JPWO2003100458A1 - レーザードップラーレーダ装置 - Google Patents

レーザードップラーレーダ装置 Download PDF

Info

Publication number
JPWO2003100458A1
JPWO2003100458A1 JP2004507863A JP2004507863A JPWO2003100458A1 JP WO2003100458 A1 JPWO2003100458 A1 JP WO2003100458A1 JP 2004507863 A JP2004507863 A JP 2004507863A JP 2004507863 A JP2004507863 A JP 2004507863A JP WO2003100458 A1 JPWO2003100458 A1 JP WO2003100458A1
Authority
JP
Japan
Prior art keywords
signal
frequency
code sequence
optical
radar device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004507863A
Other languages
English (en)
Other versions
JP3872082B2 (ja
Inventor
俊平 亀山
俊平 亀山
公雄 浅香
公雄 浅香
俊行 安藤
俊行 安藤
平野 嘉仁
嘉仁 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2003100458A1 publication Critical patent/JPWO2003100458A1/ja
Application granted granted Critical
Publication of JP3872082B2 publication Critical patent/JP3872082B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

受信光の位相揺らぎがある場合においても高いS/N比での計測が可能で、且つ、受信光に複数のレンジからの信号成分が重畳する場合においても計測レンジにおける風速の検出を行うことを可能にするもので、光源と、符号系列に基づいた変調信号を発生する符号系列発生器と、光源からの光信号を変調信号に基づいて2つの周波数によりFSK変調する光変調器と、FSK変調された光信号を大気中に送信すると共に、大気中からの複数のレンジからの受信光を受信する送受光学部と、光源からの光信号を分配してローカル光を発生する光分配器と、受信光とローカル光とのヘテロダイン検波を行うヘテロダインレシーバと、検波された信号をA/D変換する変換器と、その変換信号を処理する信号処理部とを備え、信号処理部は、大気中における1つの計測レンジ以外の他のレンジからの信号成分をキャンセルし、計測レンジにおけるドップラー周波数の検出を行う。

Description

技術分野
この発明は、レーザー光を大気中に送信して反射体の移動速度を検出するレーザードップラーレーダ装置に関するものであり、特に、反射体が例えば大気中に散在するエアロゾルであり、大気中の複数のレンジからの信号が重畳されて受信される場合に、所望の計測レンジからの信号成分のみを抽出し、計測レンジにおける風速を、高いS/N比で計測するものに関する。
背景技術
従来のこの種の技術としては、所望の距離分解能に相当する時間幅を持つパルス光を大気中に送信し、計測レンジからの受信光が受信される時間帯に時間ゲートをかけ、この時間ゲートにおけるスペクトル解析を行うことで風速のドップラー周波数を検出するものが広く知られている。
この方法を用いて高いS/N比での計測を行うには、高いピークパワーを持つパルス光を送受することが考えられる。しかし、現存のレーザー装置により送信可能なパルス光のピークパワーには制限がある。より高いS/N比での計測を行うには、変調された光信号を大気中に送信し、受信信号を復調する際のパルス圧縮効果によりS/N比を改善する方法を用いることが考えられる。
このような方法を用いたレーザードップラーレーダ装置の一例として、特開2000−338246号公報に示されたものが知られている。図21は、特開2000−338246号公報に示されたレーザードップラーレーダ装置の構成図である。図21において、1は光源、2は光分配器、3は光変調器、4は符号系列発生器、5は光増幅器、6は送受光学部、7はヘテロダインレシーバ、13は信号処理部、17は相関器、18は可変遅延器である。
次に、図21に示すレーザードップラーレーダ装置の動作について説明する。光源1からの光信号は、光分配器2により2分配され、一方は光変調器3に、他方はヘテロダインレシーバ7に送られる。光変調器3に送られた信号は、符号系列発生器4からの符号系列に基づいた変調信号により位相変調される。符号系列発生器4からの変調信号は、可変遅延器18により、光信号の計測レンジまでの往復時間に相当する時間だけ遅延された後、相関器18に送られる。
符号系列変調された信号は、光増幅器5により増幅された後、送受光学部6を介して大気中に送信される。例えばエアロゾルのような大気中の反射体からの受信光は、送受光学部6を介して受信され、ヘテロダインレシーバ7によりヘテロダイン検波される。
ヘテロダイン検波された信号は、相関器18に送られ、時間遅延が施された変調信号と積算されることにより、相関がとられる。このとき、計測レンジからの受信光信号成分のみが前記変調信号と相関を有するので、相関器17からの相関信号の周波数は、計測レンジにおけるドップラー周波数となる。次に、信号処理部13により相関器17からの相関信号の周波数解析を行い、ドップラー周波数の検出を行う。
以上の動作より、受信光に複数のレンジからの信号が重畳する場合でも、計測レンジからの成分を抽出し、計測レンジにおけるドップラー周波数を検出するとしている。
しかしながら、大気中からの受信光は、実際にはランダムな位相揺らぎを持つため、位相変調を施した光信号を送信しても、受信光においては変調位相が保存されない。したがって、相関器17において相関がとられた際に、計測レンジからの信号成分を抽出することができないという問題があった。
なお、特開2000−338246号公報では、変調方式は、位相変調でなくとも、周波数変調でもよいと記載されている。しかし、前記動作における復調動作、つまり、相関器17でのかけ算により計測レンジからの信号成分のみを抽出するには、変調方式は位相変調である必要があった。特開2000−338246号公報では、変調方式が周波数変調である場合の具体的な復調方法を持ち合わせていなかった。
また、周波数変調された光信号を大気中に送信するレーザードップラーレーダ装置としては、特開平3−75581号公報に示されたものが知られている。図22は、特開平3−75581号公報に示されたレーザードップラーレーダ装置の構成図である。図22において、図21と同一部分は同一符号を付してその説明は省略する。新たな符号として、1aおよび1bは光源、21および22は光分配器、15は光周波数管理器、19はバンドパスフィルタ、20はハイパスフィルタである。図示はしないが、特開平3−75581号公報では、大気中の1箇所からの受信光が受信される場合、つまり、反射体が航空機、自動車等のハードターゲットである場合について記載されている。
次に、図22に示すレーザードップラーレーダ装置の動作について説明する。符号系列発生器4からの符号系列に基づいた変調信号にしたがって、光源1aからFSK(Frequency Shift Keying)された光信号が送信光として送信される。前記変調信号は、可変遅延器18により、光信号の計測レンジまでの往復時間に相当する時間だけ遅延された後、光源1bに送られ、光源1bから、FSKされた光信号がローカル光として生じる。
光分配器21と22を介した送信光の一部とローカル光の一部は、光周波数管理器15に送られ、光源1aと光源1bから発生する光信号の周波数差が一定となるように光源1bから発生する光信号の周波数が管理される。
送信光は、送受光学部6を介して大気中に送信される。大気中の反射体からの受信光は、送受光学部6を介して受信される。受信光とローカル光は、ヘテロダインレシーバ7によりヘテロダイン検波される。ヘテロダインレシーバ7からの信号は2分され、バンドパスフィルタ19とハイパスフィルタ20にそれぞれ送られる。
以上の動作を可変遅延器18における遅延時間を変化させながら行い、ハイパスフィルタ20の出力が最大となる遅延時間からターゲットまでの距離を検出する。また、バンドパスフィルタ19の出力信号を周波数解析することから、ターゲットの移動速度を検出する。
しかしながら、特開平3−75581号公報に示されたレーザードップラーレーダ装置は、上述したように、反射体が航空機、自動車等のハードターゲットである場合に、その移動速度を検出するものであった。特開平3−75581号公報に示されたレーザードップラーレーダ装置では、反射体が例えば大気中のエアロゾルであり、受信光に複数のレンジからの信号が重畳する場合において、所望の計測レンジからの信号成分のみを抽出し、計測レンジにおける風速を検出することはできなかった。
この発明は前記事情に鑑みてなされたもので、FSK(Frequency Shift Keying)方式を用いて受信光の位相揺らぎがある場合においてもパルス圧縮効果による高いS/N比での計測を可能とし、且つ、受信光に複数のレンジからの信号成分が重畳する場合においても所望の計測レンジからの成分を抽出して計測レンジにおける風速の検出を行うものである。
発明の開示
この発明に係るレーザードップラーレーダ装置は、光源と、+もしくは−の符号からなる符号系列に基づいた変調信号を発生する符号系列発生器と、前記光源からの光信号を、前記符号系列発生器からの変調信号に基づいて2つの周波数によりFSK(Frequency Shift Keying)変調する光変調器と、前記光変調器によりFSK変調された光信号を大気中に送信すると共に、大気中からの複数のレンジからの受信光を受信する送受光学部と、前記光源からの光信号を分配してローカル光を発生する光分配器と、前記送受光学部からの受信光と前記光分配器からのローカル光とのヘテロダイン検波を行うことにより光信号を電気信号に変換するヘテロダインレシーバと、前記ヘテロダインレシーバからの電気信号をA/D変換するA/D変換器と、前記A/D変換器によりA/D変換した信号を信号処理する信号処理部とを備え、前記信号処理部は、大気中における1つの計測レンジ以外の他のレンジからの信号成分をキャンセルし、計測レンジにおけるドップラー周波数の検出を行う機能を有する。
また、前記光変調器は、変調信号の+と−に対応して2つの周波数f1とf2だけ前記光源からの光信号の周波数f0に対して周波数シフトさせる。
また、前記光源の数を2つとし、前記光変調器は、前記符号系列発生器からの変調信号に基づいて2つの光源からの光信号の一方を選択して出力する光スイッチでなる。
また、前記符号系列は、M系列である。
また、前記符号系列は、相補系列であり、前記光変調器は、パルス変調機能を有する。
また、前記信号処理部は、前記A/D変換機によりA/D変換した信号を符号系列の1ビットに対応する時間幅毎にゲート分割するゲート分割機能と、前記ゲート分割機能により分割された各ゲートに含まれる信号のパワースペクトルを求めるスペクトル解析機能と、前記スペクトル解析機能により求められた各ゲートのスペクトルに対し、送信時に用いた符号系列に対応した処理を行う処理機能と、符号系列に対応した前記処理機能により処理が施された各ゲートの処理結果をゲート間および符号系列間にわたって積算する積算機能と、前記積算機能による積算結果における負の周波数領域の信号強度に−1を乗じ、絶対値が等しい正の周波数の信号強度に前記−1を乗じた信号強度を足し合わせる機能とを有し、風速のドップラー周波数をfdとし、前記パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとする。
また、周波数が(f1+f2)/2の発振信号を出力する第1の発振器と、前記ヘテロダインレシーバからの出力信号と前記第1の発振器からの発振信号とをミキシングする第1のミキサと、前記第1のミキサの出力を2分配する0°分配器と、周波数が(f1−f2)/2の発振信号を出力する第2の発振器と、前記第2の発振器からの発振信号を2分配する90°分配器と、前記0°分配器からの一方の出力と前記90°分配器からの一方の出力とをミキシングする第2のミキサと、前記0°分配器からの他方の出力と前記90°分配器からの他方の出力とをミキシングする第3のミキサとを備え、前記第2と第3のミキサの出力により、パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する。
また、周波数が(f1+f2)/2の発振信号を出力する第1の発振器と、前記ヘテロダインレシーバからの出力信号と前記第1の発振器からの発振信号とをミキシングする第1のミキサとを備えると共に、前記信号処理部は、求められたパワースペクトルの周波数軸の値から(f2−f1)/2の値を差し引く機能を有し、前記第1のミキサの出力と前記信号処理部により、パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する。
さらに、前記信号処理部は、前記パワースペクトルの周波数軸の値から(f2+f1)/2の値を差し引く機能と、正の周波数領域について周波数に関して−(f2−f1)/2だけシフトさせる機能と、負の周波数領域について周波数に関して(f2−f1)/2だけシフトさせ、さらに周波数に関する符号を反転する機能とを有し、パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する。
発明を実施するための最良の形態
実施の形態1.
この発明の実施の形態1に係るレーザードップラーレーダ装置について図1から図12を用いて説明する。図1は、この発明の実施の形態1に係るレーザードップラーレーダ装置の構成図である。図1において、1は光源、2は光分配器、3は光変調器、4は符号系列発生器、5は光増幅器である。6は光サーキュレータとしての機能を有する送受光学部であり、この送受光学部6を介して送信光が大気中に対して送信される。7はヘテロダインレシーバ、81、82および83はミキサ、91と92は発振器、10は0°分配器、11は90°分配器である。また、12はA/D変換器、13は信号処理部である。
図1において、光源1は、光分配器2に接続されており、光分配器2の2つの出力の内の一方はヘテロダインレシーバ7に接続されている。他の一方は光変調器3に接続されている。光変調器3は、符号系列発生器4と光増幅器5とに接続されている。符号系列発生器4は、A/D変換器12に接続されている。光増幅器5は、送受光学部6に接続されている。送受光学部6は、ヘテロダインレシーバ7に接続されている。ヘテロダインレシーバ7は、0°分配器10に接続されている。0°分配器10の入力はミキサ81に接続されている。ミキサ81は、発振器91と0°分配器10に接続されている。0°分配器10の2つの出力は、ミキサ82と83にそれぞれ接続されている。発振器92は、90°分配器11に接続されている。90°分配器11の2つの出力は、ミキサ82と83にそれぞれ接続されている。ミキサ82と83は、A/D変換器12に接続されている。A/D変換器12は、信号処理部13に接続されている。
図1において、光源1と光分配器2との間、光分配器2とヘテロダインレシーバ7との間、光分配器2と光変調器3との間、光変調器3と光増幅器5との間、光増幅器5と送受光学部6との間、送受光学部6とヘテロダインレシーバ7との間は光ファイバケーブルにより接続されている。他の部品間は電線ケーブルにより接続されている。
また、光源1は、連続波で周波数f0の光信号を発生する機能を有している。符号系列発生器4は、符号系列に基づいた変調信号を発生して光変調器3に送信する機能を有している。また、変調信号の送信タイミングを知らせるトリガ信号をA/D変換器12に送信する機能を有している。符号系列の1ビットに対応する時間幅τは、光の伝搬速度をcとし、計測における所望の距離分解能をdとすると、τ=2d/cとなる。
光変調器3は、符号系列発生器4からの変調信号に基づいて光信号を変調する機能を有している。光変調器3は、変調信号の+と−に対応して、2つの周波数f1とf2だけ光源1から発生した光信号の周波数f0に対して周波数シフトさせる。したがって、光変調器3の出力信号の周波数はFSK(Frequency Shift Keying)され、符号系列の+と−に対応して、f0+f1とf0+f2となる。また、光変調器3は、変調信号が入力されている時間のみ出力がONとなる、パルス変調機能も有している。1例として、符号系列が+、−、+、−の場合における光変調器3からの出力信号の模式図を図2に示す。
この発明において、符号系列発生器4で発生する符号系列は、文献[1](宮川他著、符号理論、昭晃堂発行、第5版、pp.476−499)に示されている、「鋭い相関関数を持つ系列」を用いる。文献[1]に示されている「鋭い相関関数を持つ系列」の例としては、相補系列、M系列等が存在するが、この発明の実施の形態1においては、符号系列発生器4で発生する符号系列が、相補系列の場合について述べる。以下では、相補系列の具体的1例として、
+++−(符号系列1)
++−+(符号系列2)
の2つの系列を用いる場合について述べる。
さらに、この発明におけるミキサ81、82、83は、入力信号の周波数と発振器91,92から発振信号の周波数との差の絶対値に相当する周波数の信号を出力する機能を有する。
次に、この発明の実施の形態1に係るレーザードップラーレーダ装置の動作を説明する。まず、光源1から連続波で周波数f0の光信号を送信し、光分配器2によりこの信号を分割する。分割した2つの信号の内、一方はローカル光としてヘテロダインレシーバ7に送られる。
この発明の実施の形態1においては、相補系列である2つの系列、符号系列1および符号系列2を用いるが、まず、符号系列1が選択され、符号系列発生器4から、この符号系列に基づいた変調信号が光変調器3に送信される。また、変調信号の送信タイミングを知らせるトリガ信号をA/D変換器12に送信する。
光分配器2の2つの出力の一方は、光変調器3に送られる。光変調器3は、符号系列発生器4からの変調信号の+と−に対応して、2つの周波数f1とf2だけ光源1から発生した光信号の周波数f0に対して周波数シフトさせる。ここで、0≦f1<f2とする。また、変調信号が入力されている時間のみ光変調器3の出力がONとなり、パルス変調される。光変調器3の出力信号の周波数はFSK(Frequency Shift Keying)され、符号系列の+と−に対応して、f0+f1とf0+f2となる。また、光変調器3からの出力信号のパルス幅τpは、変調信号の時間幅となる。つまり、符号系列の1ビットに対応する時間幅τと、符号系列のビット数Nとから、τp=τ×Nで表される値となる。
光変調器3からの出力信号は、光増幅器5により増幅される。光増幅器5からの信号は、送受光学部6を介して大気中に送信光として送信される。
大気中に送信された送信光は、例えばエアロゾルといった大気中の反射体により反射された後に受信される。このとき、受信光の周波数は、送信光の周波数に対し、送信方向における風速のドップラー周波数だけシフトした値となる。ここで、風速のドップラー周波数をfdとすると、符号+(シフト周波数f1)に対応する送信光に関する反射光の周波数はf0+f1+fdとなり、符号−(シフト周波数f2)に対応する送信光に関する反射光の周波数はf0+f2+fdとなる。
ここで、大気中からの受信光について図3を用いて説明する。図3は、大気中からの受信光について説明を行うための図である。図3において、14はレーザードップラーレーダ装置である。また、R−3〜Rは大気中のレンジの一部であり、ここではRを計測レンジとする。各レンジの距離幅は、計測における所望の距離分解能dとする。図3中、d1はレーザードップラーレーダ装置14から計測レンジRまでの距離である。大気中に送信された送信光は、計測レンジRだけでなく、計測レンジ以外の他のレンジ、例えばR−3〜R−1、R〜Rからも反射される。したがって、受信光には、大気中における計測レンジからの反射光だけでなく、計測レンジ以外の他のレンジからの反射光が重畳している。
ここで、レンジR−3、R−2、R−1、R、R、R、Rにおける風速のドップラー周波数fdを、fd−3、fd−2、fd−1、fd、fd、fd、fdとする。つまり、受信光は、送信光の周波数に対しこれらのドップラー周波数だけシフトした周波数を持つ信号が重畳している。本明細書において、記号fdとは、各レンジにおいて異なる値を持つ風速のドップラー周波数を総称するものとする。なお、この発明において、各レンジにおける風速のドップラー周波数fdと、各レンジにおける送信光に対する反射率は、計測時間内において一定であるとする。
受信光は、送受光学部6を介してヘテロダインレシーバに送られる。ヘテロダインレシーバ7においては、ローカル光と受信光とがヘテロダイン検波されて光信号が電気信号に変換され、2つの信号のビート信号が出力される。符号+(シフト周波数f1)に対応する送信光に関するビート信号の周波数はfd+f1となり、符号−(シフト周波数f2)に対応する送信光に関するビート信号の周波数はfd+f2となる。
前記ビート信号は、ミキサ81に送られ、発振器91からの発振信号とミキシングされる。発振器91からの発振信号の周波数は(f1+f2)/2としておく。なお、f1およびf2の値は、風速のドップラー周波数fdの取りうる値全てについて、
(f2−f1)/2>fd
を満足するように設定しておく。このとき、符号+(シフト周波数f1)に対応する送信光に関するミキサ81からの出力信号の周波数は、
|f1+fd−(f1+f2)/2|=(f2−f1)/2−fd
となり、符号−(シフト周波数f2)に対応する送信光に関する前記ミキサからの出力信号の周波数は、
|f2+fd−(f1+f2)/2|=(f2−f1)/2+fd
となる。
前記ミキサ81からの出力信号は、0°分配器10により2分された後、2つのミキサ82と83に送られる。発振器92からは周波数(f2−f1)/2の発振信号が発振され、90°分配器11に送られる。90°分配器11の出力は、2つのミキサ82と83に送信され、0°分配器10からの2つの出力信号とミキシングされる。ミキサ82と83によるミキシングは、IQ検波に対応し、2つのミキサ82と83からの信号は、例えばミキサ82からの出力信号をI信号、ミキサ83からの出力信号をQ信号としたIQ信号と見なせる。このとき、符号+(シフト周波数f1)に対応する送信光に関するミキサ82および83からのIQ信号の周波数は、
(f2−f1)/2−fd−(f2−f1)/2=−fd
となり、符号−(シフト周波数f2)に対応する送信光に関する前記ミキサからの出力信号の周波数は、
(f2−f1)/2+fd−(f2−f1)/2=+fd
となる。ここで、周波数の+と−を識別できるのは、IQ検波を行ったことにより生じた効果である。
以上のように、ミキサ82および83からのIQ信号の周波数は、変調符号の+と−に対応して、−fdおよび+fdとなる。2つのミキサ82および83からのIQ信号は、A/D変換器12に送られる。
A/D変換器12は、ミキサ82および83からのIQ信号をA/D変換する。ここで、レーザードップラーレーダ装置14から距離d1に存在する計測レンジRまでの光信号の往復時間をτrとする。A/D変換を開始するタイミングは、符号系列発生器4からのトリガ信号を受信してから、時間τrだけ遅延したタイミングとする。A/D変換をストップするタイミングは、A/D変換を開始したタイミングから、光変調器3からの出力信号のパルス幅τpだけ遅延した時間とする。A/D変換する時間帯を、図4に模式的に示す。図4(a)は、光変調器3の出力信号の模式図、図4(b)は、A/D変換器12の動作タイミングを示す模式図である。なお、光変調器3から計測レンジRまでの光信号の往復時間は、レーザードップラーレーダ装置14から計測レンジRまでの光信号の往復時間をτrに、レーザードップラーレーダ装置14内における光信号の伝搬時間を足した値であるが、レーザードップラーレーダ装置14内における光信号の伝搬時間は、τrの値と比較して無視出来る程度の小さな値であるので、図4においてもレーザードップラーレーダ装置14内における光信号の伝搬時間は考慮していない。
A/D変換された信号は、信号処理部12に逐次送られ、図には示さないが信号処理部13内のメモリに保存される。
以上に述べた動作は、符号系列発生器4において発生する符号が符号系列1の場合についてのものであった。符号系列発生器4において符号系列2を発生する場合についても、符号系列1を発生する場合と同じ動作を行う。A/D変換された信号は、信号処理部12に逐次送られ、信号処理部13内の図示しないメモリに保存される。
次に、信号処理部13の動作について説明する。まず、符号系列1と符号系列2の各々の符号を用いて送受信を行った各々の場合のA/D変換した信号について、符号系列の1ビットに対応する時間幅τ毎に符号系列のビット数のゲートに分割する(処理1)。ここでは、符号系列のビット数が4であるので、4つのゲートに分割してこれらのゲートをg、g、g、gとする。符号系列1と符号系列2の各々の符号を用いて送受信を行う場合において、A/D変換器12によりA/D変換する時間帯の信号には、レンジR−3、R−2、R−1、R、R、R、Rの7つのレンジからの信号成分が含まれる。
例えば、符号系列1(+++−)を用いて送受信を行った場合において、
ゲートgに含まれる信号には、
レンジR−3からの符号−に対応した信号成分と、
レンジR−2からの符号+に対応した信号成分と、
レンジR−1からの符号+に対応した信号成分と、
レンジRからの符号+に対応した信号成分
が含まれている。
また、符号系列1(+++−)を用いて送受信を行った場合において、
ゲートgに含まれる信号には、
レンジRからの符号−に対応した信号成分と、
レンジRからの符号+に対応した信号成分と、
レンジRからの符号+に対応した信号成分と、
レンジRからの符号+に対応した信号成分
が含まれている。
処理1を行った後の分割された各ゲートにおいて、前記7つのレンジからの信号成分が符号系列発生器4において発生した符号系列の+と−のいずれの符号に対応した信号であるかの一覧を示したものを図5に示す。図5(a)は、符号系列1に関するものであり、図5(b)は、符号系列2に関するものである。図5において、各ゲート中に関し対応する信号成分が含まれないレンジについては0を記入している。
次に、各分割されたゲートg〜gに含まれる信号を、FFTもしくはDFTといったスペクトル解析手段を用いてスペクトル解析することからパワースペクトルが求められる(処理2)。このとき、符号+に対応したスペクトルは、−fdに信号強度を持つ関数となり、符号−に対応したスペクトルは、+fdに信号強度を持つ関数となる。図6は、符号+と−に対応したパワースペクトルを模式的に示した図であり、図6(a)は、符号+に対応したパワースペクトル、図6(b)は、符号−に対応したパワースペクトルである。図6においてはドップラー周波数fdの値が正の値の場合について示されている。
図7は、符号系列1を用いて送受信を行った場合についてg〜gの各ゲートに対して処理2を行って求めたパワースペクトルを、各レンジからの成分に分割して模式的に示した図である。図7(a)はゲートg、図7(b)はゲートg、図7(c)はゲートg、図7(d)はゲートgに関する図である。また、図8は、符号系列2を用いて送受信を行った場合についてg〜gの各ゲートに対して処理2を行ってパワースペクトルを、各レンジからの成分に分割して模式的に示した図である。図8(a)はゲートg、図8(b)はゲートg、図8(c)はゲートg、図8(d)はゲートgに関する図である。図7および図8においては、各レンジにおけるドップラー周波数fd−〜fdが全て正の値の場合について示しているが、これらの値は必ずしも正の値である必要はない。また、図7においては、レンジR−3からの信号成分のパワースペクトル信号強度をP−3で、レンジR−2からの信号成分のパワースペクトル信号強度をP−2で、レンジR−1からの信号成分のパワースペクトル信号強度をP−1で、レンジR−0からの信号成分のパワースペクトル信号強度をP−0で、レンジRからの信号成分のパワースペクトル信号強度をPで、レンジRからの信号成分のパワースペクトル信号強度をPで、レンジRからの信号成分のパワースペクトル信号強度をPで、それぞれ表している。
次に、各ゲートのスペクトルに対し、送信時に用いた符号系列に対応した処理が行われる(処理3)。処理3は、この発明の実施の形態1において具体的には次のように行われる。符号系列1に関する信号については4つのゲートg、g、g、gのパワースペクトルに対し符号+、+、+、−に対応した処理が行われ、符号系列2に関する信号については4つのゲートg、g、g、gのスペクトルに対し符号+、+、−、+に対応した処理が行われる。この処理において、+の符号に対応するゲートについては、パワースペクトルはそのままとし、−の符号に対応するゲートについては、周波数0を対称にパワースペクトルを反転する。図7および図8に示した符号系列1および符号系列2を用いた場合の各ゲートのパワースペクトルに対し、処理3を行った結果を図9および図10に示す。
次に、処理3が施された各ゲートのパワースペクトルをゲート間および符号系列間にわたって積算する(処理4)。図9および図10の処理3を施されたパワースペクトルに対し、処理4の積算を行った結果を図11に示す。図11では、積算結果を各レンジからの成分毎に分割して示している。
次に、処理4の結果における負の周波数領域の信号強度に−1を乗じ、絶対値が等しい正の周波数の信号強度に前記−1を乗じた信号強度を足し合わせる、つまり、周波数0を境に負の周波数領域を正の周波数領域に折り返して信号強度を足し合わせる(処理5)。この処理5を図11に示したスペクトルに対して行い、正の周波数領域のみに着目して表示した結果を図12に示す。
図12から、計測レンジRからの成分、つまり、ドップラー周波数fdのパワースペクトルの成分のみが残り、他のレンジに関するパワースペクトルは捕相殺されることが分かる。これにより、計測レンジRにおけるドップラー周波数fdの検出、つまり、計測レンジRにおける風速の検出を行うことができる。
以上に述べた信号処理部13の動作において、計測レンジR以外のレンジからの信号成分を相殺して0にすることができるのは、相補系列が持つ、2つの系列の自己相関関数の和において、レンジサイドローブが相殺されて0になるという性質によるものである。
なお、図12においては、足しあわされた信号強度が負の値となっている。信号強度が負の値となることはアナログ領域ではありえない。しかし、デジタル領域において処理5の演算を行うことで演算結果としては負の値となりうる。
また、処理5の結果において着目するのは正の周波数領域のみであり、負の周波数領域を見ることはない。しかし、計測レンジRにおけるドップラー周波数fdが正の値であれば、図12に示したように処理5による信号強度の計算結果が負の値となり、fdが負の値であれば、処理5による信号強度の計算結果は正の値となる。したがって、処理5の結果において、信号強度の絶対値がピークとなるピーク周波数と、ピーク周波数における信号強度の正負の値とから、計測レンジRにおけるドップラー周波数fdの絶対値だけでなく、ドップラー周波数fdが正負いずれの値であるのかも検出することができる。
以上述べたように、この発明の実施の形態1に係るレーザードップラーレーダ装置によれば、反射体が大気中のエアロゾルのようないわゆるソフトターゲットであり、計測レンジだけでなく、計測レンジ以外の他のレンジからの信号が重畳して受信される場合であっても、他のレンジからの信号成分をキャンセルし、計測レンジからの信号成分に関するドップラー周波数の検出を行うことができる。つまり、反射体が大気中のエアロゾルである場合には、風速の検出を行うことができる。
さらに、この発明の実施の形態1においては、信号処理部12の動作中、処理4および処理5において、「符号系列のビット数(=4)」×「符号系列数(=2)」=8回の積算処理を行っている。このことは、処理5の結果である図12において、信号強度の絶対値が8Pであることからも分かる。つまり、この発明は、送信光のピーク強度に対して8倍のピーク強度を持つ送信光を等価的に送信する効果、別の言い方をすると、パルス圧縮効果を有していることが分かる。したがって、同じピーク強度で1ビットの単一周波数パルスを送受する場合と比較して高いS/N比を得ることができる。
この発明の実施の形態1においては、ビット数4で符号系列数2の相補系列を用いた場合について説明を行ったが、ビット数をさらに大きくすれば処理4における積算によるS/N比改善効果がさらに向上する。
また、この発明の実施の形態1においては、変調方式としてFSK(Frequency Shift Keying)を用いている。この発明では、大気中からの受信光の位相がランダムに揺らぐ場合においても、ドップラー周波数と各レンジにおける反射率が計測時間において一定であれば所望の効果を実現できる。何故なら、信号処理部13の動作中処理2において位相情報を除去したパワースペクトルを求めてこの関数をその後の処理(処理3〜処理5)に用いており、大気中からの受信光の位相がランダムに揺らぎ、処理1において分割して得た各ゲートの信号の位相がゲート間でランダムに変動する場合においても、その後の処理には関係ないからである。
この発明の実施の形態1においては、符号系列として相補系列を用いたが、文献[1]に示されている「鋭い相関関数を持つ系列」における他の系列、例えば、nを整数として、2−1ビットのM系列を用いてもよい。M系列の自己相関関数においては、レンジサイドローブの高さが0とはならないが、メインローブの高さと比較して1/nの値まで低減される。したがって、符号系列としてnの値を大きくしたM系列を用い、符号系列発生器4からA/D変換器12へのトリガ信号の送信タイミングを符号系列発生器4の動作開始時、つまり、符号系列発生器4から光変調器3に対する送信開始時とし、A/D変換器におけるA/D変換開始時をトリガ信号が入力されてから計測レンジRまでの往復時間τrだけ遅延した時間とし、A/D変換ストップ時を計測終了時とし、信号処理部13において同様の処理を行えば、処理結果においては計測レンジRからの信号が支配的となる。この場合、無限に繰り返すM系列にしたがって変調された連続波的な送信光を送信するので、光変調器3がパルス変調機能を有する必要がなくなるという効果が生じる。
実施の形態2.
この発明の実施の形態2に係るレーザードップラーレーダ装置について図13から図14を用いて説明する。図13は、この発明の実施の形態2に係るレーザードップラーレーダ装置の構成図である。図13においては、図1におけるミキサ82および83と、発振器92と、0°分配器10と、90°分配器11とが除去され、単一のミキサ8と発振器9を用い、ミキサ8がA/D変換器12に直接接続され、ミキサ8の出力信号がA/D変換される構成となっている。
この発明の実施の形態1においては、符号+(シフト周波数f1)に対応する送信光に関するミキサ8からの出力信号の周波数は、
|f1+fd−(f1+f2)/2|=(f2−f1)/2−fd
となり、符号−(シフト周波数f2)に対応する送信光に関する前記ミキサ8からの出力信号の周波数は、
|f2+fd−(f1+f2)/2|=(f2−f1)/2+fd
となっていた。そして、これらの周波数から(f2−f1)/2の値をアナログ段階で差し引くために、図1に示す実施の形態1では、ミキサ82および83によるミキシングを行っていたが、この実施の形態2に係るレーザードップラーレーダ装置は、この(f2−f1)/2の値を差し引くという動作を、アナログ段階でなく、信号処理部13における動作として行うものである。この信号処理部13の動作について次に説明する。
信号処理部13においては、まず、実施の形態1と同様の処理1が行われる。次に、実施の形態1に示したのと同様の処理2が行われる。次に、処理2により求めたパワースペクトルの周波数軸の値から(f2−f1)/2の値を差し引く(処理2d)。この処理2dを行う前後のパワースペクトルの模式図を図14に示す。図14(a)は符号+に対応した模式図であり、図14(b)は符号−に対応した模式図である。
この処理2dを行うことにより、実施の形態1で行った、ミキサ82および83によるミキシングと等価な処理を行ったこととなる。したがって、この処理2dを行った段階における、符号+と−に対応したパワースペクトルを模式的に示した図は図6と同じとなり、符号系列1を用いて送受信を行った場合についてg〜gの各ゲートに対して処理2を行って求めたパワースペクトルを、各レンジからの成分に分割して模式的に示した図は図7と同じとなる。したがって、この処理2dを行った後に処理3〜処理5を行うことにより、実施の形態1に示したのと同じ効果を得ることができる。
実施の形態2に示したレーザードップラーレーダ装置は、実施の形態1に示したレーザードップラーレーダ装置と比較して、ミキサ82および83と、発振器92と、0°分配器10と、90°分配器11とを用いる必要がないので、構成部品が少なく、システム全体を廉価にするという効果が生じる。
実施の形態3.
この発明の実施の形態3に係るレーザードップラーレーダ装置について図15から図17を用いて説明する。図15は、この発明の実施の形態3に係るレーザードップラーレーダ装置の構成図である。図15においては、図13におけるミキサ8と、発振器9とが除去され、ヘテロダインレシーバ7がA/D変換器12に直接接続され、ヘテロダインレシーバ7からのビート信号がA/D変換される構成となっている。
この発明の実施の形態1および実施の形態2においては、符号+に対応する送信光に関するビート信号の周波数はfd+f1となり、符号−に対応する送信光に関するビート信号の周波数はfd+f2となっていた。そして、これらの周波数からf1およびf2の値をアナログ段階で差し引くために、ミキサ81、82および83によるミキシングを行っていたが、この実施の形態3に係るレーザードップラーレーダ装置では、このf1およびf2の値を差し引くという動作を、アナログ段階でなく、信号処理部13における動作として行うものである。この信号処理部13の動作について次に説明する。
信号処理部13においては、まず、実施の形態1と同様の処理1が行われる。次に、実施の形態1に示したのと同様の処理2が行われる。次に、処理2により求めたパワースペクトルの周波数軸の値から(f2+f1)/2の値を差し引く(処理2dd)。この処理2ddを行う前後のパワースペクトルの模式図を図16に示す。図16(a)は符号+に対応した模式図であり、図16(b)は符号−に対応した模式図である。次に、処理2ddの処理結果において、正の周波数領域については周波数に関しては−(f2−f1)/2だけシフトさせる。また、負の周波数領域については周波数に関して(f2−f1)/2だけシフトさせ、さらに周波数に関する符号を反転する(処理2ddd)。この処理2ddを行う前後のパワースペクトルの模式図を図17に示す。図17(a)は符号+に対応した模式図であり、図17(b)は符号−に対応した模式図である。この処理2ddおよび処理2dddを行うことにより、実施の形態1で行った、ミキサ81、82および83によるミキシングと等価な処理を行ったこととなる。したがって、この処理2dddを行った段階における、符号+と−に対応したパワースペクトルを模式的に示した図は図6と同じとなり、符号系列1を用いて送受信を行った場合についてg〜gの各ゲートに対して処理2を行って求めたパワースペクトルを、各レンジからの成分に分割して模式的に示した図は図7と同じとなる。したがって、この処理2dを行った後に処理3〜処理5を行うことにより、実施の形態1に示したのと同じ効果を得ることができる。
実施の形態3に示したレーザードップラーレーダ装置は、実施の形態1に示したレーザードップラーレーダ装置と比較して、ミキサ81、82および83と、発振器91および92と、0°分配器10と、90°分配器11とを用いる必要がないので、構成部品が少ない。また、実施の形態2に示したレーザードップラーレーダ装置と比較して、ミキサ81と、発振器91を用いる必要がないので、構成部品が少ない。したがって、システム全体を廉価にするという効果が生じる。
実施の形態4.
この発明の実施の形態4に係るレーザードップラーレーダ装置について図18から図20を用いて説明する。図18は、この発明の実施の形態4に係るレーザードップラーレーダ装置の構成図である。図18においては、2つの光源が示されており、それぞれ光源1a、1bとして示されている。また、3つの光分配器が示されており、それぞれ光分配器21、22、23として示されている。なお、図1に示す実施の形態1と同一部分は同一符号を付してその説明は省略する。さらに、新たな符号として、15は光周波数管理器、16は光スイッチである。
図18において、光源1aは光分配器21に接続されており、光源1bは光分配器22に接続されている。光分配器21の2つの出力の内の一方は光周波数管理器15に接続されており、他の一方は光スイッチ16に接続されている。光分配器22の2つの出力の内の一方は光周波数管理器15に接続されており、他の一方は光分配器23に接続されている。光分配器23の2つの出力の内の一方は光スイッチ16に接続されており、他の一方はヘテロダインレシーバ7に接続されている。光周波数管理器15の出力は光源1aに接続されている。光スイッチ16は光増幅器5と符号系列発生器4とに接続されている。
図18において、光源1aは、連続波で周波数f2の光信号を発生する。光源1bは連続波で周波数f0の光信号を発生する。
符号系列発生器4は、符号系列に基づいた変調信号を発生して光スイッチ16に送信する。また、変調信号の送信タイミングを知らせるトリガ信号をA/D変換器12に送信する。
光スイッチ16は、符号系列発生器4からの変調信号に基づいて2つの光信号の一方を選択して出力する。したがって、光変調器3の出力信号の周波数はFSK(Frequency Shift Keying)され、符号系列の+と−に対応して、f0とf2となる。
光周波数管理器15は、2つの光源1aおよび1bからの光信号の周波数差を管理し、周波数差が一定値(f2−f0)を保持するよう、光源1aに対し制御をかける。これにより、光源1aから発生する光信号の周波数が不安定で時間的に変動する場合においても、この変動を自動補償できるという効果が生じる。
光源1bからの光信号の一部(光分配器23からの2つの出力の一方)は、ローカル光としてヘテロダインレシーバ7に送られる。
以上の動作により、周波数f0とf2でFSKされた送信光および周波数f0のローカル光が生成された。
実施の形態4における以後の動作については、実施の形態1における、f1=0とした場合の動作と同じ動作を行う。これにより、実施の形態1で得られたのと同じ効果を得ることができる。
周波数f0とf2でFSKされた送信光および周波数f0のローカル光を生成することができれば、装置構成を図19および図20とし、以後の動作を実施の形態2および実施の形態3と同じにすることによって、実施の形態2および実施の形態3で得られたのと同じ効果を得ることができる。
産業上の利用の可能性
以上のように、この発明によれば、FSK(Frequency Shift Keying)方式を用いて受信光の位相揺らぎがある場合においてもパルス圧縮効果による高いS/N比での計測を可能とし、且つ、受信光に複数のレンジからの信号成分が重畳する場合においても所望の計測レンジからの成分を抽出して計測レンジにおける風速の検出を行うことができる。
【図面の簡単な説明】
図1は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図2は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図3は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図4は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図5は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図6は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図7は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図8は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図9は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図10は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図11は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図12は、この発明の実施の形態1に係るレーザードップラーレーダ装置を説明するための図、
図13は、この発明の実施の形態2に係るレーザードップラーレーダ装置を説明するための図、
図14は、この発明の実施の形態2に係るレーザードップラーレーダ装置を説明するための図、
図15は、この発明の実施の形態3に係るレーザードップラーレーダ装置を説明するための図、
図16は、この発明の実施の形態3に係るレーザードップラーレーダ装置を説明するための図、
図17は、この発明の実施の形態3に係るレーザードップラーレーダ装置を説明するための図、
図18は、この発明の実施の形態4に係るレーザードップラーレーダ装置を説明するための図、
図19は、この発明の実施の形態4に係るレーザードップラーレーダ装置を説明するための図、
図20は、この発明の実施の形態4に係るレーザードップラーレーダ装置を説明するための図、
図21は、従来のレーザードップラーレーダ装置を説明するための図、
図22は、従来のレーザードップラーレーダ装置を説明するための図である。

Claims (9)

  1. 光源と、
    +もしくは−の符号からなる符号系列に基づいた変調信号を発生する符号系列発生器と、
    前記光源からの光信号を、前記符号系列発生器からの変調信号に基づいて2つの周波数によりFSK(Frequency Shift Keying)変調する光変調器と、
    前記光変調器によりFSK変調された光信号を大気中に送信すると共に、大気中からの複数のレンジからの受信光を受信する送受光学部と、
    前記光源からの光信号を分配してローカル光を発生する光分配器と、
    前記送受光学部からの受信光と前記光分配器からのローカル光とのヘテロダイン検波を行うことにより光信号を電気信号に変換するヘテロダインレシーバと、
    前記ヘテロダインレシーバからの電気信号をA/D変換するA/D変換器と、
    前記A/D変換器によりA/D変換した信号を信号処理する信号処理部と
    を備え、
    前記信号処理部は、大気中における1つの計測レンジ以外の他のレンジからの信号成分をキャンセルし、計測レンジにおけるドップラー周波数の検出を行う機能を有する
    ことを特徴とするレーザードップラーレーダ装置。
  2. 請求項1に記載のレーザードップラーレーダ装置において、
    前記光変調器は、変調信号の+と−に対応して2つの周波数f1とf2だけ前記光源からの光信号の周波数f0に対して周波数シフトさせる
    ことを特徴とするレーザードップラーレーダ装置。
  3. 請求項1に記載のレーザードップラーレーダ装置において、
    前記光源の数を2つとし、
    前記光変調器は、前記符号系列発生器からの変調信号に基づいて2つの光源からの光信号の一方を選択して出力する光スイッチでなる
    ことを特徴とするレーザードップラーレーダ装置。
  4. 請求項1に記載のレーザードップラーレーダ装置において、
    前記符号系列は、M系列である
    ことを特徴とするレーザードップラーレーダ装置。
  5. 請求項1に記載のレーザードップラーレーダ装置において、
    前記符号系列は、相補系列であり、
    前記光変調器は、パルス変調機能を有する
    ことを特徴とするレーザードップラーレーダ装置。
  6. 請求項1ないし5のいずれか1項に記載のレーザードップラーレーダ装置において、
    前記信号処理部は、
    前記A/D変換機によりA/D変換した信号を符号系列の1ビットに対応する時間幅毎にゲート分割するゲート分割機能と、
    前記ゲート分割機能により分割された各ゲートに含まれる信号のパワースペクトルを求めるスペクトル解析機能と、
    前記スペクトル解析機能により求められた各ゲートのスペクトルに対し、送信時に用いた符号系列に対応した処理を行う処理機能と、
    符号系列に対応した前記処理機能により処理が施された各ゲートの処理結果をゲート間および符号系列間にわたって積算する積算機能と、
    前記積算機能による積算結果における負の周波数領域の信号強度に−1を乗じ、絶対値が等しい正の周波数の信号強度に前記−1を乗じた信号強度を足し合わせる機能と
    を有し、
    風速のドップラー周波数をfdとし、前記パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとする
    ことを特徴とするレーザードップラーレーダ装置。
  7. 請求項6に記載のレーザードップラーレーダ装置において、
    周波数が(f1+f2)/2の発振信号を出力する第1の発振器と、
    前記ヘテロダインレシーバからの出力信号と前記第1の発振器からの発振信号とをミキシングする第1のミキサと、
    前記第1のミキサの出力を2分配する0°分配器と、
    周波数が(f1−f2)/2の発振信号を出力する第2の発振器と、
    前記第2の発振器からの発振信号を2分配する90°分配器と、
    前記0°分配器からの一方の出力と前記90°分配器からの一方の出力とをミキシングする第2のミキサと、
    前記0°分配器からの他方の出力と前記90°分配器からの他方の出力とをミキシングする第3のミキサと
    を備え、
    前記第2と第3のミキサの出力により、パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する
    ことを特徴とするレーザードップラーレーダ装置。
  8. 請求項6に記載のレーザードップラーレーダ装置において、
    周波数が(f1+f2)/2の発振信号を出力する第1の発振器と、
    前記ヘテロダインレシーバからの出力信号と前記第1の発振器からの発振信号とをミキシングする第1のミキサと
    を備えると共に、
    前記信号処理部は、求められたパワースペクトルの周波数軸の値から(f2−f1)/2の値を差し引く機能を有し、
    前記第1のミキサの出力と前記信号処理部により、パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する
    ことを特徴とするレーザードップラーレーダ装置。
  9. 請求項6に記載のレーザードップラーレーダ装置において、
    前記信号処理部は、
    前記パワースペクトルの周波数軸の値から(f2+f1)/2の値を差し引く機能と、
    正の周波数領域について周波数に関して−(f2−f1)/2だけシフトさせる機能と、
    負の周波数領域について周波数に関して(f2−f1)/2だけシフトさせ、さらに周波数に関する符号を反転する機能と
    を有し、
    パワースペクトルにおいて、大気中からの信号成分の信号強度が存在する周波数を、符号系列の+と−に対応して周波数−fdと周波数+fd、もしくは符号系列の+と−に対応して周波数+fdと周波数−fdとすることを実現する
    ことを特徴とするレーザードップラーレーダ装置。
JP2004507863A 2002-05-29 2002-05-29 レーザードップラーレーダ装置 Expired - Fee Related JP3872082B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005215 WO2003100458A1 (fr) 2002-05-29 2002-05-29 Dispositif radar doppler a laser

Publications (2)

Publication Number Publication Date
JPWO2003100458A1 true JPWO2003100458A1 (ja) 2005-09-29
JP3872082B2 JP3872082B2 (ja) 2007-01-24

Family

ID=29561095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004507863A Expired - Fee Related JP3872082B2 (ja) 2002-05-29 2002-05-29 レーザードップラーレーダ装置

Country Status (2)

Country Link
JP (1) JP3872082B2 (ja)
WO (1) WO2003100458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176581A (zh) * 2021-03-15 2021-07-27 北京华信科创科技有限公司 一种多普勒脉冲激光测风装置、方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209222B2 (en) 2002-12-27 2007-04-24 Mitsubishi Denki Kabushiki Kaisha Laser radar apparatus
DE60333037D1 (en) 2003-02-19 2010-07-29 Mitsubishi Electric Corp Laser-radar
GB0411097D0 (en) 2004-05-19 2004-06-23 Qinetiq Ltd Laser radar device and method
JP5197023B2 (ja) * 2008-01-09 2013-05-15 三菱電機株式会社 レーザレーダ装置
JP5252696B2 (ja) * 2008-06-11 2013-07-31 独立行政法人 宇宙航空研究開発機構 航空機搭載用光学式遠隔気流計測装置
FR2952722B1 (fr) 2009-11-18 2011-12-09 Onera (Off Nat Aerospatiale) Mesure de caracteristiques velocimetriques ou vibrometriques utilisant un dispositif de type lidar a detection heterodyne
JP6146295B2 (ja) 2013-12-26 2017-06-14 株式会社豊田中央研究所 レーダ装置および速度の方向測定方法
JP6362801B2 (ja) * 2016-02-05 2018-07-25 三菱電機株式会社 レーザレーダ装置および風車制御システム
JP7029620B2 (ja) * 2018-09-21 2022-03-04 南京牧▲レー▼激光科技有限公司 パルス干渉ドップラー風計測レーザーレーダー及び風計測方法
US20220326380A1 (en) * 2019-09-04 2022-10-13 Nec Corporation Optical ranging device and optical ranging method
CN115951332B (zh) * 2023-03-15 2023-05-23 中国人民解放军国防科技大学 二元脉冲幅度编码测风激光雷达风速测量方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167329A (en) * 1977-12-12 1979-09-11 Raytheon Company Focussed doppler radar
JPH02114241A (ja) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd 光コヒーレント周波数シフトキーイング送信器
JP2789968B2 (ja) * 1992-11-05 1998-08-27 日本鋼管株式会社 光tdrによる計測方法及び装置
JP3307153B2 (ja) * 1995-05-15 2002-07-24 三菱電機株式会社 レーザレーダ装置
JP2000338246A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp コヒーレントレーザレーダ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176581A (zh) * 2021-03-15 2021-07-27 北京华信科创科技有限公司 一种多普勒脉冲激光测风装置、方法及系统

Also Published As

Publication number Publication date
JP3872082B2 (ja) 2007-01-24
WO2003100458A1 (fr) 2003-12-04

Similar Documents

Publication Publication Date Title
KR101045984B1 (ko) 수신 시각 계측 장치 및 이 수신 시각 계측 장치를 사용한거리 계측 장치
JP5842143B2 (ja) レーダ装置
US7564400B2 (en) Spread spectrum radar apparatus
US5719579A (en) Virtual noise radar waveform for reduced radar detectability
JP2990097B2 (ja) 連続波広帯域精密距離測定レーダ装置
JP3872082B2 (ja) レーザードップラーレーダ装置
JP2011164075A (ja) 光パルス試験方法及び光パルス試験装置
JP4053542B2 (ja) レーザーレーダ装置
JP3307153B2 (ja) レーザレーダ装置
JP2002014159A (ja) Fm−cwレ−ダ装置
JP3397158B2 (ja) Ecmレーダ装置
JP2006023245A (ja) 微小振動検出装置
RU2329608C1 (ru) Когерентная радиолиния
JP2007212245A (ja) パルスレーダ装置
RU2571390C1 (ru) Способ передачи дискретной информации по гидроакустическому каналу связи в условиях многолучевого распространения сигнала
JP2892971B2 (ja) マルチパスディレイスプレッド測定装置及び方法
JP3750913B2 (ja) 送受信装置
RU2797027C1 (ru) Устройство измерения времени прихода и длительности некогерентной последовательности сверхширокополосных квазирадиосигналов произвольной формы
JPS5832669B2 (ja) エコ−検出方式
RU2797258C1 (ru) Устройство измерения времени прихода и длительности одиночного сверхширокополосного квазирадиосигнала произвольной формы
JP2590724B2 (ja) 反射干渉波測定装置
RU2115236C1 (ru) Система связи с широкополосными сигналами
JPS6225276A (ja) 障害物検知装置
JP2767274B2 (ja) スペクトラム拡散波を用いた伝搬経路測定装置
JPH0560648A (ja) ヘテロダイン受光を用いた光パルス試験器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees