JPWO2003029635A1 - 内燃機関の成層混合気形成装置及び方法 - Google Patents
内燃機関の成層混合気形成装置及び方法 Download PDFInfo
- Publication number
- JPWO2003029635A1 JPWO2003029635A1 JP2003532825A JP2003532825A JPWO2003029635A1 JP WO2003029635 A1 JPWO2003029635 A1 JP WO2003029635A1 JP 2003532825 A JP2003532825 A JP 2003532825A JP 2003532825 A JP2003532825 A JP 2003532825A JP WO2003029635 A1 JPWO2003029635 A1 JP WO2003029635A1
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel injection
- spray
- internal combustion
- injection amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/162—Means to impart a whirling motion to fuel upstream or near discharging orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M67/00—Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
- F02M67/02—Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type the gas being compressed air, e.g. compressed in pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M67/00—Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
- F02M67/10—Injectors peculiar thereto, e.g. valve less type
- F02M67/12—Injectors peculiar thereto, e.g. valve less type having valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/08—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
- F02B23/10—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
- F02B23/101—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M39/00—Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
- F02M39/02—Arrangements of fuel-injection apparatus to facilitate the driving of pumps; Arrangements of fuel-injection pumps; Pump drives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
本発明では、直噴火花点火式内燃機関において、機関の運転条件に応じて、適切な濃度・大きさの混合気塊を、容積の固定されたピストンポウルを持つ燃焼室内に形成する。このため、機関負荷の上昇に伴って燃料噴射量を増加させると共に燃料噴霧のシリンダ軸方向の運動量を増加させ、かつ、燃料噴霧のシリンダ軸方向の運動量の増加率を燃料噴射量の増加率より大きくする。
Description
〔技術分野〕
本発明は、燃料を筒内に直接噴射して火花点火燃焼を行う内燃機関に関する。
〔背景技術〕
特開平11−82028号公報には、ピストンの頂面に形成されたキャビティへ向けて燃焼室上部から燃料を噴射して、キャビティとその上方の空間に成層混合気を形成し、この成層混合気を火花点火によって燃焼させる内燃機関が開示されている。
〔発明の開示〕
成層混合気の形成範囲(混合気塊の大きさ)は主にキャビティの大きさで決まるため、機関負荷が小さい(燃料噴射量が少ない)条件では混合気の空燃比が薄くなり、機関負荷が大きい(燃料噴射量が多い)条件では混合気の空燃比が濃くなる。すなわち、適度な空燃比(理論空燃比近傍)の混合気を形成可能な負荷条件の範囲がキャビティの大きさに応じて定まってしまい、広範な負荷条件で成層燃焼運転を行うことが困難である。
本発明は、かかる問題点に鑑みなされたもので、適度な空燃比の成層混合気を広範な負荷条件で形成可能な成層混合気形成装置及び方法を提供することを目的とする。
このため、本発明では、燃焼室上部の略中央に点火プラグを配設した内燃機関の成層混合気形成装置において、シリンダ内を往復動するピストンに向かって進行する燃料噴霧を形成する燃料噴射装置と、燃料噴霧のシリンダ軸方向運動量の増加率が燃料噴射量の増加率より大きくなるように、燃料噴射量に応じて噴霧の運動量を制御する制御装置と、を備えた構成とする。
かかる構成により、燃料噴射量(機関負荷)の増加に応じて成層混合気の形成範囲を積極的に大きくする作用が得られ、これにより適度な空燃比の混合気を広範な負荷条件で形成することが可能となる。
本発明の特徴的構成及びこれに基づく作用・効果は以下の実施形態によって更に明らかにされる。
〔発明を実施するための最良の形態〕
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る直噴火花点火式内燃機関の第1実施形態の構成を示すシステム図である。
この内燃機関は、シリンダヘッド1、シリンダブロック2及びピストン3により画成される燃焼室4を有し、吸気バルブ5及び排気バルブ6を介して、吸気ポート7から新気を導入及び排気ポート8から排気を排出する。
混合気噴射弁(燃料噴射装置)9は、燃焼室4上部の略中央に配置されており、ピストン3に向けて、シリンダ軸に対し軸対称の噴霧形状で、燃料と空気との混合気を噴射することが可能となっている。ピストン3の混合気噴射弁9に対面する部分にはボウル部3bが形成されており、噴射された混合気は主にこのボウル部3b内とその上方に成層化した混合気塊を形成する。そして、この混合気塊は燃焼室4上部の略中央に配設された点火プラグ10により点火・燃焼せしめられる。
燃料噴射系について詳しく説明する。
排気バルブ6を駆動するカム軸6aの端部には、カム軸6aで駆動される燃料ポンプ11が配置されている。燃料ポンプ11は、燃料タンク内の燃料を吸引し、燃料配管12を介して混合気噴射弁9に燃料を供給する。燃料配管12内の燃料圧力は、常に一定圧に維持されている。
一方、吸気バルブ5を駆動するカム軸5aの端部には、カム軸5aで駆動される空気ポンプ13が配置されている。空気ポンプ13は、吸気コレクタ内の空気を吸引し、空気配管14を介して混合気噴射弁9に空気を供給する。空気配管14内の空気圧力は、圧力制御弁(気体圧力調整器)13bによって任意に調整できるようになっている。
尚、一方のカム軸で2つのポンプを駆動してもよく、あるいは別に配置した電気モータで2つのポンプを駆動するようにしてもよい。
混合気噴射弁9は、図2に概略構造図を示すように、燃焼室内に臨む主インジェクタ(気体噴射弁)21と、主インジェクタ21の混合気室21aに臨む副インジェクタ22とから構成される。
すなわち、混合気噴射弁9の本体である主インジェクタ21の内部に、前記空気配管14が接続される混合気室21aがあり、この混合気室21aは燃焼室内に臨む主インジェクタ21の噴孔21bに接続されている。この噴孔21bは電磁駆動される針弁21cによって開閉される。
また、副インジェクタ22には前記燃料配管12が接続されており、副インジェクタ22の噴孔22bは主インジェクタ21の混合気室21aに臨んでいる。この噴孔22bは電磁駆動される針弁22cによって開閉される。
従って、主インジェクタ21の混合気室21aには空気ポンプ13で加圧された空気が導かれており、副インジェクタ22の針弁22cが開作動すると、燃料ポンプ11で加圧された燃料が混合気室21aに噴射され、この燃料は混合気室21a内の高圧空気と混合して混合気が形成される。この混合気は、主インジェクタ21の針弁21cが開作動したときに燃焼室内に噴射される。
尚、本実施形態では、燃料と空気とを1つの混合気噴射弁で燃焼室内に噴射する構成としたため、燃料噴射装置の構成が比較的単純となって燃焼室周辺の設計が容易となっている。但し、燃料噴射系と空気噴射系とが互いに独立で、燃料と空気とを別々に燃焼室内へ噴射する(但し2つの噴孔は隣接形成)ような燃料噴射装置でも本発明は実現可能であり、更には、燃料のみを噴射する噴射弁と空気のみを噴射する噴射弁とを隣接配置することでも本発明は実現可能である。
次に本実施形態の制御系について説明する。
この内燃機関は、制御装置であるエンジンコントロールユニット(以下ECUという)15によって統合的に制御される。このため、ECU15には、クランクシャフトが所定角度(例えば1°)回転する毎に信号を出力するクランク角センサ16、アクセルペダルの踏込み量に応じた信号を出力するアクセル開度センサ17、機関冷却水の温度に応じた信号を出力する水温センサ18等からの信号が入力される。ECU15は、内部で必要な演算・処理を行い、混合気噴射弁9、点火プラグ10、圧力制御弁13b等を制御する。この際、混合気噴射弁9については、副インジェクタ22の針弁22cと、主インジェクタ21の針弁21cとを、独立に制御可能である。
図3は、所定時間(例えば10ms)毎にECU15が実行する処理ルーチンを示す制御フローチャートである。このルーチンでは、混合気噴射弁9と圧力制御弁13bとを制御するための制御値の算出が行われる。
先ずステップ1(図にはS1と記す。以下同様)では、ECU15内のメモリから機関回転速度Neとアクセル開度APOとを読み込む。ECU15は、クランク角センサ16からの信号に基づいて機関回転速度Neを逐次算出しており、最新の値がECU15内のメモリにストアされている。また、アクセル開度センサ17の出力信号(APO)は所定の周期でサンプリングされており、最新の値がECU15内のメモリにストアされている。尚、アクセル開度APOは機関負荷を代表するパラメータである。
次にステップ2では、機関回転速度Neとアクセル開度APOとに基づいて主インジェクタ21の噴射タイミングITa、開時間Ta、及び、圧力制御弁13bの目標空気圧力Paを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITa、Ta、Paを記憶させてある制御マップから、現在のNe、APOに対応する各値をルックアップする。図4に示すように、本実施形態では低回転・低負荷領域において成層燃焼を行い、それ以外の領域では均質燃焼を行うようになっている。そのため、機関運転条件(Ne、APO)が成層燃焼領域にある場合の噴射タイミングITaは圧縮行程後半に設定され、均質燃焼領域にある場合の噴射タイミングITaは吸気行程に設定される。さらに、成層燃焼領域における噴射タイミングITaは機関負荷(アクセル開度APO)の上昇に伴って進角側に設定される。
次にステップ3では、機関回転速度Neとアクセル開度APOとに基づいて副インジェクタ22の噴射タイミングITf、開時間Tfを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITf、Tfを記憶させてある制御マップから、現在のNe、APOに対応する各値をルックアップする。尚、副インジェクタ22の噴射タイミングITfは主インジェクタ21の噴射タイミングITaよりも若干進角側に設定される。
以上のようにして算出された各制御値は、一旦ECU15内のメモリにストアされ、混合気噴射弁9の制御と圧力制御弁13bの制御とに使用される。具体的には、噴射タイミングITfに対応するクランク角となったときに開時間Tfに対応するパルス幅の開弁信号を混合気噴射弁9の副インジェクタ22へ送り、噴射タイミングITaに対応するクランク角となったときに開時間Taに対応するパルス幅の開弁信号を混合気噴射弁9の主インジェクタ21へ送り、空気配管14内の空気圧力を目標空気圧力Paに一致させるための制御信号を圧力制御弁13bへ送る。
次に、図3のルーチンで算出される各制御値の設定特性とそれによる噴霧特性とを図5を参照して説明する。尚、図5には機関回転速度を一定(図4のNe1)とした条件下における各制御値と噴霧特性とを示してある。
図5のA)に主インジェクタ21の開時間Taと副インジェクタ22の開時間Tfの設定を示す。副インジェクタ22の開時間Tfは、負荷の上昇に伴って増加する設定となっている。また、主インジェクタ21の開時間Taは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的短時間でかつ負荷によらない一定時間の設定となっている。また、成層領域における主インジェクタ21の開時間Taの増加率は副インジェクタ22の開時間Tfの増加率よりも大きくなっており、このため、開時間Tfに対する開時間Taの比率は負荷の上昇に伴って増加する。図6のA)に最小負荷(APO1)における主副インジェクタ21、22の作動タイムチャートを、図6のB)に成層領域の中間負荷(APO2)における主副インジェクタ21、22の作動タイムチャートを、それぞれ示す。
図5のB)に燃料配管12内の燃料圧力Pfと空気配管14内の空気圧力Paと主インジェクタ21の噴射タイミングITaにおける燃焼室4内の圧力Pitaとを示す。燃料圧力Pfは常に一定圧に維持される。また、空気圧力Paは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低圧でかつ負荷によらない一定圧の設定となっている。また、主インジェクタ21の噴射タイミングITaは、成層領域では圧縮行程後半であってかつ負荷の上昇に伴って進角する設定であり、均質領域では吸気行程の設定であるから、噴射タイミングITaにおける燃焼室内圧力Pitaは、成層領域では負荷の上昇に伴って低くなり、均質領域では負荷によらない一定圧(大気圧近傍)となる。
図5のC)に主インジェクタ21の噴射タイミングITaにおける噴霧速度Vafを示す。本実施形態の場合、主インジェクタ21から噴射される空気の速度Vaが噴霧速度Vafであり、噴射空気速度Vaは空気圧力Paと燃焼室内圧力Pitaとの差が大きいときほど大きくなる。従って、噴霧速度Vafは、成層領域では負荷の上昇に伴って増大し、均質領域ではほぼ一定となる。
図5のD)に燃料噴射量Mfと空気噴射量Ma及び噴射される空気と燃料の総量Mafを示す。燃料噴射量Mfは燃料圧力Pfと副インジェクタ22の開時間Tfとで定まる。従って、燃料噴射量Mfは負荷の上昇に伴って増加する。また、空気噴射量Maは噴射空気速度Vaと主インジェクタ21の開時間Taとで定まる。従って、空気噴射量Maは、成層領域では負荷の上昇に伴って増加し、均質領域ではほぼ一定となる。また、成層領域における空気噴射量Maの増加率は燃料噴射量Mfの増加率より大きくなっており、このため、燃料噴射量Mfに対する空気噴射量Maの比率は負荷の上昇に伴って増加する。
図5のE)に噴霧運動量と燃料噴射量とを示す。噴霧運動量は噴霧速度Vafと空気燃料噴射総量Mafとで定まる。従って、噴霧運動量は、成層領域では負荷の上昇に伴って大幅に増加し、均質領域では負荷の上昇に伴って微増する。尚、同図の噴霧運動量は最小噴霧運動量(APO1における噴霧運動量)を用いて無次元化した値(=噴霧運動量/最小噴霧運動量)となっており、同様に、燃料噴射量は最小燃料噴射量(APO1における燃料噴射量)を用いて無次元化した値(=燃料噴射量Mf/最小燃料噴射量)となっている。同図から明らかなように、成層領域における噴霧運動量の増加率は燃料噴射量の増加率より大きい。本実施形態では噴霧の噴射方向や噴霧の形状が変化しないので、噴霧全体の運動量の増加率と噴霧のシリンダ軸方向運動量の増加率とはほぼ等しくなる。従って、噴霧のシリンダ軸方向運動量の増加率は燃料噴射量の増加率より大きくなっている。同図の場合を具体的に説明すると、燃料噴射量が最小燃料噴射量に対し25%程度増加する負荷条件(APO2)において、噴霧運動量は最小噴霧運動量の2倍前後まで増加している。
図7は本実施形態における燃焼室内での成層混合気の形成過程を模式的に示したものである。
燃料噴射量が少ない低負荷時においては、噴霧のシリンダ軸方向運動量が小さいため、混合気噴射弁9からピストン3冠面上のボウル部3bに向けて噴射された噴霧はボウル部3b内に留まり、ボウル部3bの内部で拡散・混合が行われる。従って、成層混合気塊の大きさは比較的小さくなり、燃料噴射量が少なくても混合気の空燃比を所望の範囲内に維持できる。
燃料噴射量が多い高負荷時においては、噴霧のシリンダ軸方向運動量が大きいため、混合気噴射弁9からピストン3冠面上のボウル部3bに向けて噴射された噴霧は、ボウル部3b内壁に衝突後、その運動量により大きく巻き上がり、ボウル部3b上方の空気をも巻き込みつつ、拡散・混合が進む。従って、成層混合気塊の大きさは比較的大きくなり、燃料噴射量が多くても混合気の空燃比を所望の範囲内に維持できる。
以上のように、負荷に応じて噴霧のシリンダ軸方向運動量を制御することで、幅広い機関運転条件下において適切な大きさの成層混合気塊を形成することができる。
特に本実施形態によれば、燃料噴射装置(混合気噴射弁9)が、ピストンへ向けて気体を噴射する気体噴射弁(主インジェクタ21)を含み、噴射された気体(空気)と燃料とで燃料噴霧を形成するよう構成されることで、気体側の制御のみで噴霧のシリンダ軸方向運動量を制御することが可能となる一方、気体噴射量(開時間Ta)の制御、さらに、気体圧力(空気圧力Pa)の制御により、負荷に応じた噴霧のシリンダ軸方向運動量の制御を確実に行うことができる。
尚、本実施形態においては、主インジェクタ21の開時間Taの増加率を副インジェクタ22の開時間Tfの増加率(=燃料噴射量の増加率)よりも大きくしているが、必ずしもこのような設定にする必要はない。すなわち、開時間Taの増加率が小さくても空気圧力Paの増加率を大きくすれば噴霧運動量の増加率を燃料噴射量の増加率より大きくすることが可能である。極端な場合、主インジェクタ21の開時間Taを負荷によらない一定時間とし、空気圧力Paだけを負荷の上昇に応じて増大させることも可能であるが、この場合は空気圧力Paの変更幅を大きくする必要があるので、それだけ能力の高い空気ポンプ13と圧力制御弁13bが必要となる。
また、空気圧力Paを負荷によらない一定圧とし、主インジェクタ21の開時間Taを負荷の上昇に応じて増加させることで噴霧運動量の増加率を燃料噴射量の増加率より大きくすることも可能であり、この場合は圧力制御弁13bを省略することができる。但し、この場合は開時間Taの増加率を燃料噴射量の増加率より大きくすることが必須となる。また、開時間Taの増加だけで噴霧運動量を十分に増加させようとすると、高負荷時の開時間Taが非常に長くなるので、高負荷時の主インジェクタ21の噴射タイミングITaを大きく進角させる必要が生じ、ピストン3のボウル部3bで成層混合気塊を形成することが困難となる。従って、空気圧力Paの増加を合わせて行う方がより幅広い機関運転条件下において良好な成層燃焼を得ることができる。
また、本実施形態では均質領域における空気噴射量Maを比較的少量としているので、空気ポンプ13の駆動で消費されるエネルギを低減することができる。また、本実施形態では均質領域における空気噴射量Maを負荷によらない一定量としているが、例えば空気噴射量Maと燃料噴射量Mfとの比率が一定となるように空気噴射量Maを設定し、均質領域における噴霧の空燃比をほぼ一定に保つようにしてもよい。
また、本実施形態では燃料とともに噴射する気体として空気を用いているが、他の気体、例えば機関自身の既燃ガス、いわゆるEGRガス等であっても同様の効果を得ることが可能である。
次に、機関回転速度に対する噴霧運動量の設定を説明する。
一般的な内燃機関では、機関回転速度が高くなるほど燃焼室内のガス流動(乱れ)が強くなる。従って、機関回転速度が高くなるほど噴霧は拡散しやすくなる。このため、同一負荷条件における噴霧運動量の設定は、機関回転速度が高くなるほど噴霧運動量を小さくする特性とし、高回転運転時の噴霧の過拡散を防止する。
尚、排気量が大きく回転速度範囲が全体的に低速側にある機関や、ボア・ストローク比が非常に大きい機関では、噴霧の拡散に大きな影響を及ぼすほどガス流動が発達しない場合がある。このような機関の場合は、機関回転速度が高くなるほど噴霧運動量を大きくする特性としてもよい。
次に本発明の第2の実施形態を説明する。
図8は第2実施形態の構成を示すシステム図である。本実施形態では燃料噴射装置として燃料を単独で噴射するインジェクタ(燃料噴射弁)30を使用しており、そのため、第1実施形態のような空気ポンプは備えていない。また、吸気バルブ5を駆動するカム軸5aの端部に燃料ポンプ11が配置されている点と、燃料配管12内の燃料圧力を任意に調整可能とする燃圧制御弁(燃料圧力調整器)11bを備えている点も、第1実施形態と異なっている。
インジェクタ30は、図9に概略構造図を示すように、噴孔30bを開閉する針弁30cの周囲にスワールチップを配置したスワール式インジェクタである。このインジェクタ30のスワールチップは4つの部品31〜34で構成されている。
最上流側の部品31は、針弁30cの直径よりもわずかに径の大きい穴31aが中心に形成された円筒状の部品であり、外周面には軸方向へ延びる4箇所の燃料通路溝31bが設けられている。これに隣接する部品32は、部品31と同様の穴32aと部品31の燃料通路溝31bに連続する燃料通路溝32bとが設けられた円盤状の部品であり、端面には穴32aと燃料通路溝32bとを接続する半径方向の燃料通路溝32cが設けられている。これに隣接する部品33は部品32と同様の部品であるが、部品33の半径方向燃料通路溝33bは半径方向に対し所定の角度を持って形成されている。最先端側の部品34も部品32や部品33と同様の部品であるが、部品34の半径方向燃料通路溝34bの形成角度は部品33の半径方向燃料通路溝33bの形成角度よりも大きくなっている。
以上のようなスワールチップ31〜34の構成により、このインジェクタ30では、針弁30cのリフト量を変更することで噴孔30b内に生起されるスワールの強さを変化させることが可能であり、これにより中空円錐状噴霧の噴霧角度θを変化させることができるようになっている。針弁30cはピエゾ式のアクチュエータで駆動されるようになっており、開弁信号の大きさ(電圧)を制御することで任意のリフト量を実現することができる。尚、電磁コイル式のアクチュエータを用いる場合は、1つの開弁信号を複数の小パルスに分割してアクチュエータへ送るようにし、小パルスの幅を制御することでリフト量を調整することが可能である。
図10は、所定時間(例えば10ms)毎にECU15が実行する処理ルーチンを示す制御フローチャート図である。このルーチンでは、インジェクタ30と燃圧制御弁11bとを制御するための制御値の算出が行われる。
先ずステップ11では、ECU15内のメモリから機関回転速度Neとアクセル開度APOとを読み込む。
次にステップ12では、機関回転速度Neとアクセル開度APOとに基づいてインジェクタ30の噴射タイミングITf、針弁30cのリフト量Lf、開時間Tf、及び、燃圧制御弁11bの目標燃料圧力Pfを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITf、Lf、Tf、Pfを記憶させてある制御マップから現在のNe、APOに対応する各値をルックアップする。以上のようにして算出された各制御値は、一旦ECU15内のメモリにストアされ、インジェクタ30の制御と燃圧制御弁11bの制御とに使用される。
次に、図10のルーチンで算出される各制御値の設定特性とそれによる噴霧特性とを図11(第1実施形態の図5に対応)を参照して説明する。
図11のA)にインジェクタ30の開時間Tfの設定を示す。インジェクタ30の開時間Tfは、成層領域では負荷の上昇に伴って微増する設定であり、均質領域では負荷の上昇に伴って増加する設定である。
図11のB)に燃料配管12内の燃料圧力Pfの設定を示す。燃料圧力Pfは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低圧でかつ負荷によらない一定圧の設定となっている。
図11のC)に針弁30cのリフト量Lfの設定を示す。リフト量Lfは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低リフトでかつ負荷によらない一定リフト量の設定となっている。従って、燃料噴霧の噴霧角度θは、成層領域では負荷の上昇に伴って小さくなり、均質領域ではほぼ一定となる。
図11のD)に噴霧速度(噴射燃料速度)Vfと噴霧速度のシリンダ軸方向成分Vfcylとを示す。噴霧速度Vfは、燃料圧力Pfが大きいほど大きくなる。従って、噴霧速度Vfは、成層領域では負荷の上昇に伴って増大し、均質領域ではほぼ一定となる。また、噴霧速度をシリンダ軸方向成分とシリンダ半径方向成分とに分けた場合、シリンダ軸方向成分は噴霧角度θが小さいほど大きくなる。従って、成層領域における噴霧速度のシリンダ軸方向成分Vfcylの増加率は噴霧速度Vfの増加率よりも大きくなる。
図11のE)にシリンダ軸方向の噴霧運動量と燃料噴射量(何れも無次元化された値)を示す。燃料噴射量はインジェクタ30の開時間Tfと燃料圧力Pfとリフト量Lfとで定まり、負荷の上昇に伴って増加するようになっている。また、シリンダ軸方向の噴霧運動量は、噴霧速度のシリンダ軸方向成分Vfcylと燃料噴射量とで定まる。同図から明らかなように、成層領域におけるシリンダ軸方向の噴霧運動量の増加率は燃料噴射量の増加率より大きい。
以上のように、負荷に応じて噴霧のシリンダ軸方向運動量を制御することで、幅広い機関運転条件下において適切な大きさの成層混合気塊を形成することができる。
特に本実施形態によれば、燃料噴射装置を燃料噴射弁(インジェクタ30)のみで構成でき、構成を簡素化できる一方、燃料圧力Pfの制御、さらに、リフト量Lfによる噴霧角度θの制御により、負荷に応じた噴霧の軸方向運動量の制御を確実に行うことができる。
尚、燃料圧力Pfのみ、あるいはリフト量Lfのみを負荷に応じて増加させることでシリンダ軸方向の噴霧運動量の増加率を燃料噴射量の増加率より大きくすることも可能である。
〔産業上の利用可能性〕
以上説明したように本発明によれば、適度な空燃比の成層混合気を広範な負荷条件で形成可能となり、成層燃焼運転の領域を拡大することができる。従って、産業上の利用性は大である。
【図面の簡単な説明】
図1は、本発明の第1実施形態のシステム図である。
図2は、混合気噴射弁の概略構造図である。
図3は、制御の流れを示すフローチャートである。
図4は、回転及び負荷に対する燃焼形態の切換えを示す図である。
図5は、制御値の設定特性と噴霧特性を示す図である。
図6は、燃料及び空気噴射のタイムチャートである。
図7は、筒内混合気形成過程を示す図である。
図8は、本発明の第2実施形態のシステム図である。
図9は、インジェクタの概略構造図である。
図10は、第2実施形態の制御の流れを示すフローチャートである。
図11は、第2実施形態の制御値の設定特性と噴霧特性を示す図である。
本発明は、燃料を筒内に直接噴射して火花点火燃焼を行う内燃機関に関する。
〔背景技術〕
特開平11−82028号公報には、ピストンの頂面に形成されたキャビティへ向けて燃焼室上部から燃料を噴射して、キャビティとその上方の空間に成層混合気を形成し、この成層混合気を火花点火によって燃焼させる内燃機関が開示されている。
〔発明の開示〕
成層混合気の形成範囲(混合気塊の大きさ)は主にキャビティの大きさで決まるため、機関負荷が小さい(燃料噴射量が少ない)条件では混合気の空燃比が薄くなり、機関負荷が大きい(燃料噴射量が多い)条件では混合気の空燃比が濃くなる。すなわち、適度な空燃比(理論空燃比近傍)の混合気を形成可能な負荷条件の範囲がキャビティの大きさに応じて定まってしまい、広範な負荷条件で成層燃焼運転を行うことが困難である。
本発明は、かかる問題点に鑑みなされたもので、適度な空燃比の成層混合気を広範な負荷条件で形成可能な成層混合気形成装置及び方法を提供することを目的とする。
このため、本発明では、燃焼室上部の略中央に点火プラグを配設した内燃機関の成層混合気形成装置において、シリンダ内を往復動するピストンに向かって進行する燃料噴霧を形成する燃料噴射装置と、燃料噴霧のシリンダ軸方向運動量の増加率が燃料噴射量の増加率より大きくなるように、燃料噴射量に応じて噴霧の運動量を制御する制御装置と、を備えた構成とする。
かかる構成により、燃料噴射量(機関負荷)の増加に応じて成層混合気の形成範囲を積極的に大きくする作用が得られ、これにより適度な空燃比の混合気を広範な負荷条件で形成することが可能となる。
本発明の特徴的構成及びこれに基づく作用・効果は以下の実施形態によって更に明らかにされる。
〔発明を実施するための最良の形態〕
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る直噴火花点火式内燃機関の第1実施形態の構成を示すシステム図である。
この内燃機関は、シリンダヘッド1、シリンダブロック2及びピストン3により画成される燃焼室4を有し、吸気バルブ5及び排気バルブ6を介して、吸気ポート7から新気を導入及び排気ポート8から排気を排出する。
混合気噴射弁(燃料噴射装置)9は、燃焼室4上部の略中央に配置されており、ピストン3に向けて、シリンダ軸に対し軸対称の噴霧形状で、燃料と空気との混合気を噴射することが可能となっている。ピストン3の混合気噴射弁9に対面する部分にはボウル部3bが形成されており、噴射された混合気は主にこのボウル部3b内とその上方に成層化した混合気塊を形成する。そして、この混合気塊は燃焼室4上部の略中央に配設された点火プラグ10により点火・燃焼せしめられる。
燃料噴射系について詳しく説明する。
排気バルブ6を駆動するカム軸6aの端部には、カム軸6aで駆動される燃料ポンプ11が配置されている。燃料ポンプ11は、燃料タンク内の燃料を吸引し、燃料配管12を介して混合気噴射弁9に燃料を供給する。燃料配管12内の燃料圧力は、常に一定圧に維持されている。
一方、吸気バルブ5を駆動するカム軸5aの端部には、カム軸5aで駆動される空気ポンプ13が配置されている。空気ポンプ13は、吸気コレクタ内の空気を吸引し、空気配管14を介して混合気噴射弁9に空気を供給する。空気配管14内の空気圧力は、圧力制御弁(気体圧力調整器)13bによって任意に調整できるようになっている。
尚、一方のカム軸で2つのポンプを駆動してもよく、あるいは別に配置した電気モータで2つのポンプを駆動するようにしてもよい。
混合気噴射弁9は、図2に概略構造図を示すように、燃焼室内に臨む主インジェクタ(気体噴射弁)21と、主インジェクタ21の混合気室21aに臨む副インジェクタ22とから構成される。
すなわち、混合気噴射弁9の本体である主インジェクタ21の内部に、前記空気配管14が接続される混合気室21aがあり、この混合気室21aは燃焼室内に臨む主インジェクタ21の噴孔21bに接続されている。この噴孔21bは電磁駆動される針弁21cによって開閉される。
また、副インジェクタ22には前記燃料配管12が接続されており、副インジェクタ22の噴孔22bは主インジェクタ21の混合気室21aに臨んでいる。この噴孔22bは電磁駆動される針弁22cによって開閉される。
従って、主インジェクタ21の混合気室21aには空気ポンプ13で加圧された空気が導かれており、副インジェクタ22の針弁22cが開作動すると、燃料ポンプ11で加圧された燃料が混合気室21aに噴射され、この燃料は混合気室21a内の高圧空気と混合して混合気が形成される。この混合気は、主インジェクタ21の針弁21cが開作動したときに燃焼室内に噴射される。
尚、本実施形態では、燃料と空気とを1つの混合気噴射弁で燃焼室内に噴射する構成としたため、燃料噴射装置の構成が比較的単純となって燃焼室周辺の設計が容易となっている。但し、燃料噴射系と空気噴射系とが互いに独立で、燃料と空気とを別々に燃焼室内へ噴射する(但し2つの噴孔は隣接形成)ような燃料噴射装置でも本発明は実現可能であり、更には、燃料のみを噴射する噴射弁と空気のみを噴射する噴射弁とを隣接配置することでも本発明は実現可能である。
次に本実施形態の制御系について説明する。
この内燃機関は、制御装置であるエンジンコントロールユニット(以下ECUという)15によって統合的に制御される。このため、ECU15には、クランクシャフトが所定角度(例えば1°)回転する毎に信号を出力するクランク角センサ16、アクセルペダルの踏込み量に応じた信号を出力するアクセル開度センサ17、機関冷却水の温度に応じた信号を出力する水温センサ18等からの信号が入力される。ECU15は、内部で必要な演算・処理を行い、混合気噴射弁9、点火プラグ10、圧力制御弁13b等を制御する。この際、混合気噴射弁9については、副インジェクタ22の針弁22cと、主インジェクタ21の針弁21cとを、独立に制御可能である。
図3は、所定時間(例えば10ms)毎にECU15が実行する処理ルーチンを示す制御フローチャートである。このルーチンでは、混合気噴射弁9と圧力制御弁13bとを制御するための制御値の算出が行われる。
先ずステップ1(図にはS1と記す。以下同様)では、ECU15内のメモリから機関回転速度Neとアクセル開度APOとを読み込む。ECU15は、クランク角センサ16からの信号に基づいて機関回転速度Neを逐次算出しており、最新の値がECU15内のメモリにストアされている。また、アクセル開度センサ17の出力信号(APO)は所定の周期でサンプリングされており、最新の値がECU15内のメモリにストアされている。尚、アクセル開度APOは機関負荷を代表するパラメータである。
次にステップ2では、機関回転速度Neとアクセル開度APOとに基づいて主インジェクタ21の噴射タイミングITa、開時間Ta、及び、圧力制御弁13bの目標空気圧力Paを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITa、Ta、Paを記憶させてある制御マップから、現在のNe、APOに対応する各値をルックアップする。図4に示すように、本実施形態では低回転・低負荷領域において成層燃焼を行い、それ以外の領域では均質燃焼を行うようになっている。そのため、機関運転条件(Ne、APO)が成層燃焼領域にある場合の噴射タイミングITaは圧縮行程後半に設定され、均質燃焼領域にある場合の噴射タイミングITaは吸気行程に設定される。さらに、成層燃焼領域における噴射タイミングITaは機関負荷(アクセル開度APO)の上昇に伴って進角側に設定される。
次にステップ3では、機関回転速度Neとアクセル開度APOとに基づいて副インジェクタ22の噴射タイミングITf、開時間Tfを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITf、Tfを記憶させてある制御マップから、現在のNe、APOに対応する各値をルックアップする。尚、副インジェクタ22の噴射タイミングITfは主インジェクタ21の噴射タイミングITaよりも若干進角側に設定される。
以上のようにして算出された各制御値は、一旦ECU15内のメモリにストアされ、混合気噴射弁9の制御と圧力制御弁13bの制御とに使用される。具体的には、噴射タイミングITfに対応するクランク角となったときに開時間Tfに対応するパルス幅の開弁信号を混合気噴射弁9の副インジェクタ22へ送り、噴射タイミングITaに対応するクランク角となったときに開時間Taに対応するパルス幅の開弁信号を混合気噴射弁9の主インジェクタ21へ送り、空気配管14内の空気圧力を目標空気圧力Paに一致させるための制御信号を圧力制御弁13bへ送る。
次に、図3のルーチンで算出される各制御値の設定特性とそれによる噴霧特性とを図5を参照して説明する。尚、図5には機関回転速度を一定(図4のNe1)とした条件下における各制御値と噴霧特性とを示してある。
図5のA)に主インジェクタ21の開時間Taと副インジェクタ22の開時間Tfの設定を示す。副インジェクタ22の開時間Tfは、負荷の上昇に伴って増加する設定となっている。また、主インジェクタ21の開時間Taは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的短時間でかつ負荷によらない一定時間の設定となっている。また、成層領域における主インジェクタ21の開時間Taの増加率は副インジェクタ22の開時間Tfの増加率よりも大きくなっており、このため、開時間Tfに対する開時間Taの比率は負荷の上昇に伴って増加する。図6のA)に最小負荷(APO1)における主副インジェクタ21、22の作動タイムチャートを、図6のB)に成層領域の中間負荷(APO2)における主副インジェクタ21、22の作動タイムチャートを、それぞれ示す。
図5のB)に燃料配管12内の燃料圧力Pfと空気配管14内の空気圧力Paと主インジェクタ21の噴射タイミングITaにおける燃焼室4内の圧力Pitaとを示す。燃料圧力Pfは常に一定圧に維持される。また、空気圧力Paは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低圧でかつ負荷によらない一定圧の設定となっている。また、主インジェクタ21の噴射タイミングITaは、成層領域では圧縮行程後半であってかつ負荷の上昇に伴って進角する設定であり、均質領域では吸気行程の設定であるから、噴射タイミングITaにおける燃焼室内圧力Pitaは、成層領域では負荷の上昇に伴って低くなり、均質領域では負荷によらない一定圧(大気圧近傍)となる。
図5のC)に主インジェクタ21の噴射タイミングITaにおける噴霧速度Vafを示す。本実施形態の場合、主インジェクタ21から噴射される空気の速度Vaが噴霧速度Vafであり、噴射空気速度Vaは空気圧力Paと燃焼室内圧力Pitaとの差が大きいときほど大きくなる。従って、噴霧速度Vafは、成層領域では負荷の上昇に伴って増大し、均質領域ではほぼ一定となる。
図5のD)に燃料噴射量Mfと空気噴射量Ma及び噴射される空気と燃料の総量Mafを示す。燃料噴射量Mfは燃料圧力Pfと副インジェクタ22の開時間Tfとで定まる。従って、燃料噴射量Mfは負荷の上昇に伴って増加する。また、空気噴射量Maは噴射空気速度Vaと主インジェクタ21の開時間Taとで定まる。従って、空気噴射量Maは、成層領域では負荷の上昇に伴って増加し、均質領域ではほぼ一定となる。また、成層領域における空気噴射量Maの増加率は燃料噴射量Mfの増加率より大きくなっており、このため、燃料噴射量Mfに対する空気噴射量Maの比率は負荷の上昇に伴って増加する。
図5のE)に噴霧運動量と燃料噴射量とを示す。噴霧運動量は噴霧速度Vafと空気燃料噴射総量Mafとで定まる。従って、噴霧運動量は、成層領域では負荷の上昇に伴って大幅に増加し、均質領域では負荷の上昇に伴って微増する。尚、同図の噴霧運動量は最小噴霧運動量(APO1における噴霧運動量)を用いて無次元化した値(=噴霧運動量/最小噴霧運動量)となっており、同様に、燃料噴射量は最小燃料噴射量(APO1における燃料噴射量)を用いて無次元化した値(=燃料噴射量Mf/最小燃料噴射量)となっている。同図から明らかなように、成層領域における噴霧運動量の増加率は燃料噴射量の増加率より大きい。本実施形態では噴霧の噴射方向や噴霧の形状が変化しないので、噴霧全体の運動量の増加率と噴霧のシリンダ軸方向運動量の増加率とはほぼ等しくなる。従って、噴霧のシリンダ軸方向運動量の増加率は燃料噴射量の増加率より大きくなっている。同図の場合を具体的に説明すると、燃料噴射量が最小燃料噴射量に対し25%程度増加する負荷条件(APO2)において、噴霧運動量は最小噴霧運動量の2倍前後まで増加している。
図7は本実施形態における燃焼室内での成層混合気の形成過程を模式的に示したものである。
燃料噴射量が少ない低負荷時においては、噴霧のシリンダ軸方向運動量が小さいため、混合気噴射弁9からピストン3冠面上のボウル部3bに向けて噴射された噴霧はボウル部3b内に留まり、ボウル部3bの内部で拡散・混合が行われる。従って、成層混合気塊の大きさは比較的小さくなり、燃料噴射量が少なくても混合気の空燃比を所望の範囲内に維持できる。
燃料噴射量が多い高負荷時においては、噴霧のシリンダ軸方向運動量が大きいため、混合気噴射弁9からピストン3冠面上のボウル部3bに向けて噴射された噴霧は、ボウル部3b内壁に衝突後、その運動量により大きく巻き上がり、ボウル部3b上方の空気をも巻き込みつつ、拡散・混合が進む。従って、成層混合気塊の大きさは比較的大きくなり、燃料噴射量が多くても混合気の空燃比を所望の範囲内に維持できる。
以上のように、負荷に応じて噴霧のシリンダ軸方向運動量を制御することで、幅広い機関運転条件下において適切な大きさの成層混合気塊を形成することができる。
特に本実施形態によれば、燃料噴射装置(混合気噴射弁9)が、ピストンへ向けて気体を噴射する気体噴射弁(主インジェクタ21)を含み、噴射された気体(空気)と燃料とで燃料噴霧を形成するよう構成されることで、気体側の制御のみで噴霧のシリンダ軸方向運動量を制御することが可能となる一方、気体噴射量(開時間Ta)の制御、さらに、気体圧力(空気圧力Pa)の制御により、負荷に応じた噴霧のシリンダ軸方向運動量の制御を確実に行うことができる。
尚、本実施形態においては、主インジェクタ21の開時間Taの増加率を副インジェクタ22の開時間Tfの増加率(=燃料噴射量の増加率)よりも大きくしているが、必ずしもこのような設定にする必要はない。すなわち、開時間Taの増加率が小さくても空気圧力Paの増加率を大きくすれば噴霧運動量の増加率を燃料噴射量の増加率より大きくすることが可能である。極端な場合、主インジェクタ21の開時間Taを負荷によらない一定時間とし、空気圧力Paだけを負荷の上昇に応じて増大させることも可能であるが、この場合は空気圧力Paの変更幅を大きくする必要があるので、それだけ能力の高い空気ポンプ13と圧力制御弁13bが必要となる。
また、空気圧力Paを負荷によらない一定圧とし、主インジェクタ21の開時間Taを負荷の上昇に応じて増加させることで噴霧運動量の増加率を燃料噴射量の増加率より大きくすることも可能であり、この場合は圧力制御弁13bを省略することができる。但し、この場合は開時間Taの増加率を燃料噴射量の増加率より大きくすることが必須となる。また、開時間Taの増加だけで噴霧運動量を十分に増加させようとすると、高負荷時の開時間Taが非常に長くなるので、高負荷時の主インジェクタ21の噴射タイミングITaを大きく進角させる必要が生じ、ピストン3のボウル部3bで成層混合気塊を形成することが困難となる。従って、空気圧力Paの増加を合わせて行う方がより幅広い機関運転条件下において良好な成層燃焼を得ることができる。
また、本実施形態では均質領域における空気噴射量Maを比較的少量としているので、空気ポンプ13の駆動で消費されるエネルギを低減することができる。また、本実施形態では均質領域における空気噴射量Maを負荷によらない一定量としているが、例えば空気噴射量Maと燃料噴射量Mfとの比率が一定となるように空気噴射量Maを設定し、均質領域における噴霧の空燃比をほぼ一定に保つようにしてもよい。
また、本実施形態では燃料とともに噴射する気体として空気を用いているが、他の気体、例えば機関自身の既燃ガス、いわゆるEGRガス等であっても同様の効果を得ることが可能である。
次に、機関回転速度に対する噴霧運動量の設定を説明する。
一般的な内燃機関では、機関回転速度が高くなるほど燃焼室内のガス流動(乱れ)が強くなる。従って、機関回転速度が高くなるほど噴霧は拡散しやすくなる。このため、同一負荷条件における噴霧運動量の設定は、機関回転速度が高くなるほど噴霧運動量を小さくする特性とし、高回転運転時の噴霧の過拡散を防止する。
尚、排気量が大きく回転速度範囲が全体的に低速側にある機関や、ボア・ストローク比が非常に大きい機関では、噴霧の拡散に大きな影響を及ぼすほどガス流動が発達しない場合がある。このような機関の場合は、機関回転速度が高くなるほど噴霧運動量を大きくする特性としてもよい。
次に本発明の第2の実施形態を説明する。
図8は第2実施形態の構成を示すシステム図である。本実施形態では燃料噴射装置として燃料を単独で噴射するインジェクタ(燃料噴射弁)30を使用しており、そのため、第1実施形態のような空気ポンプは備えていない。また、吸気バルブ5を駆動するカム軸5aの端部に燃料ポンプ11が配置されている点と、燃料配管12内の燃料圧力を任意に調整可能とする燃圧制御弁(燃料圧力調整器)11bを備えている点も、第1実施形態と異なっている。
インジェクタ30は、図9に概略構造図を示すように、噴孔30bを開閉する針弁30cの周囲にスワールチップを配置したスワール式インジェクタである。このインジェクタ30のスワールチップは4つの部品31〜34で構成されている。
最上流側の部品31は、針弁30cの直径よりもわずかに径の大きい穴31aが中心に形成された円筒状の部品であり、外周面には軸方向へ延びる4箇所の燃料通路溝31bが設けられている。これに隣接する部品32は、部品31と同様の穴32aと部品31の燃料通路溝31bに連続する燃料通路溝32bとが設けられた円盤状の部品であり、端面には穴32aと燃料通路溝32bとを接続する半径方向の燃料通路溝32cが設けられている。これに隣接する部品33は部品32と同様の部品であるが、部品33の半径方向燃料通路溝33bは半径方向に対し所定の角度を持って形成されている。最先端側の部品34も部品32や部品33と同様の部品であるが、部品34の半径方向燃料通路溝34bの形成角度は部品33の半径方向燃料通路溝33bの形成角度よりも大きくなっている。
以上のようなスワールチップ31〜34の構成により、このインジェクタ30では、針弁30cのリフト量を変更することで噴孔30b内に生起されるスワールの強さを変化させることが可能であり、これにより中空円錐状噴霧の噴霧角度θを変化させることができるようになっている。針弁30cはピエゾ式のアクチュエータで駆動されるようになっており、開弁信号の大きさ(電圧)を制御することで任意のリフト量を実現することができる。尚、電磁コイル式のアクチュエータを用いる場合は、1つの開弁信号を複数の小パルスに分割してアクチュエータへ送るようにし、小パルスの幅を制御することでリフト量を調整することが可能である。
図10は、所定時間(例えば10ms)毎にECU15が実行する処理ルーチンを示す制御フローチャート図である。このルーチンでは、インジェクタ30と燃圧制御弁11bとを制御するための制御値の算出が行われる。
先ずステップ11では、ECU15内のメモリから機関回転速度Neとアクセル開度APOとを読み込む。
次にステップ12では、機関回転速度Neとアクセル開度APOとに基づいてインジェクタ30の噴射タイミングITf、針弁30cのリフト量Lf、開時間Tf、及び、燃圧制御弁11bの目標燃料圧力Pfを算出する。具体的には、機関回転速度とアクセル開度とに対応させてITf、Lf、Tf、Pfを記憶させてある制御マップから現在のNe、APOに対応する各値をルックアップする。以上のようにして算出された各制御値は、一旦ECU15内のメモリにストアされ、インジェクタ30の制御と燃圧制御弁11bの制御とに使用される。
次に、図10のルーチンで算出される各制御値の設定特性とそれによる噴霧特性とを図11(第1実施形態の図5に対応)を参照して説明する。
図11のA)にインジェクタ30の開時間Tfの設定を示す。インジェクタ30の開時間Tfは、成層領域では負荷の上昇に伴って微増する設定であり、均質領域では負荷の上昇に伴って増加する設定である。
図11のB)に燃料配管12内の燃料圧力Pfの設定を示す。燃料圧力Pfは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低圧でかつ負荷によらない一定圧の設定となっている。
図11のC)に針弁30cのリフト量Lfの設定を示す。リフト量Lfは、成層領域では負荷の上昇に伴って増加する設定であり、均質領域では比較的低リフトでかつ負荷によらない一定リフト量の設定となっている。従って、燃料噴霧の噴霧角度θは、成層領域では負荷の上昇に伴って小さくなり、均質領域ではほぼ一定となる。
図11のD)に噴霧速度(噴射燃料速度)Vfと噴霧速度のシリンダ軸方向成分Vfcylとを示す。噴霧速度Vfは、燃料圧力Pfが大きいほど大きくなる。従って、噴霧速度Vfは、成層領域では負荷の上昇に伴って増大し、均質領域ではほぼ一定となる。また、噴霧速度をシリンダ軸方向成分とシリンダ半径方向成分とに分けた場合、シリンダ軸方向成分は噴霧角度θが小さいほど大きくなる。従って、成層領域における噴霧速度のシリンダ軸方向成分Vfcylの増加率は噴霧速度Vfの増加率よりも大きくなる。
図11のE)にシリンダ軸方向の噴霧運動量と燃料噴射量(何れも無次元化された値)を示す。燃料噴射量はインジェクタ30の開時間Tfと燃料圧力Pfとリフト量Lfとで定まり、負荷の上昇に伴って増加するようになっている。また、シリンダ軸方向の噴霧運動量は、噴霧速度のシリンダ軸方向成分Vfcylと燃料噴射量とで定まる。同図から明らかなように、成層領域におけるシリンダ軸方向の噴霧運動量の増加率は燃料噴射量の増加率より大きい。
以上のように、負荷に応じて噴霧のシリンダ軸方向運動量を制御することで、幅広い機関運転条件下において適切な大きさの成層混合気塊を形成することができる。
特に本実施形態によれば、燃料噴射装置を燃料噴射弁(インジェクタ30)のみで構成でき、構成を簡素化できる一方、燃料圧力Pfの制御、さらに、リフト量Lfによる噴霧角度θの制御により、負荷に応じた噴霧の軸方向運動量の制御を確実に行うことができる。
尚、燃料圧力Pfのみ、あるいはリフト量Lfのみを負荷に応じて増加させることでシリンダ軸方向の噴霧運動量の増加率を燃料噴射量の増加率より大きくすることも可能である。
〔産業上の利用可能性〕
以上説明したように本発明によれば、適度な空燃比の成層混合気を広範な負荷条件で形成可能となり、成層燃焼運転の領域を拡大することができる。従って、産業上の利用性は大である。
【図面の簡単な説明】
図1は、本発明の第1実施形態のシステム図である。
図2は、混合気噴射弁の概略構造図である。
図3は、制御の流れを示すフローチャートである。
図4は、回転及び負荷に対する燃焼形態の切換えを示す図である。
図5は、制御値の設定特性と噴霧特性を示す図である。
図6は、燃料及び空気噴射のタイムチャートである。
図7は、筒内混合気形成過程を示す図である。
図8は、本発明の第2実施形態のシステム図である。
図9は、インジェクタの概略構造図である。
図10は、第2実施形態の制御の流れを示すフローチャートである。
図11は、第2実施形態の制御値の設定特性と噴霧特性を示す図である。
Claims (12)
- 燃焼室上部の略中央に点火プラグを配設した内燃機関の成層混合気形成装置において、
シリンダ内を往復動するピストンに向かって進行する燃料噴霧を形成する燃料噴射装置と、
燃料噴霧のシリンダ軸方向運動量の増加率が燃料噴射量の増加率より大きくなるように、燃料噴射量に応じて噴霧の運動量を制御する制御装置と、
を備えたことを特徴とする内燃機関の成層混合気形成装置。 - 前記燃料噴射装置は、シリンダ軸に対して軸対称形状をなす燃料噴霧を形成することを特徴とする請求項1記載の内燃機関の成層混合気形成装置。
- 前記燃料噴射装置は、ピストンへ向けて気体を噴射する気体噴射弁を含み、噴射された気体と燃料とで燃料噴霧を形成するよう構成されることを特徴とする請求項1又は請求項2記載の内燃機関の成層混合気形成装置。
- 前記制御装置は、燃料噴射量に応じて前記気体噴射弁の気体噴射量を制御することを特徴とする請求項3記載の内燃機関の成層混合気形成装置。
- 前記制御装置は、燃料噴射量の増加に伴って燃料噴射量に対する気体噴射量の比率が増加するよう前記気体噴射弁を制御することを特徴とする請求項4記載の内燃機関の成層混合気形成装置。
- 前記燃料噴射装置へ供給する気体の圧力を調整する気体圧力調整器をさらに備え、
前記制御装置は、燃料噴射量に応じて前記気体圧力調整器を制御することを特徴とする請求項3記載の内燃機関の成層混合気形成装置。 - 前記制御装置は、燃料噴射量の増加に伴って気体圧力が増加するよう前記気体圧力調整器を制御することを特徴とする請求項6記載の内燃機関の成層混合気形成装置。
- 前記燃料噴射装置へ供給する燃料の圧力を調整する燃料圧力調整器をさらに備え、
前記燃料噴射装置は、前記燃料圧力調整器によって調圧された燃料をピストンへ向けて噴射する燃料噴射弁を含み、
前記制御装置は、燃料噴射量に応じて前記燃料圧力調整器を制御することを特徴とする請求項1又は請求項2記載の内燃機関の成層混合気形成装置。 - 前記制御装置は、燃料噴射量の増加に伴って燃料圧力が増加するよう前記燃料圧力調整器を制御することを特徴とする請求項8記載の内燃機関の成層混合気形成装置。
- 前記燃料噴射装置は、噴霧角度を変更可能でかつ燃料をピストンへ向けて噴射する燃料噴射弁を含み、
前記制御装置は、燃料噴射量に応じて前記燃料噴射弁の噴霧角度を制御することを特徴とする請求項1又は請求項2記載の内燃機関の成層混合気形成装置。 - 前記制御装置は、燃料噴射量の増加に伴って噴霧角度が減少するよう前記燃料噴射弁を制御することを特徴とする請求項10記載の内燃機関の成層混合気形成装置。
- 燃焼室上部の略中央に点火プラグを配設した内燃機関の成層混合気形成方法であって、
シリンダ内を往復動するピストンに向かって進行する燃料噴霧を形成する一方、燃料噴霧のシリンダ軸方向運動量の増加率が燃料噴射量の増加率より大きくなるように、燃料噴射量に応じて噴霧の運動量を制御することを特徴とする内燃機関の成層混合気形成方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001281634 | 2001-09-17 | ||
JP2001281634 | 2001-09-17 | ||
PCT/JP2002/008301 WO2003029635A1 (fr) | 2001-09-17 | 2002-08-15 | Dispositif et procede de formation d'un melange carburant-air stratifie dans un moteur a combustion interne |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2003029635A1 true JPWO2003029635A1 (ja) | 2005-01-20 |
Family
ID=19105423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003532825A Pending JPWO2003029635A1 (ja) | 2001-09-17 | 2002-08-15 | 内燃機関の成層混合気形成装置及び方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6837211B2 (ja) |
EP (1) | EP1429010A1 (ja) |
JP (1) | JPWO2003029635A1 (ja) |
WO (1) | WO2003029635A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4087064B2 (ja) * | 1998-06-22 | 2008-05-14 | 株式会社日立製作所 | 筒内噴射型内燃機関および内燃機関の制御方法、燃料噴射弁 |
JP2002206446A (ja) * | 2001-01-10 | 2002-07-26 | Hitachi Ltd | 内燃機関及び内燃機関の燃料噴射制御装置 |
JP6217670B2 (ja) * | 2015-03-04 | 2017-10-25 | トヨタ自動車株式会社 | 内燃機関 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01166271U (ja) * | 1988-05-11 | 1989-11-21 | ||
JPH033935A (ja) * | 1989-05-30 | 1991-01-10 | Fuji Heavy Ind Ltd | 2サイクル直噴エンジンの燃料噴射制御装置 |
JPH0586948A (ja) * | 1991-09-30 | 1993-04-06 | Mazda Motor Corp | 筒内燃料噴射式エンジンの制御装置 |
DE19713030C2 (de) * | 1996-04-01 | 2000-02-24 | Avl List Gmbh | Viertakt-Brennkraftmaschine mit Fremdzündung |
DE19713029C2 (de) * | 1996-04-01 | 2000-02-24 | Avl List Gmbh | Viertakt-Brennkraftmaschine mit Fremdzündung |
AT2378U1 (de) * | 1997-08-28 | 1998-09-25 | Avl List Gmbh | Brennkraftmaschine mit fremdzündung |
JPH1182028A (ja) | 1997-08-29 | 1999-03-26 | Toyota Motor Corp | 筒内噴射式火花点火内燃機関 |
US6725828B1 (en) * | 2003-06-17 | 2004-04-27 | Ford Global Technologies, Llc | Vortex-induced stratification combustion for direct injection spark ignition engines |
-
2002
- 2002-08-15 WO PCT/JP2002/008301 patent/WO2003029635A1/ja not_active Application Discontinuation
- 2002-08-15 JP JP2003532825A patent/JPWO2003029635A1/ja active Pending
- 2002-08-15 EP EP02762782A patent/EP1429010A1/en not_active Withdrawn
-
2004
- 2004-03-16 US US10/800,633 patent/US6837211B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2003029635A1 (fr) | 2003-04-10 |
US6837211B2 (en) | 2005-01-04 |
US20040173179A1 (en) | 2004-09-09 |
EP1429010A1 (en) | 2004-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7089916B2 (en) | Internal combustion engine and fuel injection control device therefor | |
US10247156B2 (en) | Internal combustion engine | |
US7584739B2 (en) | Internal combustion engine with a precombustion chamber | |
US6840211B2 (en) | Diesel engine | |
JP2002206446A5 (ja) | ||
JPH11257108A (ja) | 圧縮着火式内燃機関およびその制御方法 | |
US20100147261A1 (en) | Gasoline engine | |
JP6252647B1 (ja) | 予混合圧縮着火式エンジンの制御装置 | |
JP4161789B2 (ja) | 燃料噴射制御装置 | |
WO2015129285A1 (ja) | 直噴ガソリンエンジンの制御装置 | |
JP2002188447A (ja) | 筒内直接噴射式内燃機関 | |
JP2010196506A (ja) | 筒内噴射式内燃機関 | |
JP2007092633A (ja) | 火花点火式直噴エンジン | |
JP2004324428A (ja) | 可変動弁式内燃機関及び制御方法 | |
US10309338B2 (en) | Fuel injection control device for direct-injection engine | |
JP2007051549A (ja) | 燃料噴射弁及びそれを備えた筒内噴射式エンジン | |
JPWO2003029635A1 (ja) | 内燃機関の成層混合気形成装置及び方法 | |
JP4148009B2 (ja) | 内燃機関の燃料噴射システム | |
JP4078894B2 (ja) | 筒内直接噴射式火花点火内燃機関の制御装置 | |
JP2007077996A (ja) | 内燃機関及び内燃機関の燃料噴射制御装置 | |
JP4029737B2 (ja) | 直噴火花点火式内燃機関 | |
JP2006052665A (ja) | 直噴火花点火式内燃機関 | |
JP2007092634A (ja) | 火花点火式直噴エンジン | |
JP4010211B2 (ja) | 直噴火花点火式内燃機関 | |
JP5884407B2 (ja) | 内燃機関 |