JPWO2003048738A1 - Material evolved gas measurement method - Google Patents

Material evolved gas measurement method Download PDF

Info

Publication number
JPWO2003048738A1
JPWO2003048738A1 JP2003549884A JP2003549884A JPWO2003048738A1 JP WO2003048738 A1 JPWO2003048738 A1 JP WO2003048738A1 JP 2003549884 A JP2003549884 A JP 2003549884A JP 2003549884 A JP2003549884 A JP 2003549884A JP WO2003048738 A1 JPWO2003048738 A1 JP WO2003048738A1
Authority
JP
Japan
Prior art keywords
chamber
gas
measuring
adsorbed
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003549884A
Other languages
Japanese (ja)
Inventor
邦広 星野
邦広 星野
努志 今中
努志 今中
貴普 岩崎
貴普 岩崎
加藤 信介
信介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Publication of JPWO2003048738A1 publication Critical patent/JPWO2003048738A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2241Sampling from a closed space, e.g. food package, head space purpose-built sampling enclosure for emissions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure, temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

室内空気汚染に係わる建材からの発生ガスについて、フタル酸エステルやリン酸エステル等のSVOCは室内空気質の成分としては測定目的成分とされているが、その発生ガス測定には至っていない。そこで、チャンバー法により発生ガス捕集後、試料材を取出し、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定する。Regarding the generated gas from building materials related to indoor air pollution, SVOC such as phthalate ester and phosphate ester is regarded as a component for measurement as a component of indoor air quality, but the generated gas has not been measured. Therefore, after collecting the generated gas by the chamber method, the sample material is taken out, the chamber is heated with the components adsorbed in the chamber remaining, and the adsorbed components in the chamber are desorbed and collected via the purge gas, and then heated and desorbed. And measure with a measuring instrument.

Description

技術分野
本発明は、材料発生ガス測定方法に関し、就中建材等の室内汚染源のSVOCの確実な測定方法に関するものである。
背景技術
建材からの発生ガス測定手法の1つとして、スモールチャンバー内に材料を入れ、ダイナミックヘッドスペース法により発生量を測定する所謂チャンバー法が多く行われている。
このステンレス製もしくはガラス製のチャンバーの中に測定対象となる試験材を設置し、特定の環境状態で放散される揮発性有機化合物(VOC)及びアルデヒド類の単位面積当りの放散速度を測定する方法である。
このチャンバー法は例えば図1に示す如く、スモールチャンバー1内に建築用内装材、例えばカーペット等の試料を切り、適宜大きさの試料材2を作成して収納させ、清浄空気供給ユニット3から清浄空気を加湿エアー流量調整器4を通過する等により湿度50%にしてチャンバー1内に送入し、チャンバー1外側からサンプリングポンプ5等により吸引し、捕集管6に吸着することにより、発生ガスを捕集するものである。
しかして、ホルムアルデヒドや揮発性有機化合物(VOC)のチャンバー法による測定はJIS規定原案作成段階にあり、チャンバーはステンレスでよいことになっている。
現在の室内空気汚染にかかわる建材からの発生ガス測定に関しては、VOCのみが着目され、規格化もされている(ASTM,ENV,ECA,JIS原案製作中)。それに対し、フタル酸エステルやリン酸エステル、その他アジビン酸エステル、亜リン酸エステル、高級アルコール、含窒素化合物(アミン、アミド等)、芳香族化合物、TXIB(2,2,4−Timethyl−1,3−pentanediol diisobutyrate)等のSVOCは室内空気質の成分としてターゲットになっているにもかかわらず、発生ガスに関してはまだ手がつけられていない。
又、チャンバーごと建材を60〜100℃に加熱して測定を行うスクリーニング法があるが、この方法だとSVOC成分の吸着(残留)はある程度防ぐことはできるが、室内環境条件を無視した結果となってしまう。
そこで、本発明に於いては、建材等からの発生ガスを測定するために、室内環境状況を自然に再現する条件下で、半揮発性有機物質(SVOC)、所謂高沸点成分をも捕捉し、室内空気汚染源の1つである建材等から発生するガスを正確に測定し、室内空気汚染のメカニズムを解明する重要な手がかりを得んとすることを目的としている。
又更に、この方法は、室内汚染源たる建材、電気、電子機器器具等の材料の発生ガスのより簡便な使い易い測定方法を提供することを目的とするものである。
発明の開示
本発明は、第1にチャンバー法により発生ガス捕集後、試料材を取出し、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するSVOC等の材料発生ガス測定方法である。この方法によれば、チャンバー法により、チャンバー内に吸着等により残留した成分、高沸点有機成分の発生ガス測定が可能となり、室内空気汚染源の1つである建材から発生するガスを正確に測定することができ、室内空気汚染のメカニズム解明に前進した手法を提供できる。又、室内空気汚染に限らず、その他同様環境の浄化にも有効な手段を提供することが出来る。
又、第2にチャンバー法による発生ガスの捕集によりVOCの測定を行う第1工程と、次いでそのチャンバーから試料材を取出した後、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するSVOC測定を行う第2工程よりなる材料発生ガスの測定方法である。この方法によれば、室内環境条件そのままの状態での建材その他の室内空気汚染源、その他の正確な測定が可能となり、チャンバー法の利用性を更に拡大することが可能となる。
又第3にチャンバーに試料材を置き、発生ガスを不活性ガスによりパージし、捕集管にトラップし、試料材を取出し、チャンバー内を再度不活性ガスでパージして、チャンバー内吸着成分を脱着させて捕集し、その後加熱脱着を行い、測定器により測定するSVOC等の材料発生ガス測定方法である。
この方法によれば、第2の方法の第1工程のような室内環境条件での捕集が必ずしも必要なくなり、簡易な測定が可能となり、従来のスクリーニング方法では実現できない正確なガス測定が可能となり、室内汚染源に限らず、各種材料の発生ガスの測定に寄与する処が大である。
発明を実施する為の最良の形態
以下、図に示す実施形態により、本発明を詳細に説明する。
図2は高沸点成分の捕集検出装置であって、チャンバー11は図1の所謂チャンバー法にておいて、試料材2を例えば25℃の温度下で、湿度50%の清浄空気を供給するエアー雰囲気中にて、チャンバー1外からポンプ5で吸引し、発生ガスを捕集管6にて捕集した後のチャンバー1であって、試料材2を除去したものである。従って、チャンバー11には試料材2より発生したガスのうち、捕集管6により捕集した以外の成分、即ちチャンバー内壁に吸着(残留)した成分、SVOCが存在する。
この際の温度及び湿度については、温度の幅:20〜40℃程度、湿度の幅:40〜65%が推奨される。
図2において、チャンバー11は加熱オーブン12内に収納自在としてある。チャンバー11にはHe等の不活性ガス供給口13及び排出口14を設けてある。排出口14には、アルミオーブン15に収納された多方バルブ16が連結され、該多方バルブ16はトラップ管17、該トラップ管17にはアルミオーブン18に収納された多方バルブ19が連結されている。多方バルブ19は一方に捕集ポンプ20、他方にコールドトラップ21を介して測定器22が夫々連結されている。
これらの装置は、例えば発生ガス濃縮導入装置の如く、一連に構成された装置を使用するのが便である。
チャンバー11は、ガラス、石英等が好適であるが、SUS等の金属を使用する場合は、石英の内面コーティングされたものであることが必要である。
その使用法及び作動について説明すれば、所望の試料を切断して、適宜の試料材2を作成し、チャンバ11内に収納させる。例えば25℃の温度下でこのチャンバー11に湿度50%のエアーを送入する。実施例では清浄空気供給ユニット3、加湿流量調整器4を使用しているが、その他の装置を使用することもできる。
一方、サンプリングポンプ5により、捕集管6を介してチャンバー11内のエアーを吸引している。この吸引により、チャンバー11内の試料材2より発生するガスは、捕集管6に捕集される。この捕集管6に捕集された試料は、定法により測定装置により測定される。一方チャンバー11内の高沸点成分等の有機成分はチャンバー内壁に吸着する。
次いで、この有機成分を付着させたチャンバー11は、上記の如く発生ガスの捕集終了後、チャンバー11から試料材2を除去して、このチャンバー11を加熱オーブン12内に収容し、加熱吸引操作にかけられる。
一方法として、このチャンバー11を発生ガス濃縮導入装置(例えばジーエルサイエンス株式会社製MSTD258)にセットする。その際の加熱温度は200℃前後が推奨される。
又、図2の装置の使用に於いて、所望の試料を切断して適宜の試材料2を作成し、チャンバー11内に収納させる。このチャンバー11を加熱し、チャンバー11にエアーを挿入することなく、Heガス等の不活性ガスを送入し、サンプリングポンプ5により、発生ガスをチャンバー11内より吸引し、捕集管6に捕集する。
捕集された試料は、常法により測定装置により測定される。その後、試料材2をチャンバー11より取出し、チャンバー11を加熱オーブン内で加熱吸引操作にかけ、再度、不活性ガスでチャンバー11をパージする。
その際、チャンバー11内壁に付着した高沸点成分等の有機成分は測定装置に導かれ測定される。
〔チャンバー材質評価〕
チャンバーへの有機成分の吸着挙動を確認するためにフタル酸エステル(DEP、DBP、DOP)、リン酸エステル(TBP、CEP)、BHT混合標準試料を材質の違う3種類のチャンバー11(パイレックス(登録商標)、バフ研磨ステンレス、電解研磨ステンレス)内に注入した後、図2の装置に、チャンバーを取付けて測定を行った。図3(A),(B),(C)のTICクロマトグラムから、両ステンレスチャンバー11に注入した場合、フタル酸エステル、リン酸エステルが極端に損失していることが分かる。又、分解物と思われる成分も確認された。このことは、フタル酸エステル、リン酸エステルを始めとするSVOC等の放散量を測定する際には、ガラス、石英を使用し、SUS等の金属を使用する場合は、石英の内面コーティングされたものが必要であることを意味する。
【実施例】
〔実施例1〕 測定用の内装材としてホームセンターから購入してきたタイルカーペットを適当なサイズに切り、試料材2とした。湿度50%、温度25℃のエアー雰囲気の中で保管し、安定させた後、内寸φ82mm×H120mmのガラス製チャンバー11に設置し、発生ガス測定を行った。
図1に示すように、チャンバー11に湿度50%の清浄空気を吸収し、チャンバー11出口側からポンプ5で吸引しながら発生ガスを捕集管6に捕集した。その後、捕集管6のチューブをサーマルディソープションオートサンプラー(TMD253H−GC/MS)に取付け、測定を行った。その際の測定条件を表1に示す。清浄空気の供給には清浄空気供給ユニットPAS1000,50%加湿空気の調整には加湿エアー流量調整器HAC500、捕集ポンプにはSP208Dualを使用した。
【表1】

Figure 2003048738
上記の実施でチャンバー11からの発生ガス捕集後、チャンバー11から試料材2を取出し、空のチャンバー11を図2の装置や発生ガス濃縮導入装置(MSTD−258)にセットし、チャンバー11内に吸着している有機成分の測定を行った。その際のチャンバー11の加熱温度は200℃とした。測定条件を表2に示す。
【表2】
Figure 2003048738
〔実施例2〕 実施例1によりチャンバー11に試料材2としてカーペットを入れ、温度及び湿度が安定した所から開始し、24時間捕集を行った。捕集管6(TenaxTAチューブ)から放散量、空のチャンバー11から吸着有機成分の測定を行った。図4(A),(B)に発生ガス測定のTICクロマトグラム及びチャンバー11への吸着測定のTICクロマトグラムを示す。両クロマトグラム共にR.T.25min以降に芳香族炭化水素のプロードなピークが検出されている。この結果から、発生及び吸着している成分の大半は、この芳香族炭化水素であることが分かる。又、チャンバー11内吸着材測定結果からリン酸エステルであるTBPが検出されていることが分かる。
このことは実際カーペット2からTBPが発生していたにも拘わらず、チャンバー11内に吸着していたため、見かけ上発生ガスとしては測定されていないことを意味する。
又、表3に放散されたTVOCの放散量(ng)及び放散速度(μg/m・h)、チャンバー内吸着量(ng)及び吸着量を加味した放散速度(μg/m・h)を示す。この結果は実際にカーペットから発生したTVOCの放散量はチャンバー法から得られた放散速度(51.86μg/m・h)よりも実際はより多く放散(86.85μg/m・h)していたことを示している。又、TBPのチャンバー内吸着量(24hr)が125.5ngであったことより、1.05μg/m・hの放散速度でTBPがカーペットから放散していたことが分かる。
【表3】
Figure 2003048738
〔実施例3〕
図2の装置の使用に際して、チャンバー11のエアーを送ることなく、最初からHeガスを送入し、発生するガスを捕集管6(Tenax TAチューブ)に捕集した。
試料は壁紙、防災カーテン、テレビのケーシング、テレビの端子基板の試材片を用い、表4、表5の条件により捕集管6から放散量の測定を行った。
【表4】
Figure 2003048738
【表5】
Figure 2003048738
図5〜図8に夫々の試材料からの発生ガス放散量測定のTICクロマトグラムを示す。この発生ガス測定は、40℃で行った。図9〜図12に図5〜図8に対応する夫々のチャンバー11への吸着物質測定のTICクロマトグラムを示す。この時の測定は250℃で行った。
これらから壁紙、防災カーテンからはDBP、DEHP等の燃焼条件によっては有害物を発生する可能性ある物質が検出された。又、テレビケーシング、テレビの電子基板からも同様物質が検出されている。
〔実施例4〕
図2に示す装置を使用し、高温でのスクリーニング試験法と同様80℃の加熱によって、壁紙を試料として、発生ガス測定を行った。発生ガスを捕集管6に捕集し、その放散量から測定を行い、その後チャンバー内に吸着したSVOC成分を250℃に加熱し、測定した結果を図13,14に示す。他の測定条件は表2と同じである。
従来のスクリーニング試験法に於いては、加熱温度によりSVOC成分がチャンバー内壁に吸着してしまい、正確な放射量を求めることは困難であるが、本方法をスクリーニング試験法に適用することにより更に正確なSVOC放射量の測定が可能である。
産業上の利用可能性
上記の如き請求項1に記載の本発明のによれば、チャンバー法により発生ガス捕集後、試料材を取出し、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するようにしたので、チャンバー方により、チャンバー内に吸着等により残留した成分、高沸点有機成分の発生ガス測定が可能となり、室内空気汚染源の1つである建材から発生するガスを正確に測定することができ、室内空気汚染のメカニズム解明に前進した手法を提供できる。又、室内空気汚染に限らず、その他同様環境の浄化にも有効な手段を提供することが出来る。
又、請求項2に記載の本発明よれば、チャンバー法による発生ガスの捕集によりVOCの測定を行う第1工程と、次いでそのチャンバーから試料材を取出した後、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するSVOC測定を行う第2工程よりなるので、室内環境条件そのままの状態での建材その他の室内空気汚染源、その他の正確な測定が可能となり、チャンバー法の利用性を更に拡大することが可能となる。
又、請求項3に記載の本発明によれば、チャンバーに試材料を置き、発生ガスを不活性ガスによりパージし、捕集管にトラップし、試材料を取出し、チャンバー内を再度不活性ガスでパージして、チャンバー内吸着成分脱着させて捕集し、その後加熱脱着を行い、測定器により測定するので、簡単な測定方法により、正確な材料発生ガスの測定が可能となり、建築材料、電子機械器具、電機機械器具等の材料より発生するガスの測定が進行し、各種材料の安全確認に寄与することが可能となる。
【図面の簡単な説明】
図1は、本発明一実施例一部説明図であり、図2は、本発明一実施例一要部説明図であり、図3は、(A)は本発明による一評価試験クロマトグラムであり、(B)は従来例による一評価試験クロマトグラムであり、(C)は従来例による一評価試験クロマトグラムであり、図4は、(A)は本発明によるガス測定TICクロマトグラムであり、(B)は本発明によるチャンバー残留TICクロマトグラムであり、図5は、壁紙を試材料とする発生ガス測定のTICクロマトグラムであり、図6は、テレビのケーシングを試材料とする発生ガス測定のTICクロマトグラムであり、図7は、防災カーテンを試材料とする発生ガス測定のTICクロマトグラムであり、図8は、テレビの端子基板を試材料とする発生ガス測定のTICクロマトグラムであり、図9は、図5に対応するチャンバーへの吸着物質測定のTICクロマトグラムであり、図10は、図6に対応するチャンバーへの吸着物質測定のTICクロマトグラムであり、図11は、図7に対応するチャンバーへの吸着物質測定のTICクロマトグラムであり、図12は、図8に対応するチャンバーへの吸着物質測定のTICクロマトグラムであり、図13は、壁紙を試材料とする発生ガスのTICクロマトグラムであり、図14は、図13に対応するチャンバーへの吸着物質測定のTICクロマトグラムである。TECHNICAL FIELD The present invention relates to a method for measuring generated gas, and more particularly to a method for reliably measuring SVOC of indoor pollutants such as building materials.
Background Art As one of the methods for measuring gas generated from building materials, a so-called chamber method is often used in which a material is placed in a small chamber and the generated amount is measured by a dynamic headspace method.
A method of measuring the emission rate per unit area of volatile organic compounds (VOC) and aldehydes that are emitted in a specific environmental state by installing a test material to be measured in this stainless steel or glass chamber It is.
In this chamber method, for example, as shown in FIG. 1, a sample such as a building interior material, such as carpet, is cut into a small chamber 1, a sample material 2 of an appropriate size is prepared and stored, and the sample is cleaned from a clean air supply unit 3. Generated gas by passing the air through the humidified air flow regulator 4 to a humidity of 50% and feeding it into the chamber 1, sucking it from the outside of the chamber 1 with a sampling pump 5, etc., and adsorbing it to the collection tube 6. Is to collect.
Therefore, measurement of formaldehyde and volatile organic compounds (VOC) by the chamber method is in the stage of drafting JIS regulations, and the chamber may be made of stainless steel.
Regarding the measurement of gas generated from building materials related to the current indoor air pollution, only VOC has been focused and standardized (ASTM, ENV, ECA, JIS draft production in progress). On the other hand, phthalic acid ester, phosphoric acid ester, other adibic acid ester, phosphorous acid ester, higher alcohol, nitrogen-containing compound (amine, amide, etc.), aromatic compound, TXIB (2,2,4-Timemethyl-1, Although SVOC such as 3-pentanediol disobutyrate) has been targeted as a component of indoor air quality, the generated gas has not yet been dealt with.
In addition, there is a screening method in which the building material is heated to 60 to 100 ° C. and the measurement is performed for each chamber. With this method, the adsorption (residual) of the SVOC component can be prevented to some extent, but the result of ignoring the indoor environmental conditions turn into.
Therefore, in the present invention, in order to measure the gas generated from building materials, semi-volatile organic substances (SVOC), so-called high-boiling components, are also captured under conditions that naturally reproduce indoor environmental conditions. The purpose is to accurately measure the gas generated from building materials, one of indoor air pollution sources, and to obtain important clues to elucidate the mechanism of indoor air pollution.
Still another object of the present invention is to provide a simpler and easier-to-use method for measuring gas generated from materials such as building materials, electrical and electronic equipment that are indoor pollution sources.
DISCLOSURE OF THE INVENTION In the present invention, first of all, after collecting generated gas by the chamber method, the sample material is taken out, the chamber is heated with the adsorbed components left in the chamber, and the adsorbed components in the chamber are desorbed via the purge gas. This is a method for measuring a gas generated from a material such as SVOC, which is collected by heating, desorbed by heating and then measured by a measuring instrument. According to this method, it is possible to measure the gas generated from the components remaining in the chamber due to adsorption or the like and the high boiling point organic component by the chamber method, and accurately measure the gas generated from the building material which is one of indoor air pollution sources. Can provide an advanced method for elucidating the mechanism of indoor air pollution. Further, not only indoor air pollution but also other effective means for purifying the environment can be provided.
Second, the first step of measuring the VOC by collecting the generated gas by the chamber method, and then removing the sample material from the chamber and then heating the chamber with the adsorbed components left in the chamber. This is a method for measuring a material generation gas comprising a second step of performing SVOC measurement by desorbing and collecting the adsorbed component in the chamber via a purge gas, and then performing heat desorption and measuring with a measuring instrument. According to this method, it becomes possible to accurately measure building materials and other indoor air contamination sources in the state of indoor environmental conditions as they are, and further expand the utility of the chamber method.
Third, the sample material is placed in the chamber, the generated gas is purged with an inert gas, trapped in a collection tube, the sample material is taken out, the inside of the chamber is purged with an inert gas again, and the adsorbed components in the chamber are removed. It is a material generation gas measuring method such as SVOC, which is desorbed and collected, then heated and desorbed, and measured by a measuring instrument.
According to this method, collection under indoor environment conditions as in the first step of the second method is not necessarily required, simple measurement is possible, and accurate gas measurement that cannot be realized by conventional screening methods is possible. However, not only indoor pollution sources, but also significant measures that contribute to the measurement of gas generated from various materials.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 2 shows an apparatus for collecting and detecting high-boiling components. The chamber 11 supplies the sample material 2 with clean air having a humidity of 50%, for example, at a temperature of 25 ° C. in the so-called chamber method of FIG. In the air atmosphere, the chamber 1 is sucked by the pump 5 from outside the chamber 1 and the generated gas is collected by the collecting tube 6, and the sample material 2 is removed. Therefore, among the gas generated from the sample material 2, the chamber 11 contains components other than those collected by the collection tube 6, that is, components adsorbed (residual) on the inner wall of the chamber, and SVOC.
Regarding the temperature and humidity at this time, a temperature range of about 20 to 40 ° C. and a humidity range of 40 to 65% are recommended.
In FIG. 2, the chamber 11 can be stored in the heating oven 12. The chamber 11 is provided with an inert gas supply port 13 such as He and a discharge port 14. A multi-way valve 16 housed in an aluminum oven 15 is connected to the discharge port 14, the multi-way valve 16 is connected to a trap pipe 17, and a multi-way valve 19 housed in an aluminum oven 18 is connected to the trap pipe 17. . The multi-way valve 19 is connected to a measuring pump 22 via a collection pump 20 on one side and a cold trap 21 on the other side.
For these devices, it is convenient to use a series of devices such as a generated gas concentrating and introducing device.
The chamber 11 is preferably made of glass, quartz, or the like. However, when a metal such as SUS is used, the chamber 11 needs to be coated with quartz.
The usage and operation thereof will be described. A desired sample is cut, an appropriate sample material 2 is prepared, and stored in the chamber 11. For example, air with a humidity of 50% is fed into the chamber 11 at a temperature of 25 ° C. In the embodiment, the clean air supply unit 3 and the humidification flow rate regulator 4 are used, but other devices can also be used.
On the other hand, the air in the chamber 11 is sucked by the sampling pump 5 through the collection tube 6. By this suction, the gas generated from the sample material 2 in the chamber 11 is collected in the collection tube 6. The sample collected in the collection tube 6 is measured by a measuring device by a conventional method. On the other hand, organic components such as high boiling point components in the chamber 11 are adsorbed on the inner wall of the chamber.
Next, the chamber 11 to which the organic component is attached removes the sample material 2 from the chamber 11 after the collection of the generated gas as described above, accommodates the chamber 11 in the heating oven 12, and performs a heat suction operation. Be put on.
As one method, the chamber 11 is set in a generated gas concentration introducing device (for example, MSTD258 manufactured by GL Sciences Inc.). The heating temperature at that time is recommended to be around 200 ° C.
Further, in the use of the apparatus of FIG. 2, a desired sample is cut to prepare an appropriate sample 2 and stored in the chamber 11. The chamber 11 is heated, an inert gas such as He gas is fed into the chamber 11 without inserting air, and the generated gas is sucked from the chamber 11 by the sampling pump 5 and collected in the collecting tube 6. Gather.
The collected sample is measured by a measuring apparatus by a conventional method. Thereafter, the sample material 2 is taken out from the chamber 11, the chamber 11 is subjected to a heating and suction operation in a heating oven, and the chamber 11 is purged again with an inert gas.
At that time, organic components such as high-boiling components adhering to the inner wall of the chamber 11 are guided to the measuring device and measured.
[Evaluation of chamber material]
In order to confirm the adsorption behavior of organic components in the chamber, phthalate ester (DEP, DBP, DOP), phosphate ester (TBP, CEP), and BHT mixed standard samples were mixed into three types of chambers 11 (Pyrex (registered) (Trademark), buffing stainless steel, electrolytic polishing stainless steel), and then the measurement was performed by attaching a chamber to the apparatus of FIG. From the TIC chromatograms of FIGS. 3 (A), (B), and (C), it can be seen that phthalate ester and phosphate ester are extremely lost when injected into both stainless steel chambers 11. Moreover, the component considered to be a decomposition product was also confirmed. This is because glass and quartz were used when measuring the amount of emission of SVOC such as phthalates and phosphates, and when using metals such as SUS, the inner surface of quartz was coated. It means you need something.
【Example】
[Example 1] A tile carpet purchased from a home center as an interior material for measurement was cut into an appropriate size to obtain a sample material 2. After being stored and stabilized in an air atmosphere at a humidity of 50% and a temperature of 25 ° C., it was placed in a glass chamber 11 having an internal size of φ82 mm × H120 mm, and the generated gas was measured.
As shown in FIG. 1, clean air having a humidity of 50% was absorbed into the chamber 11, and the generated gas was collected in the collection tube 6 while being sucked by the pump 5 from the outlet side of the chamber 11. Thereafter, the tube of the collection tube 6 was attached to a thermal desorption autosampler (TMD253H-GC / MS) and measured. Table 1 shows the measurement conditions at that time. A clean air supply unit PAS1000 was used for supplying clean air, a humidified air flow rate regulator HAC500 was used for adjusting 50% humidified air, and SP208 Dual was used for the collection pump.
[Table 1]
Figure 2003048738
After collecting the generated gas from the chamber 11 in the above implementation, the sample material 2 is taken out from the chamber 11, and the empty chamber 11 is set in the apparatus of FIG. 2 or the generated gas concentration introducing apparatus (MSTD-258). The organic components adsorbed on the surface were measured. The heating temperature of the chamber 11 at that time was 200 ° C. Table 2 shows the measurement conditions.
[Table 2]
Figure 2003048738
[Example 2] According to Example 1, a carpet was placed as a sample material 2 in the chamber 11 and started from a place where the temperature and humidity were stable, and collected for 24 hours. The amount of radiation emitted from the collection tube 6 (TenaxTA tube) and the adsorbed organic component from the empty chamber 11 were measured. 4A and 4B show a TIC chromatogram for measuring generated gas and a TIC chromatogram for measuring adsorption to the chamber 11. Both chromatograms are R.D. T.A. A broad peak of the aromatic hydrocarbon is detected after 25 min. From this result, it can be seen that most of the components generated and adsorbed are the aromatic hydrocarbons. Moreover, it turns out that TBP which is phosphate ester is detected from the adsorbent measurement result in the chamber 11.
This means that although TBP was actually generated from the carpet 2, it was adsorbed in the chamber 11 and thus was not measured as an apparently generated gas.
Further, dissipation of TVOC that is dissipated in Table 3 (ng) and emission rate (μg / m 2 · h), the chamber in the adsorption amount (ng) and emission rate that reflects the adsorption amount (μg / m 2 · h) Indicates. This result shows that the amount of TVOC actually emitted from the carpet is actually more diffuse (86.85 μg / m 2 · h) than the emission rate obtained from the chamber method (51.86 μg / m 2 · h). It shows that. Further, since the amount of TBP adsorbed in the chamber (24 hr) was 125.5 ng, it was found that TBP was diffused from the carpet at a diffusion rate of 1.05 μg / m 2 · h.
[Table 3]
Figure 2003048738
Example 3
When using the apparatus of FIG. 2, He gas was sent from the beginning without sending air in the chamber 11, and the generated gas was collected in the collecting tube 6 (Tenax TA tube).
The sample used was a wallpaper, a disaster curtain, a television casing, and a test piece of a television terminal board, and the amount of emission from the collection tube 6 was measured under the conditions shown in Tables 4 and 5.
[Table 4]
Figure 2003048738
[Table 5]
Figure 2003048738
FIG. 5 to FIG. 8 show TIC chromatograms for measuring the amount of gas evolved from each sample material. The generated gas measurement was performed at 40 ° C. 9 to 12 show TIC chromatograms for measuring adsorbed substances in the respective chambers 11 corresponding to FIGS. 5 to 8. The measurement at this time was performed at 250 ° C.
From these, substances that could generate harmful substances depending on the combustion conditions such as DBP and DEHP were detected from wallpaper and disaster prevention curtains. Similar substances are also detected from television casings and television electronic boards.
Example 4
Using the apparatus shown in FIG. 2, the generated gas was measured by heating at 80 ° C. as in the screening test method at a high temperature, using wallpaper as a sample. The generated gas is collected in the collection tube 6 and measured from the amount of emission, and then the SVOC component adsorbed in the chamber is heated to 250 ° C., and the measurement results are shown in FIGS. Other measurement conditions are the same as in Table 2.
In the conventional screening test method, the SVOC component is adsorbed on the inner wall of the chamber due to the heating temperature, and it is difficult to obtain an accurate radiation amount, but it is more accurate by applying this method to the screening test method. It is possible to measure the SVOC radiation amount.
INDUSTRIAL APPLICABILITY According to the first aspect of the present invention as described above, after collecting the generated gas by the chamber method, the sample material is taken out and the chamber is heated with the adsorbed components remaining in the chamber. Then, the adsorbed components in the chamber are desorbed and collected via the purge gas, and then the heat desorption is performed and the measurement is performed by the measuring device. Therefore, depending on the chamber, the components remaining in the chamber due to adsorption, etc., the high-boiling organic components Gas generated from building materials, which is one of indoor air pollution sources, can be accurately measured, and a method advanced in elucidating the mechanism of indoor air pollution can be provided. Further, not only indoor air pollution but also other effective means for purifying the environment can be provided.
According to the second aspect of the present invention, the first step of measuring the VOC by collecting the generated gas by the chamber method, and then removing the sample material from the chamber and then removing the components adsorbed in the chamber The chamber is heated in the remaining state, and the adsorbed component in the chamber is desorbed and collected via the purge gas, and then the second step of performing the SVOC measurement by measuring with the measuring instrument after performing the thermal desorption, so that the indoor environmental conditions remain unchanged. This makes it possible to accurately measure building materials and other indoor air pollution sources in the state, and further expand the utility of the chamber method.
According to the third aspect of the present invention, the sample material is placed in the chamber, the generated gas is purged with an inert gas, trapped in a collecting tube, the sample material is taken out, and the inside of the chamber is again inert gas. , And the adsorbed components in the chamber are desorbed and collected, then heated and desorbed, and measured with a measuring instrument. This makes it possible to accurately measure the gas generated by a simple measurement method. Measurement of gas generated from materials such as machine tools and electrical machine tools progresses, and it becomes possible to contribute to safety confirmation of various materials.
[Brief description of the drawings]
FIG. 1 is a partial explanatory diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a main part of an embodiment of the present invention, and FIG. 3 is an evaluation test chromatogram according to the present invention. Yes, (B) is one evaluation test chromatogram according to the conventional example, (C) is one evaluation test chromatogram according to the conventional example, and FIG. 4 (A) is a gas measurement TIC chromatogram according to the present invention. , (B) is a chamber residual TIC chromatogram according to the present invention, FIG. 5 is a TIC chromatogram of the generated gas measurement using wallpaper as a sample, and FIG. 6 is a generated gas using a television casing as a sample. FIG. 7 is a TIC chromatogram of the generated gas measurement using a disaster prevention curtain as a sample, and FIG. 8 is a TIC chromatogram of the generated gas measurement using a TV terminal board as a sample. FIG. 9 is a TIC chromatogram for measuring the adsorbed substance in the chamber corresponding to FIG. 5, and FIG. 10 is a TIC chromatogram for measuring the adsorbed substance in the chamber corresponding to FIG. FIG. 12 is a TIC chromatogram for measuring an adsorbed substance in a chamber corresponding to FIG. 7, FIG. 12 is a TIC chromatogram for measuring an adsorbed substance in a chamber corresponding to FIG. 8, and FIG. FIG. 14 is a TIC chromatogram of the measurement of adsorbed substances in the chamber corresponding to FIG.

Claims (3)

チャンバー法により発生ガス捕集後、試料材を取出し、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するSVOC等の材料発生ガス測定方法。After collecting the generated gas by the chamber method, the sample material is taken out, the chamber is heated with the components adsorbed in the chamber remaining, the adsorbed components in the chamber are desorbed and collected via the purge gas, and then heated and desorbed. A method for measuring a gas generated from a material such as SVOC measured by a measuring instrument. チャンバー法による発生ガスの捕集によりVOCの測定を行う第1工程と、次いでそのチャンバーから試料材を取出した後、チャンバー内に吸着した成分を残した状態でチャンバーを加熱し、パージガスを介してチャンバー内吸着成分を脱着させ捕集し、その後加熱脱着を行い測定器により測定するSVOC測定を行う第2工程よりなる材料発生ガス測定方法。The first step of measuring the VOC by collecting the generated gas by the chamber method, and then removing the sample material from the chamber, heating the chamber with the adsorbed components left in the chamber, and via the purge gas A material generation gas measuring method comprising a second step of performing SVOC measurement by desorbing and collecting adsorbed components in the chamber and then performing heat desorption and measuring with a measuring instrument. チャンバーに試材料を置き、発生ガスを不活性ガスによりパージし、捕集管にトラップし、試材料を取出し、チャンバー内を再度不活性ガスでパージして、チャンバー内吸着成分脱着させて捕集し、その後加熱脱着を行い、測定器により測定するSVOC等の材料発生ガス測定方法Place the sample in the chamber, purge the generated gas with inert gas, trap it in the collection tube, take out the sample, purge the chamber again with inert gas, desorb the adsorbed components in the chamber and collect After that, the material generation gas measuring method such as SVOC is performed by performing heat desorption and measuring with a measuring instrument.
JP2003549884A 2001-12-04 2002-12-03 Material evolved gas measurement method Withdrawn JPWO2003048738A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001370648 2001-12-04
JP2001370648 2001-12-04
PCT/JP2002/012674 WO2003048738A1 (en) 2001-12-04 2002-12-03 Method for measuring gas generated by material

Publications (1)

Publication Number Publication Date
JPWO2003048738A1 true JPWO2003048738A1 (en) 2005-04-14

Family

ID=19179837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003549884A Withdrawn JPWO2003048738A1 (en) 2001-12-04 2002-12-03 Material evolved gas measurement method

Country Status (2)

Country Link
JP (1) JPWO2003048738A1 (en)
WO (1) WO2003048738A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244031A (en) * 2019-06-28 2019-09-17 江苏省环境科学研究院 A kind of wood-based plate VOC release measuring

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524402B2 (en) * 2005-03-28 2010-08-18 財団法人生産技術研究奨励会 Semi-volatile organic compound (SVOC) emission measurement method and measurement apparatus
JP5733748B2 (en) * 2010-04-06 2015-06-10 大起理化工業株式会社 Volatile substance extraction device in soil
ITRM20100223A1 (en) * 2010-05-06 2010-08-05 Stallone Domenico TRANSPORTABLE DEVICE FOR SAMPLING ON REMOVABLE CARTRIDGE OF VOLATILE COMPOUNDS COMING FROM LIQUID OR SOLID SAMPLES
JP5751018B2 (en) * 2011-05-30 2015-07-22 いすゞ自動車株式会社 SVOC emission rate control method
JP5150749B2 (en) * 2011-05-31 2013-02-27 株式会社東芝 Method for collecting generated gas and measuring method
CN102353561B (en) * 2011-06-22 2014-08-13 深圳市建筑科学研究院有限公司 Semi-passive air sampler
JP6429619B2 (en) * 2013-12-26 2018-11-28 株式会社シーズテック Hazardous substance collection device and method
CN105675357A (en) * 2016-01-19 2016-06-15 北京工业大学 Multipurpose dilution channel solid particle sampling system applicable to sampling VOCs
CN105784929B (en) * 2016-02-29 2017-08-15 西安交通大学 The system and its environmental chamber of building materials emission characteristics in a kind of measure indoor environment
FR3067810B1 (en) * 2017-06-19 2022-01-14 Jacky Experton AMBULATORY DEVICE FOR CAPTURING VOLATILE ORGANIC COMPOUNDS BY SUCTION AND ITS USE
CN107884350A (en) * 2017-10-25 2018-04-06 湖北航天化学技术研究所 The detection method and its device of bubbing in high-energy solid propellant ageing process
CN110850007B (en) * 2019-11-13 2022-12-06 云南中烟工业有限责任公司 Method for measuring phthalate component migration in filter stick by simulating real smoking of cigarette

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048105A (en) * 1996-07-30 1998-02-20 Fujikura Ltd Sample container for gas analysis
JP3839988B2 (en) * 1998-03-02 2006-11-01 株式会社テクノ菱和 Gas evaluation apparatus and gas evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244031A (en) * 2019-06-28 2019-09-17 江苏省环境科学研究院 A kind of wood-based plate VOC release measuring

Also Published As

Publication number Publication date
WO2003048738A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
JPWO2003048738A1 (en) Material evolved gas measurement method
US8866075B2 (en) Apparatus preparing samples to be supplied to an ion mobility sensor
Norbäck et al. Occupational exposure to volatile organic compounds (VOCs), and other air pollutants from the indoor application of water-based paints
JPWO2018110653A1 (en) Analytical method for adhesion resin of crushed polysilicon
JP2004205313A (en) Gas chromatography device
Aoki et al. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction
Cotte-Rodríguez et al. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS)
JP2006091000A (en) Method for measuring amount of pollutant diffusion
WO2020084906A1 (en) Gas analysis device and gas analysis method
JP4476849B2 (en) Method for measuring pollutant emissions
JPS62233745A (en) Electrodeless discharger
CN109900777B (en) Device for rapidly analyzing gas components of combustion products of materials on line and application
JP2003185647A (en) Simplified quantitative determination method for volatile organic compound content in gas
JP2964998B2 (en) Analysis method for trace impurities in the atmosphere
JP2001264295A (en) Solid surface adsorption evaluating method for contaminant
Eichelberger et al. Determination of volatile organics in drinking water with USEPA Method 524.2 and the ion trap detector
JP4044851B2 (en) Method for measuring volatile organic substances and sampling instrument for measurement
JP4089646B2 (en) Organic volatile matter collection tube and organic volatile matter measurement method
Chung et al. On-line thermogravimetry/gas chromatography/mass spectrometry
JP4235028B2 (en) Analysis method of air pollutants
JP2004184253A (en) Method for measuring organic volatile substance of organic material
Marotta et al. Positive and negative ion chemistry of the anesthetic halothane (1‐bromo‐1‐chloro‐2, 2, 2‐trifluoroethane) in air plasma at atmospheric pressure
JP2003315219A (en) Apparatus for screening diffusion speed of volatile substances
JP2011149771A (en) Method for evaluating surface contamination of substrate, and instrument for measuring surface resistivity
Zhang et al. Determination of volatile organic compounds in residential buildings

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207