JP2006091000A - Method for measuring amount of pollutant diffusion - Google Patents

Method for measuring amount of pollutant diffusion Download PDF

Info

Publication number
JP2006091000A
JP2006091000A JP2005068805A JP2005068805A JP2006091000A JP 2006091000 A JP2006091000 A JP 2006091000A JP 2005068805 A JP2005068805 A JP 2005068805A JP 2005068805 A JP2005068805 A JP 2005068805A JP 2006091000 A JP2006091000 A JP 2006091000A
Authority
JP
Japan
Prior art keywords
tube
catching
volatile organic
collection tube
test body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005068805A
Other languages
Japanese (ja)
Other versions
JP4476850B2 (en
Inventor
Masazumi Kanbe
正純 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2005068805A priority Critical patent/JP4476850B2/en
Publication of JP2006091000A publication Critical patent/JP2006091000A/en
Application granted granted Critical
Publication of JP4476850B2 publication Critical patent/JP4476850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply measure a diffusion amount of pollutant where diffusions from an end and a backside do not occur, without using any seal box. <P>SOLUTION: Two catching tubes are connected by a connector, and a test body 1 is completely enclosed by an aluminum foil or a copper foil, and then a portion with a prescribed dimension of above metallic foil existing on the surface side of the test body is cut out in order to make only the surface side exposed, thereby making up the test body which is contained in the upstream catching tube used as the primary catching tube 7 being also used for volatilizing, and the downstream catching tube which is used as the secondary catching tube 8, is filled up with a catching agent 10, and a carrier gas is applied at a prescribed temperature, at a prescribed flow rate and at a prescribed timing, and a volatile organic compound which is diffused from the test body, is catched by the primary catching tube 7 and the secondary catching tube 8, and then the two catching tubes 7, 8 are respectively set to a thermal desorption section of a thermal desorption type gas chromatograph mass spectrometer (GC/MS), and the total diffusion amount of the volatile organic compound is computed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、揮発性有機化合物の汚染物質放散量を測定する方法に関する。   The present invention relates to a method for measuring pollutant emissions of volatile organic compounds.

近年、健康意識の高まりとともに、建材又は施工材から発生する放散化学物質による”シックハウス症候群”が社会問題化しているとともに、半導体及び液晶製造用クリーンルーム等では放散化学物質の付着により歩留まり低下を引き起こすことが問題となっており、これに伴って空気中に存在する微量な化学物質の濃度を測定することが重要となっている。   In recent years, with increasing health consciousness, “sick house syndrome” caused by chemical substances emitted from building materials and construction materials has become a social problem, and in chemical and liquid crystal manufacturing clean rooms, etc., it can cause yield reduction due to the adhesion of chemical substances emitted. Accordingly, it is important to measure the concentration of a very small amount of chemical substance existing in the air.

室内空気汚染源の一つとして挙げられるのが、建材又は施工材等から発生する超揮発性有機化合物(VVOC)、揮発性有機化合物(VOC)、半揮発性有機化合物(SVOC)などである。   Examples of indoor air pollution sources include supervolatile organic compounds (VVOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) generated from building materials and construction materials.

建材等からの前記揮発性有機化合物の濃度測定手法としては、2003年1月にJIS A 1901に「小型チャンバー法」が制定された。この小型チャンバー法では、前記揮発性有機化合物の内、超揮発性有機化合物(VVOC)、揮発性有機化合物(VOC)について規定されているが、より沸点の高いフタル酸エステル類やリン酸エステル類に代表される前記半揮発性有機化合物(SVOC)は規定されていない。   As a method for measuring the concentration of the volatile organic compounds from building materials, the “small chamber method” was established in JIS A 1901 in January 2003. In this small chamber method, among the volatile organic compounds, super volatile organic compounds (VVOC) and volatile organic compounds (VOC) are specified, but phthalates and phosphates having higher boiling points are specified. The semi-volatile organic compound (SVOC) represented by is not defined.

しかし、前記半揮発性有機化合物(SVOC)は、可塑剤や難燃剤として様々な建材又は家庭用品に含まれており、厚生労働省の指針値にも含まれている有害物質であるため、前記超揮発性有機化合物(VVOC)、揮発性有機化合物(VOC)と共に半揮発性有機化合物(SVOC)をも正確に測定できる方法の開発が望まれている。   However, the semivolatile organic compound (SVOC) is contained in various building materials and household products as a plasticizer and flame retardant, and is a hazardous substance that is also included in the guidelines of the Ministry of Health, Labor and Welfare. Development of a method capable of accurately measuring volatile organic compounds (VVOC) and semi-volatile organic compounds (SVOC) together with volatile organic compounds (VOC) is desired.

しかしながら、前記半揮発性有機化合物(SVOC)の放散量の測定は、該SVOC成分は気中濃度が非常に低く大きな捕集量が必要なこと、チャンバー内壁への付着が多く、前記小型チャンバー法では正確に測定ができないという問題があった。   However, the measurement of the emission amount of the semivolatile organic compound (SVOC) is that the SVOC component has a very low concentration in the air and requires a large amount of trapping. However, there was a problem that it could not be measured accurately.

そこで、下記非特許文献1では、図4(A)に示されるように、試験体50をセットしたマイクロチャンバー51を放散試験用恒温槽52に設置し、試験体50より半揮発性有機化合物(SVOC)を放散させ、その後に前記マイクロチャンバー51の内壁に付着した半揮発性有機化合物(SVOC)を脱着するため、図4(B)に示されるように、試験体50を取り外したマイクロチャンバー51をチャンバー加熱装置53に設置し、220℃で45分加熱しつつ、不活性ガスで追い出し捕集管54(TenaxTA)で捕集し、その後にガスクロマトグラフ質量分析計(GC/MS)により捕集成分の定性・定量を行い、放散量を算出する方法(従来法1)が提案されている。   Therefore, in the following Non-Patent Document 1, as shown in FIG. 4A, a microchamber 51 in which a test body 50 is set is installed in a thermostat 52 for a radiation test, and a semivolatile organic compound ( In order to dissipate the SVOC) and then desorb the semivolatile organic compound (SVOC) adhering to the inner wall of the microchamber 51, as shown in FIG. Is installed in the chamber heating device 53, heated at 220 ° C. for 45 minutes, collected with an inert gas and collected by a collecting tube 54 (TenaxTA), and then collected by a gas chromatograph mass spectrometer (GC / MS). There has been proposed a method (conventional method 1) for calculating the amount of emission by performing qualitative / quantitative analysis of minutes.

この方法の場合は、半揮発性有機化合物(SVOC)の加熱脱着時に、マイクロチャンバー51及び捕集管54までのラインを均一に加熱する必要があるため大型のチャンバー加熱装置53が必要となる。   In the case of this method, when the semivolatile organic compound (SVOC) is heated and desorbed, the line up to the microchamber 51 and the collection tube 54 needs to be heated uniformly, so that a large chamber heating device 53 is required.

そこで、より簡易な評価方法(従来法2)として、下記非特許文献2ではチャンバーの代わりに直接、石英ガラスからなる捕集管(Tenax管)を用いた方法が提案されている。具体的には図5に示されるように、2つの捕集管56,57をコネクターで接続し、上流側の捕集管56内に試験体58を収容して揮発兼用の一次捕集管とし、下流側の捕集管57に捕集剤59を充填して二次捕集管とし、温度40℃の空気を流量1ml/minで供給し、前記試験体から放散される揮発性有機化合物を前記一次捕集管56及び二次捕集管57とで捕集した後、この2つの捕集管56,57をそれぞれ熱脱着型ガスクロマトグラフ質量分析計61(GC/MS)の加熱脱着部60にセットし、揮発性有機化合物の全放散量を算出する方法が提案されている。
財団法人建材試験センター、「建材からのVOC等放散量の評価方法に関する標準化」、平成16年3月、p.193−202 石割修一、外2名、「クリーンルーム構成材の室温での高沸点吸着性有機物の揮発挙動」、社団法人日本空気清浄協会 第22回空気清浄とコンタミネーションコントロール研究大会講演集、平成16年4月13・14日、p.54-57
Therefore, as a simpler evaluation method (conventional method 2), the following Non-Patent Document 2 proposes a method using a collection tube (Tenax tube) made of quartz glass directly instead of a chamber. Specifically, as shown in FIG. 5, two collection tubes 56 and 57 are connected by a connector, and a test body 58 is accommodated in the upstream collection tube 56 to serve as a primary collection tube for volatilization. The downstream collection tube 57 is filled with a collection agent 59 to form a secondary collection tube, air at a temperature of 40 ° C. is supplied at a flow rate of 1 ml / min, and the volatile organic compound released from the specimen is removed. After being collected by the primary collection tube 56 and the secondary collection tube 57, the two collection tubes 56 and 57 are respectively heated and desorbed by a thermal desorption type gas chromatograph mass spectrometer 61 (GC / MS) 60. And a method for calculating the total emission amount of volatile organic compounds has been proposed.
Building Materials Testing Center, “Standardization of Evaluation Methods for VOC Emissions from Building Materials”, March 2004, p.193-202 Shuichi Ishiwari, two others, “Volatilization behavior of high-boiling adsorbable organic substances at room temperature in clean room components”, Japan Air Cleaners Association 22nd Air Cleaner and Contamination Control Research Conference Lecture, April 2004 13-14 days, p.54-57

前記従来法2の場合は、揮発性有機化合物を捕集した2つの捕集管56,57を直接、ガスクロマトグラフ質量分析計61(GC/MS)の加熱脱着部60に装着できるため、従来法1のような大型の高温槽が不要となり、かつ超揮発性有機化合物(VVOC)、揮発性有機化合物(VOC)と共に、半揮発性有機化合物(SVOC)を効率的に測定できるなどの利点を有する。   In the case of the conventional method 2, the two collecting tubes 56 and 57 that collect volatile organic compounds can be directly attached to the heat desorption part 60 of the gas chromatograph mass spectrometer 61 (GC / MS). No need for a large high-temperature bath like 1 and has the advantage of being able to efficiently measure semivolatile organic compounds (SVOC) along with supervolatile organic compounds (VVOC) and volatile organic compounds (VOC) .

しかしながら、ガス放散量測定の試験体は、JIS A 1901によれば、試験片の小口及び裏面部分をシールし、化学物質が表面からのみ放散されるようにすることが記載されている。そのため、同規定では、図6に示されるシールボックス62を使用することが記載されている。該シールボックス62は、シールボックス本体63、気密性を保つために試験体の表裏に介在される枠板64A〜64C、裏面蓋65からなる器具である。   However, according to JIS A 1901, it is described that the specimen for measuring the gas emission amount seals the fore edge and the back surface portion of the test piece so that the chemical substance is emitted only from the surface. Therefore, in the same rule, it is described that the seal box 62 shown in FIG. 6 is used. The seal box 62 is an instrument including a seal box main body 63, frame plates 64A to 64C interposed between the front and back surfaces of the test body to maintain airtightness, and a back cover 65.

前記シールボックス62は、試験体の裏面からの揮発性物質の放散を無くし、洗浄及びから焼きを行うことで再使用が可能な機能性の高いものであるが、前記従来法2における試験方法に供するにはサイズが大き過ぎて捕集管内に挿入することができない。また、捕集管内に挿入可能なサイズのシールボックスを作製するとなると、高精度の工作が必要となるなどの問題があった。   The seal box 62 has high functionality that eliminates the diffusion of volatile substances from the back surface of the test specimen and can be reused by cleaning and dry baking. It is too large to serve and cannot be inserted into the collection tube. Moreover, when producing a seal box of a size that can be inserted into the collection tube, there is a problem that a highly accurate work is required.

そこで本発明の主たる課題は、シールボックスを使用することなく、かつ簡易でありながら小口及び裏面からの放散を無くした状態で汚染物質の放散量を測定することにある。   Accordingly, a main object of the present invention is to measure the amount of pollutant diffused without using a seal box and in a state where it is simple and eliminates the radiation from the fore edge and the back surface.

前記課題を解決するために請求項1に係る本発明として、2つの捕集管をコネクターで接続し、上流側の捕集管内に、試験体をアルミ箔又は銅箔で完全に囲繞した後、試験体表面側の金属箔を所定の寸法で切り取り、表面側のみを暴露状態とすることによって作製した試験体を収容して揮発兼用の一次捕集管とし、下流側の捕集管に捕集剤を充填して二次捕集管とし、所定温度のキャリアガスを所定流量及び所定時間で供給し、前記試験体から放散される揮発性有機化合物を前記一次捕集管及び二次捕集管とで捕集した後、この2つの捕集管をそれぞれ熱脱着型ガスクロマトグラフ質量分析計(GC/MS)の加熱脱着部にセットし、揮発性有機化合物の全放散量を算出することを特徴とする汚染物質放散量の測定方法が提供される。   In order to solve the above-mentioned problem, as the present invention according to claim 1, after connecting two collecting tubes with a connector and completely surrounding the specimen with aluminum foil or copper foil in the upstream collecting tube, Cut the metal foil on the surface side of the test specimen to a predetermined size and store the test specimen prepared by exposing only the surface side to the primary collection pipe for volatilization and collect it in the downstream collection pipe The secondary collection tube is filled with the agent, the carrier gas at a predetermined temperature is supplied at a predetermined flow rate and for a predetermined time, and the volatile organic compound released from the test body is the primary collection tube and the secondary collection tube. The two collection tubes are set in the heat desorption section of a thermal desorption type gas chromatograph mass spectrometer (GC / MS), and the total emission amount of volatile organic compounds is calculated. A method for measuring the amount of pollutant emission is provided.

以上詳説のとおり本発明によれば、シールボックスを使用することなく、かつ簡易でありながら、小口及び裏面からの放散を無くした状態で汚染物質放散量を測定することができる。   As described above in detail, according to the present invention, it is possible to measure the pollutant emission amount without using a seal box and in a state in which the emission from the fore edge and the back surface is eliminated.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔試験体の作製〕
図1(A)に示されるように、建材又は施工材等の試験体1を所定の寸法で裁断し、この試験体1を、これより大寸のアルミ箔又は銅箔等の金属箔2の上面に載せ、金属箔2を折り畳んで試験片1を完全に囲繞する。この際、試験体1は金属箔2の折り重ね部分の無い側が表面となるようにするのが望ましい。図1の例で言えば、試験体1を金属箔2に載せた際、金属箔2に対する当接面側が表面となるようにするのが望ましい。
[Preparation of specimen]
As shown in FIG. 1 (A), a test body 1 such as a building material or a construction material is cut to a predetermined size, and the test body 1 is made of a metal foil 2 such as an aluminum foil or a copper foil that is larger than this. The test piece 1 is completely surrounded by folding the metal foil 2 on the upper surface. At this time, it is desirable that the side of the test body 1 without the folded portion of the metal foil 2 be the surface. In the example of FIG. 1, when the test body 1 is placed on the metal foil 2, it is desirable that the contact surface side with respect to the metal foil 2 be the surface.

試験体1を金属箔2によって完全に囲繞したならば、図1(B)に示されるように、試験体表面側において金属箔2をカッターにより所定の寸法で切り取り、表面側を暴露状態とする。前記金属箔2としては、台所用品として一般的なアルミホイルを好適に用いることができる。アルミホイルの厚みは、用途に応じて種々の厚みのものが存在するが、加熱処理用の15〜100μm程度の厚みのものを用いるのがよい。   When the specimen 1 is completely surrounded by the metal foil 2, as shown in FIG. 1 (B), the metal foil 2 is cut to a predetermined size with a cutter on the surface side of the specimen, and the surface side is exposed. . As the metal foil 2, a general aluminum foil as a kitchen utensil can be suitably used. There are various thicknesses of aluminum foil depending on the application, but it is preferable to use a thickness of about 15 to 100 μm for heat treatment.

〔汚染物質放散量の測定装置〕
図2に示されるように、空気供給側から順に、清浄空気供給ユニット3、活性炭槽4、調湿ユニット5、静的ミキサー6、揮発兼用の一次捕集管7、二次捕集管8、積算流量計9を連設する。
[Measurement equipment for pollutant emissions]
As shown in FIG. 2, in order from the air supply side, a clean air supply unit 3, an activated carbon tank 4, a humidity control unit 5, a static mixer 6, a primary collection pipe 7 for volatilization, a secondary collection pipe 8, An integrated flow meter 9 is provided continuously.

前記清浄空気供給ユニット3からキャリアガスとして送られた空気(28±1℃)は、前記活性炭槽4を通過することにより微細な塵埃等が除去された後、調湿ユニット5により50±5%RHの湿度状態に調整された後、静的ミキサー6を通過することにより空気が均一に混合され、揮発兼用の一次捕集管7に供給されるようになっている。   The air (28 ± 1 ° C.) sent as the carrier gas from the clean air supply unit 3 passes through the activated carbon tank 4 to remove fine dust and the like, and then the humidity adjustment unit 5 makes 50 ± 5%. After being adjusted to the RH humidity state, the air is uniformly mixed by passing through the static mixer 6 and supplied to the primary collection tube 7 for volatilization.

前記一次捕集管7は、Tenax管と呼ばれる石英ガラスからなる管状体であり、この管内に試験体1が挿入される。この一次捕集管7は、収容した試験体1からガスを放散させるとともに、管内壁面に付着する半揮発性有機化合物(SVOC)を捕集する目的で使用する。前記一次捕集管7(Tenax管)は、図3に示されるように、熱脱着型ガスクロマトグラフ質量分析計12(GC/MS)の加熱脱着部11にそのままセットすることが可能で、一次捕集管7(Tenax管)の内壁に付着した半揮発性有機化合物(SVOC)を定性・定量することが可能である。なお、前記一次捕集管7(Tenax管)は内径が12φmmであるため、試験体1は挿入可能なサイズで作製される。   The primary collection tube 7 is a tubular body made of quartz glass called a Tenax tube, and the test body 1 is inserted into the tube. This primary collection tube 7 is used for the purpose of dissipating gas from the accommodated test body 1 and collecting semi-volatile organic compounds (SVOC) adhering to the inner wall surface of the tube. As shown in FIG. 3, the primary collection tube 7 (Tenax tube) can be set as it is in the heat desorption section 11 of the thermal desorption type gas chromatograph mass spectrometer 12 (GC / MS). Semi-volatile organic compounds (SVOC) adhering to the inner wall of the collecting tube 7 (Tenax tube) can be qualitatively and quantitatively determined. Since the primary collection tube 7 (Tenax tube) has an inner diameter of 12 mm, the test body 1 is produced in a size that can be inserted.

前記二次捕集管8も同様に、Tenax管と呼ばれる石英ガラスからなる管状体で、内部に捕集剤10が充填されている。前記捕集剤10としては、「TenaxTA」と呼ばれる2,6-diphenyl-p-phenylene oxide構造の耐熱性樹脂、或いは前記「TenaxTA」に23%のグラファイトカーボンを含浸させた「TenaxGR」と呼ばれる混合捕集剤等を使用することができる。これら「TenaxTA」、「TenaxGR」を充填した捕集管は容易に入手が可能である。この二次捕集管8では、試験体から放散された揮発性有機化合物の内、超揮発性有機化合物(VVOC)及び揮発性有機化合物(VOC)が前記捕集剤10によって捕集される。この二次捕集管8(Tenax管)も、図3に示されるように、熱脱着型ガスクロマトグラフ質量分析計12(GC/MS)の加熱脱着部11にそのままセットすることが可能で、二次捕集管8(Tenax管)の捕集剤10に吸着された超揮発性有機化合物(VVOC)及び揮発性有機化合物(VOC)を定性・定量することが可能である。   Similarly, the secondary collection tube 8 is a tubular body made of quartz glass called a Tenax tube and is filled with a collection agent 10. The scavenger 10 is a heat-resistant resin having a 2,6-diphenyl-p-phenylene oxide structure called “TenaxTA”, or a mixture called “TenaxGR” in which “TenaxTA” is impregnated with 23% graphite carbon. A scavenger or the like can be used. The collection tubes filled with these “TenaxTA” and “TenaxGR” are easily available. In the secondary collection tube 8, the supervolatile organic compound (VVOC) and the volatile organic compound (VOC) are collected by the collection agent 10 among the volatile organic compounds released from the specimen. This secondary collection tube 8 (Tenax tube) can also be set as it is in the heat desorption section 11 of the thermal desorption type gas chromatograph mass spectrometer 12 (GC / MS), as shown in FIG. The volatile organic compound (VVOC) and the volatile organic compound (VOC) adsorbed on the collection agent 10 of the next collection tube 8 (Tenax tube) can be qualitatively and quantitatively determined.

以上の測定装置において、前記一次捕集管7に試験体1を挿入した状態で、所定温度のキャリアガスを所定流量及び所定時間で供給し、前記試験体1から放散される揮発性有機化合物を前記一次捕集管7及び二次捕集管8とで捕集した後、前述したように、これら2つの捕集管7,8をそれぞれ、図3に示されるように、熱脱着型ガスクロマトグラフ質量分析計12(GC/MS)の加熱脱着部11にセットし、揮発性有機化合物の全放散量を分析する。   In the above measuring apparatus, in a state where the test body 1 is inserted into the primary collection tube 7, a carrier gas of a predetermined temperature is supplied at a predetermined flow rate and a predetermined time, and the volatile organic compound released from the test body 1 is supplied. After being collected by the primary collection tube 7 and the secondary collection tube 8, as described above, these two collection tubes 7 and 8 are respectively connected to the thermal desorption type gas chromatograph as shown in FIG. It is set in the heat desorption part 11 of the mass spectrometer 12 (GC / MS), and the total emission amount of the volatile organic compound is analyzed.

(1)試験体の作製
ビニル床シートロールの中央部から11.5mm×52mmのサイズで裁断し、アルミ箔で完全に囲繞した後、表面部のアルミ箔を10mm×50mmの寸法で切り取り、表面を暴露状態とした試験体を作製した。また、比較のためにアルミ箔により被覆しない試験体も同時に用意した。
(1) Preparation of the test specimen Cut from the center of the vinyl floor sheet roll to a size of 11.5mm x 52mm, completely enclosed with aluminum foil, and then cut off the aluminum foil on the surface with dimensions of 10mm x 50mm. An exposed specimen was prepared. For comparison, a specimen not covered with aluminum foil was also prepared.

(2)測定条件
図2に示される測定装置を使用し、下表1の条件で揮発性有機化合物の放散量の測定を行った。
(2) Measurement conditions Using the measuring apparatus shown in FIG. 2, the amount of volatile organic compounds emitted was measured under the conditions shown in Table 1 below.

Figure 2006091000
Figure 2006091000

(3)分析条件
キャリアガスを所定時間、流通させた後、一次捕集管7及び二次捕集管8を熱脱着型ガスクロマトグラフ質量分析計(GC/MS)により、下表2及び3の条件で分析した。
(3) Analytical conditions After circulating the carrier gas for a predetermined time, the primary collection tube 7 and the secondary collection tube 8 were subjected to thermal desorption gas chromatograph mass spectrometry (GC / MS) as shown in Tables 2 and 3 below. Analyzed by condition.

Figure 2006091000
Figure 2006091000

Figure 2006091000
Figure 2006091000

(4)分析結果
アルミ被覆を行った試験体と、被覆無しの試験体との分析結果は下表4のとおりであった。なお、ブランクは捕集管をセットしない状態で、不可避的に生じてしまう分析数値である。
(4) Analysis results Table 4 below shows the analysis results of the specimens coated with aluminum and those without coating. The blank is an analytical value that is inevitably generated in a state where the collection tube is not set.

Figure 2006091000
Figure 2006091000

本発明に係る試験体1の作製要領を示す図である。It is a figure which shows the preparation points of the test body 1 which concerns on this invention. 汚染物質放散量の測定装置を示す図である。It is a figure which shows the measuring apparatus of pollutant emission amount. 一次捕集管7及び二次捕集管8による揮発性有機化合物の分析要領を示す図である。It is a figure which shows the analysis point of the volatile organic compound by the primary collection tube 7 and the secondary collection tube 8. FIG. 従来法1の汚染物質放散量の測定方法を示す図である。It is a figure which shows the measuring method of the pollutant emission amount of the conventional method 1. FIG. 従来法2の汚染物質放散量の測定方法を示す図である。It is a figure which shows the measuring method of the pollutant emission amount of the conventional method 2. シールボックスを示す、(A)は分解斜視図、(B)は横断面図である。FIG. 3A is an exploded perspective view showing a seal box, and FIG.

符号の説明Explanation of symbols

1…試験体、2…金属箔、3…清浄空気供給ユニット、4…活性炭槽、5…調湿ユニット、6…静的ミキサー、7…一次捕集管、8…二次捕集管、9…積算流量計、10…捕集剤、11…加熱脱着部、12…熱脱着型ガスクロマトグラフ質量分析計   DESCRIPTION OF SYMBOLS 1 ... Test body, 2 ... Metal foil, 3 ... Clean air supply unit, 4 ... Activated carbon tank, 5 ... Humidity control unit, 6 ... Static mixer, 7 ... Primary collection pipe, 8 ... Secondary collection pipe, 9 ... Integral flow meter, 10 ... collecting agent, 11 ... heat desorption part, 12 ... thermal desorption type gas chromatograph mass spectrometer

Claims (1)

2つの捕集管をコネクターで接続し、上流側の捕集管内に、試験体をアルミ箔又は銅箔で完全に囲繞した後、試験体表面側の金属箔を所定の寸法で切り取り、表面側のみを暴露状態とすることによって作製した試験体を収容して揮発兼用の一次捕集管とし、下流側の捕集管に捕集剤を充填して二次捕集管とし、所定温度のキャリアガスを所定流量及び所定時間で供給し、前記試験体から放散される揮発性有機化合物を前記一次捕集管及び二次捕集管とで捕集した後、この2つの捕集管をそれぞれ熱脱着型ガスクロマトグラフ質量分析計(GC/MS)の加熱脱着部にセットし、揮発性有機化合物の全放散量を算出することを特徴とする汚染物質放散量の測定方法。
Connect the two collection tubes with a connector, and completely surround the test specimen with aluminum foil or copper foil in the upstream collection pipe. Then, cut the metal foil on the test specimen surface side to the specified size. A test tube made by exposing only the sample to a volatilized primary collection tube, filling the downstream collection tube with a collection agent to form a secondary collection tube, and a carrier at a predetermined temperature. Gas is supplied at a predetermined flow rate and for a predetermined time, and volatile organic compounds released from the specimen are collected by the primary collection tube and the secondary collection tube, and then the two collection tubes are heated. A method for measuring the amount of pollutant emission, which is set in a heat desorption part of a desorption type gas chromatograph mass spectrometer (GC / MS) and calculates the total emission amount of volatile organic compounds.
JP2005068805A 2004-08-23 2005-03-11 Method for measuring pollutant emissions Expired - Fee Related JP4476850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068805A JP4476850B2 (en) 2004-08-23 2005-03-11 Method for measuring pollutant emissions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004241974 2004-08-23
JP2005068805A JP4476850B2 (en) 2004-08-23 2005-03-11 Method for measuring pollutant emissions

Publications (2)

Publication Number Publication Date
JP2006091000A true JP2006091000A (en) 2006-04-06
JP4476850B2 JP4476850B2 (en) 2010-06-09

Family

ID=36232123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068805A Expired - Fee Related JP4476850B2 (en) 2004-08-23 2005-03-11 Method for measuring pollutant emissions

Country Status (1)

Country Link
JP (1) JP4476850B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069053A (en) * 2007-09-14 2009-04-02 Polyplastics Co Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method
JP2010112938A (en) * 2008-11-10 2010-05-20 Daiichi Sankyo Co Ltd Online impurity removal device and method
CN103913518A (en) * 2012-12-31 2014-07-09 天士力制药集团股份有限公司 Method for detecting content of plasticizer in white spirit and application thereof in detection of migration rate of plasticizer
JP2015503103A (en) * 2012-11-07 2015-01-29 大韓民国環境部国立環境科学院Republic Of Korea(Ministry Of Environment,National Institute Of Environmental Research) Product pollutant release experimental chamber equipment
CN110441289A (en) * 2019-08-12 2019-11-12 北京理工大学 A kind of evaluation method and its application of phosphorus flame retardant phosphine release amount

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069053A (en) * 2007-09-14 2009-04-02 Polyplastics Co Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method
JP2010112938A (en) * 2008-11-10 2010-05-20 Daiichi Sankyo Co Ltd Online impurity removal device and method
JP2015503103A (en) * 2012-11-07 2015-01-29 大韓民国環境部国立環境科学院Republic Of Korea(Ministry Of Environment,National Institute Of Environmental Research) Product pollutant release experimental chamber equipment
CN103913518A (en) * 2012-12-31 2014-07-09 天士力制药集团股份有限公司 Method for detecting content of plasticizer in white spirit and application thereof in detection of migration rate of plasticizer
CN110441289A (en) * 2019-08-12 2019-11-12 北京理工大学 A kind of evaluation method and its application of phosphorus flame retardant phosphine release amount
CN110441289B (en) * 2019-08-12 2020-07-14 北京理工大学 Evaluation method of phosphorus flame retardant hydrogen phosphide release amount and application thereof

Also Published As

Publication number Publication date
JP4476850B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
Meininghaus et al. Diffusion and sorption of volatile organic compounds in building materials− Impact on indoor air quality
Jørgensen et al. Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces
Baughman et al. Mixing of a point source pollutant by natural convection flow within a room
JP4476850B2 (en) Method for measuring pollutant emissions
Clausen et al. The influence of humidity on the emission of di-(2-ethylhexyl) phthalate (DEHP) from vinyl flooring in the emission cell “FLEC”
Van Loy et al. Dynamic behavior of semivolatile organic compounds in indoor air. 1. Nicotine in a stainless steel chamber
Kim et al. Efficient test method for evaluating gas removal performance of room air cleaners using FTIR measurement and CADR calculation
Won et al. Validation of the surface sink model for sorptive interactions between VOCs and indoor materials
Walgraeve et al. Uptake rate behavior of tube-type passive samplers for volatile organic compounds under controlled atmospheric conditions
Yatavelli et al. Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS)
Poppendieck et al. Desorption of a methamphetamine surrogate from wallboard under remediation conditions
JP4476849B2 (en) Method for measuring pollutant emissions
Wang et al. Prediction and validation of diffusive uptake rates for indoor volatile organic compounds in axial passive samplers
Rizk et al. Fast sorption measurements of volatile organic compounds on building materials: Part 1–Methodology developed for field applications
Li et al. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application
WO2003048738A1 (en) Method for measuring gas generated by material
Zhang et al. Effects of environmental conditions on the VOC sorption by building materials-Part I: Experimental results (RP-1097)
CN112881543A (en) Device and method for measuring gas particle distribution coefficient of semi-volatile organic compounds
Harper Assessing workplace chemical exposures: the role of exposure monitoring
Pang et al. Development and evaluation of a personal particulate organic and mass sampler
KR20060110153A (en) Devices and a method for measuring emission substances from construction materials
CN113655149B (en) Method for measuring characteristic parameters and adsorption constant of semi-volatile organic compounds of material
JP2001159592A (en) Heat generated gas evaluating device
JP5181299B2 (en) Material evaluation method
Chatzidiakou et al. Indoor Air Quality and Ventilation Measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees