JP2009069053A - Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method - Google Patents

Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method Download PDF

Info

Publication number
JP2009069053A
JP2009069053A JP2007239252A JP2007239252A JP2009069053A JP 2009069053 A JP2009069053 A JP 2009069053A JP 2007239252 A JP2007239252 A JP 2007239252A JP 2007239252 A JP2007239252 A JP 2007239252A JP 2009069053 A JP2009069053 A JP 2009069053A
Authority
JP
Japan
Prior art keywords
sample
analysis
generated
generated gas
gas analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007239252A
Other languages
Japanese (ja)
Inventor
Yuko Yamamoto
祐子 山本
Hiroji Oshino
博二 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2007239252A priority Critical patent/JP2009069053A/en
Publication of JP2009069053A publication Critical patent/JP2009069053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample for analyzing generated gas, suitable for analysis of a volatile organic compound generated from resin. <P>SOLUTION: This sample for analyzing generated gas is supplied to the volatile organic compound, generated from the sample to an analysis device for measurement by carrier gas circulated around the sample, and inactive solid particles are mixed beforehand with respect to a powder sample by an equal amount or more in volume ratio. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂から発生する揮発性有機化合物の分析に適する発生ガス分析用試料、発生ガス分析方法ならびにガス発生挙動解析方法に関する。   The present invention relates to a generated gas analysis sample suitable for analysis of a volatile organic compound generated from a resin, a generated gas analysis method, and a gas generation behavior analysis method.

ガス分析方法には様々な方法があるが、希薄な発生ガスを効率良く分析する方法としてパージアンドトラップ方式の加熱脱着装置と組み合わせた方法がよく用いられる。パージアンドトラップ方式の加熱脱着装置は、キャリアガスにより揮発性成分を試料から連続的にパージし、吸着剤で捕集後、吸着剤を急速加熱することで捕集成分を脱着してガスクロマトグラフに導入する、ガス分析における前処理装置である。この加熱脱着装置を用いて、試料を一定の温度条件下にさらした際に、試料そのそものから発生する揮発性有機化合物や、捕集した環境空気中の揮発性有機化合物などをガスクロマトグラフに導入後、キャピラリーカラムで分離し、揮発性有機化合物の定性、定量が行われている。この装置は、試料形状や量も許容範囲が広く、また、近年は300℃以上の恒温加熱分析にも対応できるようになり、幅広い温度領域の揮発性有機化合物を分析できるようになっている。
パージアンドトラップ方式の加熱脱着装置を用いる分析方法では、とりわけキャリアガス流通下で試料から発生する揮発性有機化合物を連続排出する性質上、発生成分が効率良く排出され精度良く分析できるようにするため、試料を均一にばらつきなく調整する必要がある。不均一な試料形状であると、試料から発生する揮発性有機化合物の量が試料の大きさで違いを生じ、測定値が不安定となることがあり、これを避ける目的で試料を均一な大きさに粉砕すると、キャリアガスの流入圧力により試料部分のキャリアガス流路の閉塞あるいは偏りが頻繁に起こる。このような現象が起こると、試料の一部でキャリアガスが流通しない箇所が生じて発生部分が部分的に排出され難くなることで、移送される揮発性有機化合物の量が減少するため、測定毎の分析結果が安定せず、定量再現性の低い測定となるという問題がある。
更に、試料の溶融温度以上で測定を行おうとすると、試料は塊となり、キャリアガスの流通が阻害されてしまい、測定自体が困難となる。また、加熱脱着装置を使用する場合、一旦吸着剤に捕集したものを測定することから、温度変化に伴う様々な種類のガス成分の発生量の変化を調べることは困難であった。
There are various gas analysis methods, but a method combined with a purge-and-trap heat desorption apparatus is often used as a method for efficiently analyzing a dilute generated gas. The purge-and-trap heat desorption device continuously purges volatile components from a sample with a carrier gas, collects them with an adsorbent, and then rapidly heats the adsorbent to desorb the collected components into a gas chromatograph. It is a pretreatment device for gas analysis to be introduced. Using this heat desorption device, when a sample is exposed to a certain temperature condition, volatile organic compounds generated from the sample itself and volatile organic compounds in the collected ambient air are displayed on a gas chromatograph. After introduction, it is separated by a capillary column, and qualitative and quantitative determination of volatile organic compounds is performed. This apparatus has a wide allowable range in terms of sample shape and quantity, and in recent years, it has become compatible with isothermal heating analysis at 300 ° C. or higher, and can analyze volatile organic compounds in a wide temperature range.
In the analysis method using a purge-and-trap heat desorption device, in particular, due to the property of continuously discharging volatile organic compounds generated from a sample under the flow of a carrier gas, the generated components can be efficiently discharged and analyzed accurately. , It is necessary to adjust the sample uniformly and without variation. If the sample shape is not uniform, the amount of volatile organic compounds generated from the sample may vary depending on the sample size, and the measured value may become unstable. When pulverized, the carrier gas inflow pressure of the carrier gas frequently clogs or biases the carrier gas flow path in the sample portion. When such a phenomenon occurs, a part where the carrier gas does not circulate in a part of the sample is generated, and the generated part becomes difficult to be partially discharged, so that the amount of volatile organic compounds transferred is reduced. There is a problem that the analysis result of each time is not stable and the measurement is low in quantitative reproducibility.
Furthermore, if measurement is performed at a temperature equal to or higher than the melting temperature of the sample, the sample becomes a lump, obstructing the flow of the carrier gas, and the measurement itself becomes difficult. Moreover, when using a heat desorption apparatus, since what was once collected by adsorption agent is measured, it was difficult to investigate the change of the generation amount of various types of gas components accompanying a temperature change.

一方、試料の温度変化に伴う、揮発性化合物量の対温度あるいは対加熱時間推移を調べたり、ある温度で発生する揮発性化合物の定性を行ったりする場合には、パージアンドトラップ方式の加熱脱着装置を用いたガス分析技術ではなく、発生気体分析装置(EGA-MS)、昇温脱離ガス分析装置(TDS-MS)などが用いられ、特定温度での発生成分の分離、定性はハートカット分析により実行されている。ところが、EGAなどの昇温分析装置では連続GC-MS(ガスクロマトグラフ質量分析)検出の性質上、複数のサンプルを使用し、繰り返し測定をしなければならない関係上、測定結果のばらつきの影響が大きく、定量値の信頼性が低いという問題がある。また、試料の昇温に伴い発生した揮発性化合物はそのままガスクロマトグラフに直接導入されるため、希薄な成分を分析することになり定量性が低くなる。さらには試料が極少量(通常1mg以下)に限られるので、検査対象によっては不均一が生じ、サンプリング箇所による分析結果の変動が大きく、平均的な値を得るためには複数の分析を行う必要がある。また、サンプリングテクニックによる結果のばらつきが生じることもしばしば問題となる。   On the other hand, when investigating changes in the amount of volatile compounds with respect to temperature or heating time with the temperature change of the sample, or when qualifying volatile compounds generated at a certain temperature, heat desorption of the purge and trap method is used. The generated gas analyzer (EGA-MS) and the temperature-programmed desorption gas analyzer (TDS-MS) are used instead of the gas analysis technology that uses the equipment. It is executed by analysis. However, due to the nature of continuous GC-MS (Gas Chromatograph Mass Spectrometry) detection in temperature rising analyzers such as EGA, multiple samples must be used and repeated measurements are required. There is a problem that the reliability of the quantitative value is low. Further, since the volatile compound generated with the temperature rise of the sample is directly introduced into the gas chromatograph as it is, a dilute component is analyzed and the quantitativeness is lowered. Furthermore, since the sample is limited to a very small amount (usually 1 mg or less), non-uniformity occurs depending on the object to be inspected, the analysis results vary greatly depending on the sampling location, and multiple analyzes are required to obtain an average value. There is. Also, it is often a problem that the results of sampling techniques vary.

本発明は、上記従来技術の課題を解決し、定性、定量共に優れる発生ガス分析を行うための試料、広い温度範囲におけるガス発生挙動を効率良く分析するための発生ガス分析方法ならびにガス発生挙動解析方法の提供を目的とする。   The present invention solves the above-mentioned problems of the prior art, a sample for performing generated gas analysis that is excellent in both qualitative and quantitative, a generated gas analysis method and gas generation behavior analysis for efficiently analyzing gas generation behavior in a wide temperature range The purpose is to provide a method.

本発明者らは、上記目的を達成すべく検討した結果、分析試料として、粉体試料に対し不活性固体粒子が体積比で等倍量以上混合されたものを用いることが極めて有効であることを見出し、本発明を完成するに至った。
即ち本発明は、試料の周囲に流通させるキャリアガスにより、試料より発生する揮発性有機化合物を分析装置に供給し測定するための発生ガス分析用試料であって、予め粉体の試料に対し不活性固体粒子が体積比で等倍量以上混合されていることを特徴とする発生ガス分析用試料、および
加熱脱着装置を用いたガス分析において、粉体試料に対し不活性固体粒子が体積比で等倍量以上混合された分析試料を加熱し、所定設定温度で所定時間保持する間に試料より発生する揮発性有機化合物を、キャリアガスを試料の周囲に流通させることにより排出し、捕集手段に供給して捕集後、揮発性有機化合物を捕集手段から脱着させて、成分の種類と量を分析する工程を、次回の工程では所定設定温度を前回より高く設定することにより3回以上連続的に行う、発生ガス分析方法、ならびに
上記分析方法により得られた分析結果を元に、揮発性有機化合物の種類ごとに雰囲気温度と発生量の関係を解析するガス発生挙動解析方法である。
As a result of investigations to achieve the above object, the present inventors have found that it is extremely effective to use an analysis sample in which inert solid particles are mixed with a powder sample in an equal volume or more in volume ratio. As a result, the present invention has been completed.
That is, the present invention is a generated gas analysis sample for supplying a volatile organic compound generated from a sample to an analyzer with a carrier gas flowing around the sample and measuring the sample. In the generated gas analysis sample characterized in that the active solid particles are mixed in an equal volume or more in volume ratio, and in the gas analysis using the heat desorption device, the inert solid particles are in volume ratio relative to the powder sample. Means for collecting and collecting volatile organic compounds generated from a sample while heating it at a set temperature for a specified period of time by circulating a carrier gas around the sample. The process of desorbing the volatile organic compound from the collection means and analyzing the type and amount of the components after the collection is supplied to the container, and in the next process, the predetermined set temperature is set higher than the previous three times or more. Continuous This is a gas generation behavior analysis method for analyzing the relationship between the atmospheric temperature and the generation amount for each type of volatile organic compound based on the generated gas analysis method and the analysis results obtained by the above analysis method.

本発明のように、不活性固体粒子を混合した分析試料を用いることにより、パージアンドトラップ方式の加熱脱着装置を用いたガスクロマトグラフ分析の定性、定量精度が向上する。また、これにより再現性の良いダイアグラム解析が可能になり、定性、定量性に優れた昇温ガス分析様のガス分析ができる。   By using an analysis sample mixed with inert solid particles as in the present invention, the qualitative and quantitative accuracy of gas chromatograph analysis using a purge and trap type thermal desorption apparatus is improved. In addition, this makes it possible to perform diagram analysis with good reproducibility and perform gas analysis like temperature rising gas analysis with excellent qualitative and quantitative characteristics.

本発明の発生ガス分析方法に使用するパージアンドトラップ方式の加熱脱着装置−ガスクロマトグラフ質量分析計(以下、GC-MS)からなるシステムは、従来より知られているものをそのまま適用でき、その概略構成を図1に示す。
試料加熱部で発生する揮発性有機化合物は、試料加熱時間中、常時キャリアガスで捕集部に送り込まれ、捕集剤に濃縮される。試料加熱が終了すると捕集部は急速加熱され、捕集された揮発性有機化合物が脱着すると同時に、キャリアガスによりGC-MSに導入され、揮発性有機化合物が分離・測定される。キャリアガスは不活性気体であれば特に制限はないが、通常ヘリウムが用いられる。
A system composed of a purge and trap type heat desorption apparatus-gas chromatograph mass spectrometer (hereinafter referred to as GC-MS) used in the generated gas analysis method of the present invention can be applied as it is conventionally known, and its outline. The configuration is shown in FIG.
Volatile organic compounds generated in the sample heating section are always sent to the collection section by the carrier gas during the sample heating time, and are concentrated in the collection agent. When the sample heating is completed, the collection part is heated rapidly, and the collected volatile organic compound is desorbed and simultaneously introduced into the GC-MS by the carrier gas, and the volatile organic compound is separated and measured. The carrier gas is not particularly limited as long as it is an inert gas, but usually helium is used.

試料としては、一般に表面積が大きいほうが発生ガスの放出が効率良く行われ、分析精度が高まるが、小片試料では、試料片の作成に個人差を生じやすく、測定のばらつきとなる。そのため、粉砕により粒径のばらつきのない粉体試料を使用することにより分析精度が高まる。しかし、粉体試料が細かすぎるとキャリアガスの流通が阻害されてしまうので好ましくない。
本発明では、粉体試料に対し体積比にして等倍量以上、好ましくは3倍量以上大過剰の不活性固体粒子を混合したものを分析試料として用いることを特徴とする。
不活性固体粒子の混合量が体積比にして等倍量未満では、不活性固体粒子の効果が小さくなり、冷却粉砕した微粉体などの場合は、キャリアガスの流通が妨げられやすくなってしまう。
不活性固体粒子としては、分析に悪影響を与えないものであれば特に制限されないが、入手のしやすさと経済性の点からガラスビーズが好ましい。また粒子間の間隙が不均一にならないよう平均粒子径300〜900μmのものが好ましく用いられる。不活性固体粒子の粒子径が小さすぎると、粒子間の隙間が小さくなり、キャリアガスの流路を確保するための、粉体試料と混合した場合のスペーサーとして効果が小さくなる。また、不活性固体粒子の粒子径が大きすぎると、サンプルチューブ径とのバランスもあり、キャリアガスの流路を制限してしまい、キャリアガスの流通が均等に行われにくくなってしまう。
このような分析試料は、粉体試料をその溶融温度以上に加熱した場合でも、不活性固体粒子に付着することで、試料の表面積は大きく保たれ、不活性固体粒子間の間隙が保持されることで、キャリアガスの流通を阻害することがなく、試料から発生するガスの分析精度を低下させることがない。
分析試料の具体的調製手法については後述する。
As a sample, in general, the larger the surface area, the more efficiently the generated gas is released and the analysis accuracy is improved. However, in the case of a small piece sample, individual differences are likely to occur in the preparation of the sample piece, resulting in measurement variations. Therefore, the accuracy of analysis is increased by using a powder sample with no variation in particle size due to pulverization. However, if the powder sample is too fine, the flow of the carrier gas is hindered, which is not preferable.
The present invention is characterized in that a mixture of a large excess of inert solid particles in an amount equal to or larger than the powder sample, preferably 3 times larger than the powder volume, is used as the analysis sample.
If the mixing amount of the inert solid particles is less than the same volume as the volume ratio, the effect of the inert solid particles is reduced, and in the case of a finely pulverized powder, the flow of the carrier gas is likely to be hindered.
The inert solid particles are not particularly limited as long as they do not adversely affect the analysis, but glass beads are preferred from the viewpoint of availability and economy. Further, those having an average particle diameter of 300 to 900 μm are preferably used so that the gaps between the particles do not become non-uniform. If the particle size of the inert solid particles is too small, the gap between the particles becomes small, and the effect as a spacer when mixed with a powder sample for securing a carrier gas channel is reduced. Further, if the particle diameter of the inert solid particles is too large, there is a balance with the sample tube diameter, which restricts the flow path of the carrier gas and makes it difficult to distribute the carrier gas evenly.
Such an analytical sample adheres to the inert solid particles even when the powder sample is heated above its melting temperature, thereby maintaining a large surface area of the sample and maintaining a gap between the inert solid particles. Thus, the distribution of the carrier gas is not hindered, and the analysis accuracy of the gas generated from the sample is not lowered.
A specific method for preparing the analysis sample will be described later.

次いで、分析試料を加熱脱着装置に付属のサンプルチューブにセットする。この際、分析試料の加熱・冷却時に迅速に温度を制御するためと、分析試料のセッティングを容易にするため、予めサンプルチューブ内に挿入・固定可能なアルミ箔製チューブに入れておくことは好ましい方法である。サンプルチューブ内でのサンプルの固定方法は知られているどのような方法でも構わない。   Next, the analysis sample is set in a sample tube attached to the heat desorption apparatus. At this time, in order to quickly control the temperature at the time of heating / cooling the analysis sample and to facilitate the setting of the analysis sample, it is preferable to put it in an aluminum foil tube that can be inserted and fixed in the sample tube in advance. Is the method. Any known method for fixing the sample in the sample tube may be used.

次いで、常法によりガス分析を行う。昇温ガス分析を想定して試料の加熱温度範囲を定め、試料を加熱する所定温度を、工程を終えるごとに高く設定し、必要回数これを繰り返すことで、一連の測定により3回以上のガスクロマトグラフ分析を行う。例えば、昇温ガス分析で試料加熱温度100〜200℃までの揮発性有機化合物の発生挙動を分析することを想定した場合、加熱脱着装置において、1回目:100℃×一定時間加熱して測定、2回目:120℃×一定時間加熱して測定、3回目:140℃×一定時間加熱して測定……というように、1回測定ごとに試料の加熱温度を上げて、最終温度に至るまで必要な回数測定を行い、昇温の段数分のクロマトグラフを測定結果として得る。この手法で得られた個々の結果は、通常の加熱脱着装置を用いたガスクロマトグラフ分析結果であるため、多様な揮発性有機化合物が分離されており、質量分析検出器を用いれば着目したい成分あるいは全ての成分について定性あるいは定量が行える。次に、この着目成分あるいは全ての成分についての定量値を、それぞれ試料加熱温度に対してプロットすることにより、揮発性有機化合物発生量の対温度ダイアグラムができあがる。この測定工程が2回ではガス発生挙動を解析するには不十分であり、少なくとも3回以上行う必要がある。繰り返しこのダイアグラムは、通常の昇温ガス分析でのハートカット分析結果を温度刻みに繋げたような様相を呈し、昇温分析様のガス分析が可能であり、且つ、個々の定量値はサンプリングテクニック等によるばらつきも少なく、定量性の良い結果が得られる。
尚、分析工程開始前に、最初の所定設定温度未満に加熱し、試料表面に吸着している揮発性有機化合物を排除する工程を設けることは、分析精度の点で好ましい。
Next, gas analysis is performed by a conventional method. Estimate temperature rising gas analysis, set the heating temperature range of the sample, set the predetermined temperature to heat the sample higher every time the process is finished, and repeat this as many times as necessary, so that three or more gas chromas by a series of measurements Perform graph analysis. For example, when it is assumed to analyze the generation behavior of volatile organic compounds up to a sample heating temperature of 100 to 200 ° C. by temperature rising gas analysis, in the heat desorption apparatus, the first time: measured by heating at 100 ° C. for a certain time, Second time: measured by heating at 120 ° C for a certain time, third time: measured by heating at 140 ° C for a certain time, and so on. The number of times of measurement is measured, and a chromatograph corresponding to the number of stages of temperature rise is obtained as a measurement result. Since the individual results obtained by this method are the results of gas chromatographic analysis using a normal heat desorption apparatus, various volatile organic compounds have been separated. All components can be qualitatively or quantitatively determined. Next, by plotting the quantitative values for the component of interest or all the components against the sample heating temperature, a volatile organic compound generation amount versus temperature diagram is completed. If this measurement process is performed twice, it is insufficient to analyze the gas generation behavior, and it is necessary to perform the measurement process at least three times. Repeatedly, this diagram shows the appearance that heart cut analysis results in normal temperature rising gas analysis are linked to temperature increments, enabling temperature analysis like gas analysis, and individual quantitative values are sampling techniques There is little variation due to, etc., and a quantitative result is obtained.
In addition, it is preferable from the point of analysis accuracy to provide the process of excluding the volatile organic compound adsorbed on the sample surface by heating below the first predetermined set temperature before starting the analysis process.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。実施例で行ったガス分析の条件は以下の通りである。
(1)装置
図1に示すパージアンドトラップ方式の加熱脱着装置−GC-MSからなるシステムを用いる。
加熱脱着装置:PerkinElmer社製TurboMatrix ATD(ATD装置)
ガスクロマトグラフ:Agilent社製HP6800(ガスクロ、GC)
(2)分析試料の調製
図2に示す手法により分析試料を調製する。凍結粉砕した粉体試料10mgに、粉体試料に対して大過剰(130mg、体積で粉体試料のほぼ3倍程度)のガラスビーズを秤量カップの中で混合する。他方、アルミ箔片をサンプルチューブの内径に合わせて円筒形に巻いて成形したものを少し開いて両端に適量の石英ウールを置き、ガラスビーズと混合した分析試料をアルミ箔製円筒内に入れ、アルミ箔製円筒を元の円筒形に戻すように閉じ、次いで、加熱脱着装置専用サンプルチューブ(PerkinElmer社ATD用ガラスチューブ、内径4×90mm)に分析試料入りアルミ箔製円筒をセット後、石英ウールで固定し、サンプルキャップをはめる。
(3)測定
図3に測定条件の例および多段階昇温測定サイクル例を示す。この例では、最初の昇温は試料中の残存ガス除去を目的として試料加熱温度は200℃、実際の測定となる1回目は260℃、2回目は280℃……というように、測定は260〜380℃まで20℃刻み(7段階)で試料の加熱温度を上げて測定している。即ち、1試料を上記温度条件で計7回測定している。
ATD条件:吸着剤TenaxTA、トラップ捕集/脱着温度5℃/300℃、トランスファー温度300℃、スプリット比3:2(吸着時)、1:50(脱着時)
GC条件:DB5-MS(φ0.25mm×30mm×0.1μm)、検出器温度300℃(FID)、オーブ40℃(2min)→10℃/min→320℃(30min)計60分
(4)解析
図4に定量方法および測定結果を示す。1回測定ごとのクロマトピークエリア値を、既知濃度品のエリア値から換算した値を対温度ダイアグラム化して昇温分析様のガス分析を行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The conditions of the gas analysis performed in the examples are as follows.
(1) Apparatus A system comprising a purge-and-trap heat desorption apparatus-GC-MS shown in FIG. 1 is used.
Thermal desorption equipment: TurboMatrix ATD (ATD equipment) manufactured by PerkinElmer
Gas chromatograph: Agilent HP6800 (Gas Chromo, GC)
(2) Preparation of analysis sample An analysis sample is prepared by the method shown in FIG. A large excess (130 mg, approximately 3 times the volume of the powder sample in volume) of glass powder is mixed with 10 mg of the freeze-ground powder sample in a weighing cup. On the other hand, the aluminum foil piece is rolled into a cylindrical shape according to the inner diameter of the sample tube, and a little is opened and an appropriate amount of quartz wool is placed on both ends, and the analysis sample mixed with glass beads is placed in the aluminum foil cylinder, Close the aluminum foil cylinder so that it returns to its original shape, and then set the aluminum foil cylinder containing the analytical sample in the sample tube dedicated to the heat desorption device (PerkinElmer ATD glass tube, inside diameter 4 x 90 mm), then quartz wool And fix the sample cap.
(3) Measurement FIG. 3 shows an example of measurement conditions and an example of a multistage temperature increase measurement cycle. In this example, the first temperature rise is aimed at removing residual gas in the sample, the sample heating temperature is 200 ° C, the actual measurement is 260 ° C for the first time, 280 ° C for the second time, and so on. It is measured by increasing the heating temperature of the sample in increments of 20 ° C (7 steps) up to 380 ° C. That is, one sample is measured a total of seven times under the above temperature conditions.
ATD conditions: Adsorbent TenaxTA, trap collection / desorption temperature 5 ° C / 300 ° C, transfer temperature 300 ° C, split ratio 3: 2 (during adsorption), 1:50 (during desorption)
GC conditions: DB5-MS (φ0.25mm × 30mm × 0.1μm), detector temperature 300 ° C (FID), orb 40 ° C (2min) → 10 ° C / min → 320 ° C (30min), total 60 minutes (4) analysis FIG. 4 shows the quantitative method and measurement results. Gas chromatographic analysis was performed by making a value obtained by converting the chromatopeak area value for each measurement from the area value of a known concentration product into a temperature diagram.

実施例1
ポリブチレンテレフタレート(PBT)を粉砕した粉体試料(平均粒子径150μm、粒径範囲100〜200μm)とガラスビーズ(平均粒子径400μm、粒径範囲350〜500μm)を混合し、図2の方法で分析試料を作成し、これを図1に示す装置にセットし、表1に示す測定条件で、溶融温度以上の280℃で発生するテトラヒドロフラン(THF)の定量を5回行うことで、分析結果の再現性を確認した。結果を表2に示す。
本発明の分析試料を使用することにより、分析結果の再現性は高く、CV%(標準偏差値/平均値×100)は3%前後で安定している。また、加熱後の写真(図5)からガラスビーズがスペーサーの役割を果たし、キャリアガス流路を保持している様子がわかる。
尚、この様子は平均粒子径800μm(粒径範囲710〜990μm)のガラスビーズを使用した場合でも確認できた。
Example 1
A powder sample (average particle size 150 μm, particle size range 100-200 μm) pulverized with polybutylene terephthalate (PBT) and glass beads (average particle size 400 μm, particle size range 350-500 μm) are mixed, and the method shown in FIG. An analytical sample is prepared, and set in the apparatus shown in FIG. 1. Under the measurement conditions shown in Table 1, the amount of tetrahydrofuran (THF) generated at 280 ° C. above the melting temperature is determined five times, and the analysis result is obtained. The reproducibility was confirmed. The results are shown in Table 2.
By using the analysis sample of the present invention, the reproducibility of the analysis result is high, and the CV% (standard deviation value / average value × 100) is stable at around 3%. Further, it can be seen from the photograph after heating (FIG. 5) that the glass beads serve as a spacer and hold the carrier gas flow path.
This state was confirmed even when glass beads having an average particle size of 800 μm (particle size range: 710 to 990 μm) were used.

比較例1
ポリブチレンテレフタレート粉砕品試料をガラスビーズと混合することなく、実施例1と同様の分析を行った。その結果、表2に示すように、再現性は低く、CV%(標準偏差値/平均値×100)は33%前後であった。また、加熱後の写真(図5)から試料が一つの塊になっている様子がわかる。
Comparative Example 1
The same analysis as in Example 1 was performed without mixing the polybutylene terephthalate ground product sample with the glass beads. As a result, as shown in Table 2, the reproducibility was low, and the CV% (standard deviation value / average value × 100) was around 33%. Moreover, it can be seen from the photograph after heating (FIG. 5) that the sample is in one lump.

比較例2
従来の測定方法(単一温度での測定)で、ヒドロキシ安息香酸(HBA)をポリマー構成成分とする液晶性ポリマー(LCP、溶融温度340℃)の2種類のサンプルa、bを用いて、発生するHBAの量を比較した。表3に測定条件を、表4に結果を示す。HBAの発生が当該物性に関与する予測がなされていたが、a、bのHBA発生量に顕著な差は見られなかった。
Comparative Example 2
Generated by using two types of samples a and b of liquid crystalline polymer (LCP, melting temperature 340 ° C.) containing hydroxybenzoic acid (HBA) as a polymer component in the conventional measurement method (measurement at a single temperature) The amount of HBA to be compared was compared. Table 3 shows the measurement conditions, and Table 4 shows the results. Although the generation of HBA was predicted to be related to the physical properties, no significant difference was observed in the amount of HBA generated in a and b.

実施例2
比較例2において、粉体試料にガラスビーズを混合する図2の方法で調製したサンプルチューブを用い、260〜380℃までの多段階加熱分析を行い、HBA発生量を対温度ダイアグラム解析した(図4)。表3に測定条件を、表4に結果を示す。a、bでHBA発生のパターンが明確に異なっており、当該物性にHBA発生が関与する機構を知る上での重要な知見を得ることができた。
Example 2
In Comparative Example 2, a multi-stage heating analysis from 260 to 380 ° C. was performed using a sample tube prepared by the method of FIG. 2 in which glass beads were mixed with a powder sample, and the amount of HBA generated was analyzed against the temperature diagram (see FIG. 4). Table 3 shows the measurement conditions, and Table 4 shows the results. The patterns of HBA generation are clearly different between a and b, and it was possible to obtain important knowledge for knowing the mechanism in which HBA generation is involved in the physical properties.

本発明に用いるパージアンドトラップ方式の加熱脱着装置−GC-MSからなるシステムを示す図である。It is a figure which shows the system which consists of the purge-and-trap system thermal desorption apparatus-GC-MS used for this invention. 本発明の分析試料の調製法を示す図である。It is a figure which shows the preparation method of the analytical sample of this invention. 本発明の測定条件の例および多段階昇温測定サイクル例を示す図である。It is a figure which shows the example of the measurement conditions of this invention, and a multistage temperature rising measurement cycle example. 本発明における定量方法および測定結果を示す図である。It is a figure which shows the fixed_quantity | assay method and measurement result in this invention. 比較試料と本発明試料の加熱後の写真である。It is the photograph after the heating of a comparative sample and this invention sample.

Claims (10)

試料の周囲に流通させるキャリアガスにより、試料より発生する揮発性有機化合物を分析装置に供給し測定するための発生ガス分析用試料であって、予め粉体の試料に対し不活性固体粒子が体積比で等倍量以上混合されていることを特徴とする発生ガス分析用試料。 A sample for generating gas analysis for supplying a volatile organic compound generated from a sample to an analyzer by a carrier gas flowing around the sample and measuring the sample, wherein the volume of inert solid particles is previously in the powder sample. A generated gas analysis sample characterized by being mixed in an amount equal to or greater than the ratio. 不活性固体粒子が平均粒子径300〜900μmの球体であり、粉体試料に対し体積比で3倍量以上混合されていることを特徴とする請求項1記載の発生ガス分析用試料。 2. The generated gas analysis sample according to claim 1, wherein the inert solid particles are spheres having an average particle diameter of 300 to 900 [mu] m and are mixed in a volume ratio of 3 times or more with respect to the powder sample. 試料の溶融温度以上における発生ガス分析にあたり、請求項1又は2記載の発生ガス分析用試料を用いることを特徴とする発生ガス分析方法。 The generated gas analysis method according to claim 1 or 2, wherein the generated gas analysis sample according to claim 1 or 2 is used for analyzing the generated gas at a temperature equal to or higher than a melting temperature of the sample. 発生ガス分析用試料をアルミ箔製チューブに入れ、サンプルチューブに装着したものを用いることを特徴とする請求項3記載の発生ガス分析方法。 4. The evolved gas analysis method according to claim 3, wherein the evolved gas analysis sample is placed in an aluminum foil tube and attached to the sample tube. 加熱脱着装置を用いたガス分析において、粉体試料に対し不活性固体粒子が体積比で等倍量以上混合された分析試料を加熱し、所定設定温度で所定時間保持する間に試料より発生する揮発性有機化合物を、キャリアガスを試料の周囲に流通させることにより排出し、捕集手段に供給して捕集後、揮発性有機化合物を捕集手段から脱着させて、成分の種類と量を分析する工程を、次回の工程では所定設定温度を前回より高く設定することにより3回以上連続的に行う、発生ガス分析方法。 In gas analysis using a thermal desorption device, an analysis sample in which an inert solid particle is mixed in a volume ratio at an equal volume or more with a powder sample is heated and generated from the sample while it is held at a predetermined set temperature for a predetermined time. Volatile organic compounds are discharged by circulating the carrier gas around the sample, supplied to the collecting means and collected, and then the volatile organic compounds are desorbed from the collecting means to determine the types and amounts of the components. The generated gas analysis method in which the analysis step is continuously performed at least three times by setting a predetermined set temperature higher than the previous time in the next step. 不活性固体粒子が平均粒子径300〜900μmの球体であり、粉体試料に対し不活性固体粒子が体積比で3倍量以上混合された分析試料を用いる請求項5記載の発生ガス分析方法。 6. The generated gas analysis method according to claim 5, wherein the inert solid particles are spheres having an average particle diameter of 300 to 900 μm, and an analysis sample in which the inert solid particles are mixed in a volume ratio of 3 times or more with respect to the powder sample is used. 少なくとも1回は試料の溶融温度以上の所定設定温度にて測定する請求項5又は6記載の発生ガス分析方法。 The generated gas analysis method according to claim 5 or 6, wherein measurement is performed at least once at a predetermined set temperature not lower than a melting temperature of the sample. 発生ガス分析用試料をアルミ箔製チューブに入れ、サンプルチューブしたものを用いることを特徴とする請求項5〜7の何れか1項記載の発生ガス分析方法。 The generated gas analysis method according to any one of claims 5 to 7, wherein the generated gas analysis sample is put in an aluminum foil tube and used as a sample tube. 分析工程開始前に、最初の所定設定温度未満に加熱し、試料表面に吸着している揮発性有機化合物を排除する工程を設けることを特徴とする請求項5〜8の何れか1項記載の発生ガス分析方法。 9. The method according to claim 5, further comprising a step of removing volatile organic compounds adsorbed on the sample surface by heating to a temperature lower than the first predetermined set temperature before starting the analysis step. Generated gas analysis method. 請求項5〜9の何れか1項記載の分析方法により得られた分析結果を元に、揮発性有機化合物の種類ごとに雰囲気温度と発生量の関係を解析するガス発生挙動解析方法。 A gas generation behavior analysis method for analyzing the relationship between the atmospheric temperature and the generation amount for each type of volatile organic compound based on the analysis result obtained by the analysis method according to any one of claims 5 to 9.
JP2007239252A 2007-09-14 2007-09-14 Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method Pending JP2009069053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239252A JP2009069053A (en) 2007-09-14 2007-09-14 Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239252A JP2009069053A (en) 2007-09-14 2007-09-14 Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method

Publications (1)

Publication Number Publication Date
JP2009069053A true JP2009069053A (en) 2009-04-02

Family

ID=40605456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239252A Pending JP2009069053A (en) 2007-09-14 2007-09-14 Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method

Country Status (1)

Country Link
JP (1) JP2009069053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501313A (en) * 2017-10-25 2021-01-14 エンテック インスツルメンツ インコーポレイテッド Sample pre-concentration system and method for use in gas chromatography
JP2021139752A (en) * 2020-03-05 2021-09-16 株式会社島津製作所 Composite analyzer and method for analysis
US11946912B2 (en) 2020-06-30 2024-04-02 Entech Instruments Inc. System and method of trace-level analysis of chemical compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643557A (en) * 1979-09-19 1981-04-22 Hitachi Ltd Sample divider
JP2000162197A (en) * 1998-11-30 2000-06-16 Sekisui Chem Co Ltd Thermal desorption collecting tube
JP2002350300A (en) * 2001-05-30 2002-12-04 Tdk Corp Gas trap device, generated gas analyzer, and generated gas analyzing method
JP2003130860A (en) * 2001-10-19 2003-05-08 Asahi Kasei Corp Automatic volatile substance analyzer
JP2003322594A (en) * 2002-05-07 2003-11-14 Asahi Kasei Corp Method of analyzing volatile compound in liquid or solid sample
JP2005091121A (en) * 2003-09-17 2005-04-07 Polyplastics Co Method and instrument for measuring minute amount of formaldehyde released from resin
JP2006091000A (en) * 2004-08-23 2006-04-06 Shin Nippon Air Technol Co Ltd Method for measuring amount of pollutant diffusion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643557A (en) * 1979-09-19 1981-04-22 Hitachi Ltd Sample divider
JP2000162197A (en) * 1998-11-30 2000-06-16 Sekisui Chem Co Ltd Thermal desorption collecting tube
JP2002350300A (en) * 2001-05-30 2002-12-04 Tdk Corp Gas trap device, generated gas analyzer, and generated gas analyzing method
JP2003130860A (en) * 2001-10-19 2003-05-08 Asahi Kasei Corp Automatic volatile substance analyzer
JP2003322594A (en) * 2002-05-07 2003-11-14 Asahi Kasei Corp Method of analyzing volatile compound in liquid or solid sample
JP2005091121A (en) * 2003-09-17 2005-04-07 Polyplastics Co Method and instrument for measuring minute amount of formaldehyde released from resin
JP2006091000A (en) * 2004-08-23 2006-04-06 Shin Nippon Air Technol Co Ltd Method for measuring amount of pollutant diffusion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501313A (en) * 2017-10-25 2021-01-14 エンテック インスツルメンツ インコーポレイテッド Sample pre-concentration system and method for use in gas chromatography
JP7072134B2 (en) 2017-10-25 2022-05-20 エンテック インスツルメンツ インコーポレイテッド Sample pre-concentration system and method for use in gas chromatography
JP2021139752A (en) * 2020-03-05 2021-09-16 株式会社島津製作所 Composite analyzer and method for analysis
JP7400549B2 (en) 2020-03-05 2023-12-19 株式会社島津製作所 Combined analyzer and analysis method
US11946912B2 (en) 2020-06-30 2024-04-02 Entech Instruments Inc. System and method of trace-level analysis of chemical compounds

Similar Documents

Publication Publication Date Title
CN105572250B (en) It is a kind of to be used to analyze hydrogen isotope and the gas-chromatography detection system and method for trace impurity component in He
Langel et al. Combined 13C and 15N isotope analysis on small samples using a near‐conventional elemental analyzer/isotope ratio mass spectrometer setup
CN101871922A (en) Method for pyrolyzing tobacco additive and trapping and analyzing pyrolysis product
CN110850009B (en) Simulation determination method for migration of cooling agent component in cigarette filter stick to cigarette smoke
Feng et al. Accurate determination of pesticide residues incurred in tea by gas chromatography-high resolution isotope dilution mass spectrometry
CN108426952B (en) Method for detecting content of citrate plasticizer in tobacco flavor and fragrance
Jeckelmann et al. Release kinetics of actives from chewing gums into saliva monitored by direct analysis in real time mass spectrometry
CN104359998A (en) Method for detecting methyl methane sulfonate by gas chromatography and tandem mass spectrometry
JP2009069053A (en) Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method
CN110554115A (en) Method for measuring volatile components in tobacco shreds based on SBSE-TD-GC-MS
Gong et al. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples
Yan et al. Array capillary in-tube solid-phase microextraction: a rapid preparation technique for water samples
Krata et al. Reference measurements of mercury species in seafood using isotope dilution inductively coupled plasma mass spectrometry
Ross et al. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air
CN108845063A (en) The test reagent combination and detection method of aquatic products additive
Ren et al. The Application of TD/GC/NICI–MS with an Al 2 O 3-PLOT-S Column for the Determination of Perfluoroalkylcycloalkanes in the Atmosphere
CN104007214A (en) Method for detecting volatile components in fragrant substance based on PY-GC-MS
WO2010140497A1 (en) Method for quantifying red phosphorus in resin
CN104677976B (en) Magnetic powder adsorbent and the combination analysis method in normal pressure mass spectrum source
JP2009204596A (en) Analytical method of fatty acid content in sebum
CN106093253B (en) The assay method of benzo [a] pyrene in sample-pretreating method and cigarette smoke for measuring benzo in cigarette smoke [a] pyrene
CN111983108B (en) Chiral analysis method for main alkaloids in electronic smoke sol
CN103163251A (en) Essence aroma composition analysis method combining GC/MS and aroma smelling instrument
Cheng et al. Compound‐specific stable carbon isotope analysis of hexabromocyclododecane diastereoisomers using gas chromatography/isotope ratio mass spectrometry
Ai et al. Simple and rapid determination of N6‐(Δ2‐isopentenyl) adenine, zeatin, and dihydrozeatin in plants using on‐line cleanup liquid chromatography coupled with hybrid quadrupole‐Orbitrap high‐resolution mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724