5μmずつの導電処
理層(X2=1)を形成して複合集電体を得た。さら
に、その両面に、厚み:2μmのCuをめっきして金属
めっき層(X3=4)を形成した。この場合のY1〜Y
3は表1に示すとおりであった。
(Example 2) As a resin film,
20μ with 16 circular through holes of m diameter / mm 2 formed
m biaxially stretched PET film (X1 = 20) was used, and an Ag-based paint containing an Ag powder having an average particle diameter of 0.5 μm as a conductive agent was applied to both sides of the PET film and dried to fill the pores. At the same time, a conductive treatment layer (X2 = 1) having a dry thickness of 0.5 μm was formed to obtain a composite current collector. Further, Cu having a thickness of 2 μm was plated on both surfaces thereof to form a metal plating layer (X3 = 4). Y1-Y in this case
3 was as shown in Table 1.

【0028】(実施例3)樹脂フィルムとして、一辺5
0μm径の四角形状貫通孔を9個/mm形成した4
μm厚みの二軸延伸PETフィルム(X1=4)を用
い、その両面にNi粉を導電剤として配合したNi系の
塗料を塗布し乾燥して乾燥厚みが0.5μmずつの導電
処理層(X2=1)を形成した。Ni系塗料を塗布し乾
燥後も孔は該塗料の充填により閉塞されてはおらず、依
然貫通孔が認められた。さらに、その両面に、厚み:2
μmのCuをめっきして金属めっき層(X3=4)を形
成して複合集電体を得た。この場合のY1〜Y3は表1
に示すとおりであった。
(Example 3) As a resin film, one side 5
9 square holes having a diameter of 0 μm / mm 2 were formed 4
A biaxially stretched PET film (X1 = 4) having a thickness of μm was used, and a Ni-based paint containing Ni powder as a conductive agent was applied to both surfaces of the film and dried to obtain a conductive treatment layer (X2 having a dry thickness of 0.5 μm each). = 1) was formed. Even after the Ni-based paint was applied and dried, the holes were not blocked by the filling of the paint, and through holes were still observed. Furthermore, thickness: 2 on both sides
A Cu metal plate was plated to form a metal plating layer (X3 = 4) to obtain a composite current collector. Y1 to Y3 in this case are shown in Table 1.
It was as shown in.

【0029】(実施例4)1μmの金属めっき層(X3
=2)を形成した以外は、実施例1と同様にして複合集
電体を得た。この場合のY1〜Y3は表1に示すとおり
であった。
(Embodiment 4) 1 μm metal plating layer (X3
= 2) was formed, a composite current collector was obtained in the same manner as in Example 1. Y1 to Y3 in this case are as shown in Table 1.

【0030】(実施例5)PET樹脂フィルムの両面に
1000ÅずつCuの蒸着層を形成し、導電処理層(X
2=0.2)とし、その両面に3μmのCuめっき層
(X3=6)を形成した以外は実施例1と同様にして複
合集電体を得た。この場合のY1〜Y3は表1に示すと
おりであった。
(Embodiment 5) A vapor deposition layer of Cu is formed on each side of a PET resin film by 1000Å, and a conductive treatment layer (X
2 = 0.2), and a composite current collector was obtained in the same manner as in Example 1 except that a Cu plating layer (X3 = 6) of 3 μm was formed on both surfaces. Y1 to Y3 in this case are as shown in Table 1.

【0031】(実施例6)樹脂フィルムが6μmの二軸
延伸アクリル酸変性ポリプロピレン(X1=12)であ
る以外は実施例1と同様にして複合集電体を得た。この
場合のY1〜Y3は表1に示すとおりであった。
Example 6 A composite current collector was obtained in the same manner as in Example 1 except that the resin film was 6 μm biaxially stretched acrylic acid-modified polypropylene (X1 = 12). Y1 to Y3 in this case are as shown in Table 1.

【0032】(実施例7)樹脂フィルムが20μmの二
軸延伸PETフィルム(X1=20)で、2μmのAl
をめっきし両面に金属めっき層(X3=4)を形成した
以外は実施例2と同様にして複合集電体を得た。この場
合のY1〜Y3は表1に示すとおりであった。
Example 7 A resin film is a 20 μm biaxially stretched PET film (X1 = 20) and 2 μm Al.
A composite current collector was obtained in the same manner as in Example 2 except that the metal plating layer (X3 = 4) was formed on both surfaces by plating. Y1 to Y3 in this case are as shown in Table 1.

【0033】(比較例)樹脂フィルムとして無孔の20
μm厚みの二軸延伸PETフィルム(X1=20)を用
いた他は実施例2と同様にして複合集電体を得た。な
お、該複合集電体の樹脂フィルムには、めっき前だけで
なく、めっき後も貫通孔は認められなかった。
(Comparative Example) Non-porous resin film 20
A composite current collector was obtained in the same manner as in Example 2 except that a biaxially stretched PET film (X1 = 20) having a thickness of μm was used. No through holes were observed in the resin film of the composite current collector not only before plating but also after plating.

【0034】実施例1〜7の複合集電体のCuあるいは
Niめっき前の導電処理層の電気抵抗はすべて1.3Ω
/cm以下であった。また実施例1〜7にて作成した複
合集電体の評価は電気抵抗と下記に示す方法にて電池と
なし、同厚みの金属箔のみからなる集電体を用いた時に
得られた電池容量に対する、本発明の複合集電体を用い
た時に得られた電池容量の比をとって行った。該百分率
(複合集電体性能指数という)の値が99.8%以上の
時、複合集電体の集電性能を良好とした。複合集電体の
電気抵抗は、すべて40mΩ/cm以下であった。また
表2に示す様に、実施例の複合集電体の性能指数はすべ
て99.8%以上であり、いずれも集電性能は良好であ
った。
In the composite current collectors of Examples 1 to 7, all the electric resistances of the conductive treatment layers before Cu or Ni plating were 1.3Ω.
/ Cm or less. Further, the evaluation of the composite current collectors prepared in Examples 1 to 7 was carried out using the electrical resistance and the method described below to form a battery, and the battery capacity obtained when a current collector made of only metal foil of the same thickness was used. To the battery capacity obtained when the composite current collector of the present invention was used. When the value of the percentage (referred to as composite current collector performance index) was 99.8% or more, the current collection performance of the composite current collector was considered good. The electrical resistances of the composite current collectors were all 40 mΩ / cm or less. In addition, as shown in Table 2, the performance indexes of the composite current collectors of the examples were all 99.8% or more, and all the current collection performances were good.

【0035】〈複合集電体性能指数の評価法〉 1.実施例1〜6及び比較例 正極として巾が5cmで、20cm長のAl箔(20μ
m)に、LiCoO2:アセチレンブラック:PVDF
=100:8:12(重量比)の組成からなる活物質
(50mg/cm2)を積層したものを用い、負極とし
て、実施例1〜6及び比較例の巾が5cmで、20cm
長の複合集電体に、グラファイト:PVDF=100:
11(重量比)の組成からなる活物質(20mg/cm
2)を積層したものを用い、電解液としてプロピレンカ
ーボネートとエチレンカーボネートを等重量比で配合し
た液にLiClO4を1モル/L添加したものを用い、
常法により微多孔のポリプロピレン系セパレーターを用
い、正極の集電体の端の巾方向に、0.5cm巾で8c
m長のAl(60μm)からなるリードを、負極の集電
体の端の巾方向に、同様に、0.5cm巾で8cm長の
Cu(60μm)からなるリードを接合し、常法により
Li系二次電池とした。該電池を60℃の雰囲気中に1
ヶ月放置後、充電終了電圧=4.2V、放電終了電圧=
2V、充放電速度=0.2Cの条件下で定電流充放電を
行い、放電容量(=電池容量1)を測定した。
<Evaluation Method of Composite Current Collector Performance Index> 1. Examples 1 to 6 and Comparative Example A positive electrode having a width of 5 cm and a length of 20 cm (20 μm).
m), LiCoO 2 : acetylene black: PVDF
= 100: 8: 12 (weight ratio), a laminate of active materials (50 mg / cm 2 ) having a composition of 50% / cm 2 was used, and the width of each of Examples 1 to 6 and Comparative Example was 5 cm and was 20 cm.
Long composite current collector with graphite: PVDF = 100:
11 (weight ratio) active material (20 mg / cm
2 ) is used in a laminated manner, and as the electrolytic solution, 1 mol / L of LiClO 4 is added to a liquid in which propylene carbonate and ethylene carbonate are mixed at an equal weight ratio,
Using a microporous polypropylene-based separator by a conventional method, the width of the end of the current collector of the positive electrode is 8 cm with a width of 0.5 cm.
A lead made of Al (60 μm) having a length of m was joined to a lead made of Cu (60 μm) having a length of 0.5 cm and a length of 8 cm in the widthwise direction of the end of the current collector of the negative electrode. System secondary battery. Place the battery in an atmosphere of 60 ° C for 1
After leaving for a month, charge end voltage = 4.2V, discharge end voltage =
Constant-current charging / discharging was performed under the conditions of 2 V and charge / discharge rate = 0.2 C, and the discharge capacity (= battery capacity 1) was measured.

【0036】また、本発明の複合集電体に代えて、複合
集電体のめっき金属と同じ成分で、複合集電体と同厚み
の金属のみからなる集電体を用いた他は、前記と同様に
して放電容量(=電池容量2)を測定した。なお、複合
集電体性能指数(性能指数という場合もある)は下記式
にて算出した。 複合集電体性能指数(%)=電池容量1/電池容量2×
100 なお、ここではLiCoO2の理論容量を135mAh
/gとし、0.2Cは理論通りに充放電すると仮定し
て、5時間で充電あるいは放電が終了するための電流値
である。 2.実施例7 正極の集電体としてAl箔の代わりに実施例7の複合集
電体を、負極の集電体としてCu箔(10μm)を用い
た他は上記と同様にして評価した。
Further, in place of the composite current collector of the present invention, a current collector made of only a metal having the same composition as the plating metal of the composite current collector and having the same thickness as the composite current collector is used. The discharge capacity (= battery capacity 2) was measured in the same manner as in. The composite current collector performance index (sometimes referred to as the performance index) was calculated by the following formula. Composite current collector performance index (%) = battery capacity 1 / battery capacity 2 x
100 Here, the theoretical capacity of LiCoO 2 is set to 135 mAh.
/ G, and 0.2 C is a current value for completing charging or discharging in 5 hours, assuming that charging / discharging is performed theoretically. 2. Example 7 Evaluations were made in the same manner as above except that the composite current collector of Example 7 was used as the current collector of the positive electrode instead of the Al foil, and the Cu foil (10 μm) was used as the current collector of the negative electrode.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明の複合集電体は、芯体に絶縁体で
ある樹脂フィルムを用いているのに拘わらず、一般的に
集電体として用いられている金属箔と同様に、リード線
の接合は表裏のどちらか一面だけで良く、しかも金属箔
より軽量化や薄厚化が可能である。従って、電池の集電
体に用いた場合、電池自体の軽量化や薄厚化に特に有効
な材料となり得る。
INDUSTRIAL APPLICABILITY The composite current collector of the present invention has the same lead as the metal foil generally used as the current collector although the core uses the resin film as the insulator. Only one of the front and back sides needs to be joined to the wire, and the weight and thickness of the metal foil can be reduced. Therefore, when used as a current collector of a battery, it can be a particularly effective material for reducing the weight and thickness of the battery itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合集電体の外観斜視図である。FIG. 1 is an external perspective view of a composite current collector of the present invention.

【図2】図1における複合集電体の要部断面図である。FIG. 2 is a cross-sectional view of essential parts of the composite current collector in FIG.

【符号の説明】[Explanation of symbols]

10:複合集電体 11:樹脂フィルム 12a、12b:導電処理層 13a、13b、13c:金属めっき層 14:リード線 15:貫通孔 16:導通体 10: Composite current collector 11: Resin film 12a, 12b: Conductive treatment layer 13a, 13b, 13c: Metal plating layer 14: Lead wire 15: Through hole 16: Conductor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA02 AA03 AS02 BB15 BB16 BB17 CC05 DD05 DD06 EE01 EE04 EE05 EE07 HH00 HH03 HH04 HH10    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H017 AA02 AA03 AS02 BB15 BB16                       BB17 CC05 DD05 DD06 EE01                       EE04 EE05 EE07 HH00 HH03                       HH04 HH10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多数の貫通孔を有す樹脂フィルムの両面
に、導電処理層を形成し、該導電処理層上に電解めっき
処理により金属めっき層を形成後、表面電気抵抗が40
mΩ/cm以下、引張り強度が0.8kg/cm、表裏
通電抵抗が100mΩ以下であり、さらに下記(1)式
を満足することを特徴とする複合集電体。 Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3・・・(1) ここでX1:樹脂フィルムの厚み(μm)、 X2:導電処理層の厚み(μm)、 X3:金属めっき層の厚み(μm)、 Y1:樹脂フィルムの重量(mg/cm2)、 Y2:導電処理層の重量(mg/cm2)、 Y3:金属めっき層の重量(mg/cm2)、
1. A conductive film is formed on both sides of a resin film having a large number of through holes, and a metal plated layer is formed on the conductive film by electrolytic plating.
A composite current collector characterized by having mΩ / cm or less, a tensile strength of 0.8 kg / cm, a front and back conduction resistance of 100 mΩ or less, and further satisfying the following formula (1). Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3 (1) where X1: thickness of resin film (μm), X2: thickness of conductive treatment layer (μm), X3: thickness of metal plating layer ( μm), Y1: weight of resin film (mg / cm 2 ), Y2: weight of conductive treatment layer (mg / cm 2 ), Y3: weight of metal plating layer (mg / cm 2 ),
【請求項2】 前記貫通孔が導電処理層で充填されてい
ることを特徴とする請求項1の複合集電体。
2. The composite current collector according to claim 1, wherein the through hole is filled with a conductive treatment layer.
【請求項3】 前記貫通孔の断面にも導電処理層が形成
されており、さらに該導電処理層の上層に金属めっき層
が形成されていることを特徴とする請求項1の複合集電
体。
3. The composite current collector according to claim 1, wherein a conductive treatment layer is also formed on the cross section of the through hole, and a metal plating layer is further formed on the conductive treatment layer. .
【請求項4】 前記金属めっき層がCu,Ni又はAl
を主体にしたものである請求項1〜3のいずれかに記載
の複合集電体。
4. The metal plating layer is Cu, Ni or Al
The composite current collector according to any one of claims 1 to 3, which is mainly composed of.
【請求項5】 前記X1,X2,X3が下記(2)式を
満足することを特徴とする請求項4の複合集電体。 X1+X2+X3≦9μm ・・・(2)
5. The composite current collector according to claim 4, wherein X1, X2 and X3 satisfy the following expression (2). X1 + X2 + X3 ≦ 9 μm (2)
JP2002079426A 2002-03-20 2002-03-20 Compound current collector Pending JP2003282064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079426A JP2003282064A (en) 2002-03-20 2002-03-20 Compound current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079426A JP2003282064A (en) 2002-03-20 2002-03-20 Compound current collector

Publications (1)

Publication Number Publication Date
JP2003282064A true JP2003282064A (en) 2003-10-03

Family

ID=29228903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079426A Pending JP2003282064A (en) 2002-03-20 2002-03-20 Compound current collector

Country Status (1)

Country Link
JP (1) JP2003282064A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103475A (en) * 2002-09-11 2004-04-02 Sony Corp Battery
JP2008153034A (en) * 2006-12-15 2008-07-03 Tokyo Ohka Kogyo Co Ltd Anode base material
JP2010073500A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Collector for bipolar lithium ion secondary battery including organic structure
JP2010257712A (en) * 2009-04-23 2010-11-11 Nissan Motor Co Ltd Collector for bipolar battery
WO2011111200A1 (en) * 2010-03-11 2011-09-15 トヨタ自動車株式会社 Current collector and process for production thereof, and battery and process for production thereof
US8551651B2 (en) 2006-12-15 2013-10-08 Tokyo Ohka Kogyo Co., Ltd. Secondary cell having negative electrode base member
CN107369837A (en) * 2017-08-29 2017-11-21 力信(江苏)能源科技有限责任公司 A kind of battery core pole piece and lithium ion battery cell
JP2018113242A (en) * 2017-01-12 2018-07-19 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet of the same, battery, and use of the same
JP2018181823A (en) * 2017-04-14 2018-11-15 深▲セン▼▲シン▼智美科技有限公司Shenzhen Xinzhimei Technology Co.,Ltd. Negative electrode current collector and manufacturing method and application thereof
EP3496190A1 (en) * 2017-12-05 2019-06-12 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2019096592A (en) * 2017-11-22 2019-06-20 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrode member, electrode unit and charging battery
JP2019186195A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
EP3629407A1 (en) * 2018-09-30 2020-04-01 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2020057585A (en) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet, and electrochemical device
WO2020134650A1 (en) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 Electrode plate, electrochemical apparatus, battery module, battery pack, and device
JP2020107659A (en) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 Lithium ion capacitor
JP2022506970A (en) * 2018-11-09 2022-01-17 星耀科技(深▲せん▼)有限公司 Membrane and manufacturing process
KR20220073525A (en) * 2020-11-26 2022-06-03 한국생산기술연구원 Resistance Gradient Three Dimensional Current Collector, Lithium Anode and Manufacturing Method For The Same
CN114709424A (en) * 2022-04-21 2022-07-05 合肥国轩高科动力能源有限公司 Method for manufacturing low-resistance current collector
JP2022539769A (en) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheet, electrochemical device and its device
JPWO2022208770A1 (en) * 2021-03-31 2022-10-06
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof
WO2023282228A1 (en) * 2021-07-07 2023-01-12 Jsr株式会社 Conductive substrate for battery electrodes and method for producing same
WO2023053322A1 (en) * 2021-09-30 2023-04-06 Tdk株式会社 Current collector, electrode for electric storage device, and lithium-ion secondary battery
WO2023201845A1 (en) * 2022-04-20 2023-10-26 江阴纳力新材料科技有限公司 Composite current collector having metal three-dimensional network structure and preparation method therefor, electrode sheet and battery
WO2024011538A1 (en) * 2022-07-14 2024-01-18 扬州纳力新材料科技有限公司 Aluminum composite current collector, preparation method therefor, positive electrode sheet, battery and electric apparatus

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103475A (en) * 2002-09-11 2004-04-02 Sony Corp Battery
US8551651B2 (en) 2006-12-15 2013-10-08 Tokyo Ohka Kogyo Co., Ltd. Secondary cell having negative electrode base member
JP2008153034A (en) * 2006-12-15 2008-07-03 Tokyo Ohka Kogyo Co Ltd Anode base material
US9105929B2 (en) 2006-12-15 2015-08-11 Tokyo Ohka Kogyo Co., Ltd. Negative electrode base member
US8927147B2 (en) 2006-12-15 2015-01-06 Kanto Gakuin School Corporation Negative electrode base member
JP2010073500A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Collector for bipolar lithium ion secondary battery including organic structure
JP2010257712A (en) * 2009-04-23 2010-11-11 Nissan Motor Co Ltd Collector for bipolar battery
JP5348144B2 (en) * 2010-03-11 2013-11-20 トヨタ自動車株式会社 Current collector and manufacturing method thereof, battery and manufacturing method thereof
US8512888B2 (en) 2010-03-11 2013-08-20 Toyota Jidosha Kabushiki Kaisha Current collector and method for producing the same, battery and method for producing the same
CN103003992A (en) * 2010-03-11 2013-03-27 丰田自动车株式会社 Current collector and process for production thereof, and battery and process for production thereof
WO2011111200A1 (en) * 2010-03-11 2011-09-15 トヨタ自動車株式会社 Current collector and process for production thereof, and battery and process for production thereof
JP2018113242A (en) * 2017-01-12 2018-07-19 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet of the same, battery, and use of the same
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof
JP2018181823A (en) * 2017-04-14 2018-11-15 深▲セン▼▲シン▼智美科技有限公司Shenzhen Xinzhimei Technology Co.,Ltd. Negative electrode current collector and manufacturing method and application thereof
CN107369837A (en) * 2017-08-29 2017-11-21 力信(江苏)能源科技有限责任公司 A kind of battery core pole piece and lithium ion battery cell
JP2019096592A (en) * 2017-11-22 2019-06-20 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrode member, electrode unit and charging battery
US10804526B2 (en) 2017-11-22 2020-10-13 Contemporary Amperex Techology Co., Limited Electrode member, electrode assembly and rechargeable battery
EP3496190A1 (en) * 2017-12-05 2019-06-12 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2019102429A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet thereof, and electrochemical device
US10910652B2 (en) 2017-12-05 2021-02-02 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2019186195A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
EP3629407A1 (en) * 2018-09-30 2020-04-01 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2020057585A (en) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet, and electrochemical device
EP4303965A3 (en) * 2018-09-30 2024-03-13 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
JP2022506970A (en) * 2018-11-09 2022-01-17 星耀科技(深▲せん▼)有限公司 Membrane and manufacturing process
JP7378838B2 (en) 2018-11-09 2023-11-14 星耀科技(深▲せん▼)有限公司 Current collector of energy storage element and method for manufacturing current collector of energy storage element
US11721812B2 (en) 2018-11-09 2023-08-08 Xingyao Technology (Shenzhen) Co., Ltd Film and manufacturing process thereof
JP2020107659A (en) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 Lithium ion capacitor
JP7085142B2 (en) 2018-12-26 2022-06-16 トヨタ自動車株式会社 Lithium ion capacitor
WO2020134650A1 (en) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 Electrode plate, electrochemical apparatus, battery module, battery pack, and device
JP2022539769A (en) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheet, electrochemical device and its device
JP7430737B2 (en) 2019-06-28 2024-02-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheets, electrochemical devices and their devices
KR102491178B1 (en) 2020-11-26 2023-01-20 한국생산기술연구원 Resistance Gradient Three Dimensional Current Collector, Lithium Anode and Manufacturing Method For The Same
KR20220073525A (en) * 2020-11-26 2022-06-03 한국생산기술연구원 Resistance Gradient Three Dimensional Current Collector, Lithium Anode and Manufacturing Method For The Same
WO2022208770A1 (en) * 2021-03-31 2022-10-06 Tdk株式会社 Electrode for power storage device, power storage device, and secondary battery
JPWO2022208770A1 (en) * 2021-03-31 2022-10-06
JP7323055B2 (en) 2021-03-31 2023-08-08 Tdk株式会社 Electrode for power storage device, power storage device and secondary battery
WO2023282228A1 (en) * 2021-07-07 2023-01-12 Jsr株式会社 Conductive substrate for battery electrodes and method for producing same
WO2023053322A1 (en) * 2021-09-30 2023-04-06 Tdk株式会社 Current collector, electrode for electric storage device, and lithium-ion secondary battery
WO2023201845A1 (en) * 2022-04-20 2023-10-26 江阴纳力新材料科技有限公司 Composite current collector having metal three-dimensional network structure and preparation method therefor, electrode sheet and battery
CN114709424A (en) * 2022-04-21 2022-07-05 合肥国轩高科动力能源有限公司 Method for manufacturing low-resistance current collector
WO2024011538A1 (en) * 2022-07-14 2024-01-18 扬州纳力新材料科技有限公司 Aluminum composite current collector, preparation method therefor, positive electrode sheet, battery and electric apparatus

Similar Documents

Publication Publication Date Title
JP2003282064A (en) Compound current collector
CN106797019B (en) Electrode for electrochemical cell
EP2592674B1 (en) Electrode assembly for electric storage device and electric storage device
EP1551070A1 (en) Composite current collector
JP4038699B2 (en) Lithium ion battery
JP5985137B2 (en) Manufacturing method of non-aqueous secondary battery
JP5348730B2 (en) Lithium ion secondary battery
JP2012074359A (en) Battery
CN108140802B (en) Electrode and method for manufacturing same
JP2012009209A (en) Negative electrode for lithium ion secondary battery
JP2000067907A (en) Electrode structure and battery using it
JP2006252998A (en) Lithium secondary battery
JP5761098B2 (en) Active material and lithium ion secondary battery using the same
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP6137637B2 (en) battery
CN101630728A (en) High energy density lithium secondary battery electrode and preparation method thereof
KR20220104781A (en) Non-aqueous electrolyte secondary battery, current collector, and manufacturing method of non-aqueous electrolyte secondary battery
JP2009283218A (en) Nonaqueous electrolyte secondary battery
JP2003031224A (en) Light-weight current collector for secondary battery
US20140315084A1 (en) Method and apparatus for energy storage
JP2010199022A (en) Method of manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
JP4039893B2 (en) High capacity negative electrode
US20220093907A1 (en) Secondary battery
CN115882047A (en) All-solid-state battery and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080227