JPS648004B2 - - Google Patents

Info

Publication number
JPS648004B2
JPS648004B2 JP2985481A JP2985481A JPS648004B2 JP S648004 B2 JPS648004 B2 JP S648004B2 JP 2985481 A JP2985481 A JP 2985481A JP 2985481 A JP2985481 A JP 2985481A JP S648004 B2 JPS648004 B2 JP S648004B2
Authority
JP
Japan
Prior art keywords
catalyst component
titanium
polymerization
activity per
polymerization activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2985481A
Other languages
Japanese (ja)
Other versions
JPS57145104A (en
Inventor
Atsushi Murai
Hirokazu Soga
Hiroyasu Ooba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2985481A priority Critical patent/JPS57145104A/en
Publication of JPS57145104A publication Critical patent/JPS57145104A/en
Publication of JPS648004B2 publication Critical patent/JPS648004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα−オレフイン類の重合に供した際に
高活性に作用し、しかも立体規則性重合体を高収
率で得ることのできる高性能触媒成分の製造方法
に係り、更に詳しくはマグネシウムハロゲン化物
とアルミニウムアルコキシド類と電子供与性物質
とを加圧下において共粉砕し、得られた固体組成
物をチタンハロゲン化物と液相または気相中で接
触させ、次いで不活性有機溶剤で洗浄することを
特徴とするα−オレフイン類重合用触媒成分の製
造方法に関するものである。 従来、α−オレフイン類の重合用触媒成分とし
ては固体のチタンハロゲン化物が周知であり広く
用いられているが、触媒成分および触媒成分中の
チタン当りの重合体の収量(以下チタン当りの重
合活性という。)が低いため触媒残渣を除去する
ための所謂脱灰工程が不可避であつた。この脱灰
工程は多量のアルコールまたはキレート剤を使用
するためにそれ等の回収装置等が必要不可欠であ
り、資源、エネルギーその他付随する問題が多く
当業者にとつて早急に解決を望まれる重要な課題
であつた。この煩雑な脱灰工程を省くために触媒
成分とりわけ触媒成分中のチタン当りの重合活性
を高めるべく数多くの研究がなされ、提案されて
いる。 特に最近の傾向として活性成分であるチタンハ
ロゲン化物等の遷移金属化合物を多孔質の担体物
質に担持させ、その比表面積の拡大を計ることに
よつてα−オレフイン類の重合に供した際、触媒
成分中のチタン当りの重合活性を飛躍的に高めた
という提案が数多く見かけられる。更にまた、前
記担体物質そのものの改良および担持方法の工夫
による効果、併せて第三成分の添加等についても
種々提案されている。 例えば、特開昭48−16986、同48−16987および
同48−16988号公報によれば、チタンハロゲン化
物と特定の電子供与性物質との錯体をマグネシウ
ムハロゲン化物と共粉砕することによつて得られ
た触媒成分を用いてα−オレフイン類の重合に供
し、チタン当りの重合活性および立体規則性重合
体の収率において当時の技術水準を以つて評価し
た場合、かなりの改善は見られるものの触媒成分
中チタン当りの重合活性において実用上脱灰工程
を省く域にまでは達しておらず、しかも立体規則
性重合体の収率においても満足すべき状態に至つ
ていない。このよう欠点を排除するものとして特
開昭50−126590号公報においてはマグネシウムハ
ロゲン化物を第三成分である電子供与性物質、具
体的には芳香族カルボン酸エステルと機械的手段
によつて接触させ、得られた固体組成物に四ハロ
ゲン化チタンを液相または気相中で接触させて触
媒成分を得る方法が開示されている。この方法に
よつて得られた触媒成分を用いてα−オレフイン
類の重合に供することにより、脱灰工程を省略し
ても実用上殆んど差支えない程度にチタン当りの
重合活性は上昇しているが立体規則性重合体の収
率においては満足すべき状態になく、工業的に実
用化される域にまでは達していない。 更に、前記の方法を改良するものとして特開町
昭52−87489号公報では少くとも有機基またはハ
ロゲンを含有するアルミニウム、スズおよびゲル
マニウムの金属化合物の中から選ばれる1種とハ
ロゲン化マグネシウムとを有機酸エステルの存在
下に粉砕接触させる方法が提案されており、前者
に比較してチタン当りの重合活性および立体規則
性重合体の収率においてそれなりの効果を収めて
いるが触媒成分当りの重合体の収量(以下触媒成
分当りの重合活性という。)および立体規則性重
合体の収率などの重合特性値を加味して考察した
場合、高度化しつつある斯界の要求を満足すべき
状態になく尚改良の余地が残されていた。 前記に引用した触媒成分にとどまらずこの種の
触媒成分の重合特性値即ち触媒成分当りの重合活
性、触媒成分中のチタン当りの重合活性および立
体規則性重合体の収率をバランス良く向上させる
ことは至難な技術的課題であり、例えば生成重合
体中に残存する触媒成分の中で最も忌避されてい
るチタン分を除去するためにチタン当りの重合活
性を増大させると立体規則性重合体の収率が犠牲
になるということが一般的な傾向であり、更にま
た触媒成分当りの重合活性に問題を当ててみる
と、その値を向上させるためには担体物質へのチ
タンの担持率を高めることによりその目的をある
程度達成し得るが、逆に立体規則性重合体の収率
は低下し、かつ、チタン担持量の上昇に比例して
触媒成分当りの重合活性が向上するとは限らず、
単に担持物質へのチタンの担持率を高めるだけで
は触媒成分当りの重合活性をさらに高めるには不
十分であり、したがつて触媒成分当りの重合活性
に有効なチタンを選択的に担持させることが要求
される。 本発明者等は斯かかる従来技術に残された課題
を解決すべく鋭意研究の結果茲に提案するもので
ある。 即ち、本発明の特色とするところは(a)一般式
MgX2(式中Xはハロゲン元素である。)で表わさ
れるマグネシウムハロゲン化物と、(b)一般式Al
(OR)mX3−m(式中Rはアルキル基またはアリ
ール基、Xはハロゲン元素、mは1〜3の整数で
ある。)で表わされるアルミニウムアルコキシド
類と、(c)芳香族カルボン酸とを、ガス状オレフイ
ン類および不活性ガスから選ばれた1種または2
種以上のガスによる加圧下において機械的手段に
より共粉砕し、得られた固体組成物を、(d)一般式
TiX4(式中Xはハロゲン元素である。)で表わさ
れるチタンハロゲン化物と液相または気相中で接
触させ、次いで不活性有機溶剤を用いて洗浄液中
にハロゲン元素の存在が認められなくなるまで洗
浄し、その後固液を分離して乾燥するか、更にま
た適量の不活性有機溶剤を加えてスラリー状とな
し、そのままα−オレフイン類重合用触媒成分と
して用いるところにある。 本発明によれば、マグネシウムハロゲン化物と
アルミニウムアルコキシド類と電子供与性物質と
を加圧下において共粉砕することにより、得られ
た固体組成物にチタンハロゲン化物を接触処理す
るに際して触媒成分当りの重合活性に有効なチタ
ンを選択的に担持させることを可能ならしめ、そ
のことが触媒成分当りの重合活性および立体規則
性重合体の収率をも犠牲にすることなく触媒成分
中のチタン当りの重合活性を驚異的数値で高める
効果を奏することになる。 α−オレフイン類重合用担体付触媒成分の製法
という当該技術分野における従来の傾向として、
活性成分であるチタンの担持率をより高めるとい
う努力がなされてきた。しかし前記したように単
に担持させたチタン成分に比例して触媒成分当り
の重合活性が向上するということには必らずしも
ならず、その結果触媒成分中チタン当りの重合活
性は担持されるチタン成分の増大するにつれて、
むしろ低下する傾向をまねくことになる。斯かる
事実から生成重合体に最も悪影響を及ぼすといわ
れ忌避されている生成重合体中のチタン分が多く
なり煩雑な脱灰工程を要する因となる。前記の事
由から触媒成分中に含まれるチタン成分は重合に
供した際に触媒成分当りの重合活性に有効なチタ
ンを選択的に担持させることが望ましくその結果
として触媒成分中のチタン当りの重合活性が増大
し生成重合体からのチタン分を除去するという所
謂脱灰工程を省略し得ることになる。本発明はこ
のような点に着目してなされたものであり、その
成果として重合特性値、とりわけ触媒成分中のチ
タン当りの重合活性を飛躍的に高め、併せて立体
規則性重合体の収率をも高度に維持し得るという
効果を奏した。 本発明において使用される一般式MgX2(式中
Xはハロゲン元素である。)で表わされるマグネ
シウムハロゲン化物とは無水のMgCl2、MgBr2
MgI2等であるが中でもMgCl2が好ましい。 本発明において使用される一般式Al(OR)
mX3−m(式中Rはアルキル基またはアリール
基、Xはハロゲン元素、mは1〜3の整数であ
る。)で表わされるアルミニウムアルコキシド類
とはアルミニウムメトキシド、アルミニウムエト
キシド、アルミニウムイソプロポキシド、アルミ
ニウムプトキシド等であるが中でもアルミニウム
イソプロポキシドが好ましい。 本発明において使用される電子供与性物質とし
てはその分子中に酸素、窒素、硫黄およびリン原
子から選ばれた原子を少くとも1個含有する有機
化合物から選ばれ、例えばエーテル、エステル、
ケトン、アミン、ホスフイン、ホスフインアミド
等があげられる。更に具体的にはジエチルエーテ
ルなどの脂肪族エーテル類、アニソールなどの芳
香族エーテル類、酢酸エチル、メタクリル酸メチ
ルなどの脂肪族カルボン酸エステル類、安息香酸
エチル、トルイル酸メチル、トルイル酸エチル、
アニス酸エチル、フタル酸ジエチルなどの芳香族
カルボン酸エステル類、アセトンなどのケトン
類、トリフエニルホスフインなどのホスフイン
類、ヘキサホスフインアミドなどのホスフインア
ミド類等があげられるが、これ等のうち特に好ま
しいものは芳香族カルボン酸エステル類である。 本発明において使用される一般式TiX4(式中X
はハロゲン元素である。)で表わされるチタンハ
ロゲン化物としてはTiCI4、TiBr4、TiI4等があ
げられるが中でもTiCl4が好ましい。またこのチ
タンハロゲン化物を前記の電子供与性物質との錯
合体の形で用いることも妨げない。 本発明において使用される不活性有機溶剤とし
は飽和脂肪族および芳香族炭化水素化合物類例え
ばヘキサン、ヘプタン、オクタン、シクロヘキサ
ン、ベンゼン、トルエン等があげられるがこれ等
不活性有機溶剤の使用に際してはモレキユラシー
ブス等で十分に脱水したものを用いることが望ま
しい。 これ等各成分の使用割合は生成される触媒成分
の性能に悪影響を及ぼすことの無い限り任意であ
り特に限定するものではないが、通常マグネシウ
ムハロゲン化物1モルに対しアルミニウムアルコ
キシド類は0.001〜1モル、好ましくは0.005〜0.5
モル、電子供与性物質は0.01〜10モル、好ましく
は0.05〜1モルの範囲で用いられる。 本発明におけるマグネシウムハロゲン化物とア
ルミニウムアルコキシド類および電子供与性物質
との接触方法は機械的処理によつて行なわれる
が、粉体を加圧粉砕することが可能な通常の粉砕
機例えばボールミル、振動ミル、塔式摩砕機、衝
撃粉砕機等のうちいずれを選ぶことも任意であ
る。 本発明における機械的粉砕処理は各成分、即ち
被処理物の装入時には水分や空気を十分に除去し
た後、窒素またはアルゴン等の不活性ガス雰囲気
で保護しつつ常圧で操作され、その後ガス状オレ
フイン類および不活性ガスから選ばれた1種また
は2種以上のガスを用いて加圧して粉砕処理す
る。 ガス状オレフイン類としては、エチレン、プロ
ピレン、1−ブテン、4−メチルペンテン−1等
が好適である。 不活性ガスとしては、窒素、アルゴン、炭酸ガ
ス、ヘリウム等本触媒成分の製造に悪影響を及ぼ
さない限り任意に選択することができる。 加圧時の圧力は特に限定しないが粉砕機の許容
圧力により自ら定められるところであり、通常1
〜20Kg/cm2・Gが好ましい範囲である。粉砕処理
時間は粉砕機の能力によつて異なることは勿論で
あるが通常0.5〜100時間の範囲で処理することが
好ましい。粉砕処理時の温度は被処理物が粉砕可
能な範囲であれば特に限定しないが通常80℃以下
が好ましい。また各成分の接触順序についても任
意であり各別に添加することも、同時添加するこ
とも、逐次分割添加することも自由に選択でき
る。但し、加圧の時期は各成分が最終的に添加し
終つた時期ないしそれ以降とする。 このようにして得られた固体組成物にチタンハ
ロゲン化物を液相または気相中で接触させてチタ
ンを担持させ、次いで不活性有機溶剤で洗浄する
ことにより本発明の触媒成分が得られる。 チタンハロゲン化物と前記マグネシウムハロゲ
ン化物の処理生成物、即ち固体組成物との接触
は、撹拌機を具備した冷却装置付の容器を用いて
通常20〜100℃の温度範囲で行なわれる。接触処
理時間は固体組成物にチタンハロゲン化物中のチ
タンが十分に担持される範囲であれば任意である
が、通常0.5〜10時間の範囲で行なわれる。 前記処理後、得られたスラリー状組成物を不活
性有機溶剤を用いて洗浄する。この際洗浄液中に
ハロゲン元素が検出されなくなつた時点を以つて
洗浄終了とみなし、固液を分離して乾燥するか、
あるいは更に適量の不活性有機溶剤を加えてスラ
リー状となし、そのまま本発明のα−オレフイン
類重合用触媒成分として用いる。 本発明におけるこれ等一連の操作は、酸素およ
び水分等の不存在下に行なわれるのが好ましい。 以上の如くして製造された触媒成分は一般式
AlRmX3−m(式中Rは水素または炭素数1〜10
のアルキル基、Xはハロゲン元素、mは1〜3の
整数である。)で表わされる有機アルミニウム化
合物と組合せてα−オレフイン類重合用触媒を形
成する。使用される有機アルミニウム化合物は触
媒成分のチタン原子量当り重量比で1〜300、好
ましくは1〜100の範囲で用いられる。また重合
に際して芳香族カルボン酸エステルなどの第三成
分を添加使用することも妨げない。 重合方法は不活性有機溶媒の存在下でも、液状
オレフイン単量体の存在下でも行なうことができ
る。重合温度は200℃以下、好ましくは100℃以下
であり、重合圧力は100Kg/cm2・G以下、好まし
くは50Kg/cm2・G以下である。 本発明方法により製造された触媒成分を用いて
単独または共重合されるオレフイン類はエチレ
ン、プロピレン、1−ブテン、4−メチル−ペン
テン−1等である。 以下本発明を実施例および比較例により具体的
に説明する。 実施例 1 〔触媒成分の調製〕 市販の無水塩化マグネシウム30gとアルミニウ
ムイソプロポキシド1.2gを窒素雰囲気下で、15
mmφのステンレスボールを全容積の3/5充填した
容量1.2の振動ミルポツトに装入し、振動数
1430v.p.m、振巾3.5mmで1時間粉砕処理した。粉
砕終了後窒素雰囲気を維持しつつ安息香酸エチル
9.5gを装入し、次いでプロピレンガスにより振
動ミルポツトの内圧が5Kg/cm2・Gになるまで加
圧して密封した後、同様の条件で更に17時間の粉
砕処理を施した。尚、これ等の粉砕処理はいずれ
も室温下で行なつた。 窒素ガスで十分に置換され、撹拌機を具備した
冷却装置付容量200mlの丸底フラスコにTiCl450
mlと、前記粉砕処理によつて得られた固体組成物
10gを装入し、65℃で2時間の撹拌反応を行なつ
た。反応終了後室温まで冷却し静置してデカンテ
ーシヨンにより上澄液を除去した。次いで脱水ノ
ルマルヘプタン100mlによる洗浄を繰返し行ない、
洗浄液中に塩素が検出されなくなつた時点で洗浄
終了として触媒成分とした。尚、この際該触媒成
分中の固液を分離して固体分のチタン含有率を測
定したところ1.37重量%であつた。 〔重合〕 窒素ガスで完全に置換された内容積1.5の撹
拌装置付オートクレープに脱水ノルマルヘプタン
500mlを装入し、窒素ガス雰囲気を保ちつつトリ
エチルアルミニウム20mg、次いで前記触媒成分を
チタン原子として1.01mg装入した。その後60℃に
昇温してプロピレンガスを導入しつつ4Kg/cm2
Gの圧力を維持して2時間のプロピレン重合を行
なつた。重合終了後得られた固体ポリマーを過
し、80℃に加温して減圧乾燥を行なつた。一方
液を濃縮して重合溶媒可溶性ポリマーを得た。重
合溶媒に溶存するポリマーの量を(A)とし、固体ポ
リマーの量を(B)とする。また得られた固体ポリマ
ーを沸騰ノルマルヘプタンで6時間の抽出を行な
い、ノルマルヘプタンに不溶解のポリマーを得、
この量を(C)とする。 触媒成分当りの重合活性(D)を式 (D)=〔(A)+(B)〕(g)/触媒成分量(
g) で表わし、触媒成分中のチタン当りの重合活性(E)
を式 (E)=(D)/触媒成分中のチタン含有割合 で表わし、結晶性ポリマーの収率(F)を式 (F)=(C)/(B)×100(%)で表わす。また全結晶性ポ リマーの収率(立体規則性重合体の収率)(G)は式 (G)=(C)/(A)+(B)×100(%) より求めた。得られた結果は第1表に示す通りで
ある。 実施例 2 安息香酸エチル添加後の粉砕時間を27時間に変
えたほかは実施例1と同様にして触媒成分の調製
を行なつた。尚、この際の固体分のチタン含有率
は1.30重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として0.92mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 実施例 3 プロピレンガスによる加圧を2Kg/cm2・Gに変
えたほかは実施例2と同様にして触媒成分の調製
を行なつた。尚、この際の固体分のチタン含有率
は1.51重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.08mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 実施例 4 プロピレンガスに変えてエチレンガスを用いて
加圧したほかは実施例1と同様にして触媒成分の
調製を行なつた。尚、この際の固体分のチタン含
有率は1.35重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として0.89mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 1 プロピレンガスによる加圧を行なわなかつたほ
かは実施例1と同様にして触媒成分の調製を行な
つた。尚、この際の固体分のチタン含有率は1.71
重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.30mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 2 アルミニウムイソプロポキシドを加えなかつた
ほかは実施例1と同様にして触媒成分の調製を行
なつた。尚、この際の固体分のチタン含有率は
1.04重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として0.76mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。
The present invention relates to a method for producing a high-performance catalyst component that acts with high activity when subjected to the polymerization of α-olefins and can obtain a stereoregular polymer in high yield. The compound, the aluminum alkoxide, and the electron donating substance are co-pulverized under pressure, the resulting solid composition is brought into contact with the titanium halide in a liquid phase or gas phase, and then washed with an inert organic solvent. The present invention relates to a method for producing a characteristic catalyst component for polymerizing α-olefins. Conventionally, solid titanium halides have been well known and widely used as catalyst components for the polymerization of α-olefins. ) was so low that a so-called deashing step was necessary to remove catalyst residues. Since this deashing process uses a large amount of alcohol or chelating agent, recovery equipment for these is indispensable, and there are many problems related to resources, energy, etc., which are important issues that those skilled in the art would like to solve as soon as possible. It was a challenge. In order to eliminate this complicated deashing process, many studies have been made and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially in the catalyst component. In particular, a recent trend is to support a transition metal compound such as titanium halide, which is an active ingredient, on a porous carrier material and expand its specific surface area. There are many proposals for dramatically increasing the polymerization activity per titanium component. Furthermore, various proposals have been made regarding the effects of improving the carrier material itself, devising a supporting method, and adding a third component. For example, according to JP-A-48-16986, JP-A No. 48-16987, and JP-A No. 48-16988, a complex of titanium halide and a specific electron-donating substance can be obtained by co-pulverizing a complex with magnesium halide. When the catalyst components obtained were subjected to the polymerization of α-olefins and the polymerization activity per titanium and the yield of stereoregular polymer were evaluated using the state of the art at the time, a considerable improvement was observed, but the catalyst The polymerization activity per titanium component has not reached a level where the demineralization step can be practically omitted, and the yield of stereoregular polymer has not yet reached a satisfactory level. In order to eliminate these drawbacks, JP-A-50-126590 discloses that a magnesium halide is brought into contact with a third component, an electron-donating substance, specifically an aromatic carboxylic acid ester, by mechanical means. discloses a method for obtaining a catalyst component by contacting the obtained solid composition with titanium tetrahalide in a liquid or gas phase. By using the catalyst component obtained by this method to polymerize α-olefins, the polymerization activity per titanium is increased to such an extent that there is almost no practical problem even if the deashing step is omitted. However, the yield of stereoregular polymers is not satisfactory, and it has not reached the level where it can be put to practical use industrially. Furthermore, as an improvement on the above-mentioned method, JP-A-52-87489 discloses that one metal compound selected from aluminum, tin, and germanium containing at least an organic group or a halogen and magnesium halide are used. A method in which pulverization is carried out in the presence of an organic acid ester has been proposed, and although this method is somewhat effective in terms of the polymerization activity per titanium and the yield of stereoregular polymer compared to the former method, the polymerization per catalyst component is When considering polymerization characteristics such as the yield of polymerization (hereinafter referred to as polymerization activity per catalyst component) and the yield of stereoregular polymers, it is found that the requirements of the increasingly sophisticated industry cannot be satisfied. However, there was still room for improvement. In addition to the catalyst components cited above, the present invention aims to improve the polymerization characteristics of this type of catalyst component, that is, the polymerization activity per catalyst component, the polymerization activity per titanium in the catalyst component, and the yield of stereoregular polymer in a well-balanced manner. This is an extremely difficult technical issue; for example, increasing the polymerization activity per titanium in order to remove titanium, which is the most avoided among the catalyst components remaining in the resulting polymer, will result in a reduction in the yield of stereoregular polymers. The general tendency is that the polymerization rate is sacrificed.Furthermore, looking at the problem of polymerization activity per catalyst component, in order to improve this value, it is necessary to increase the loading rate of titanium on the support material. Although this objective can be achieved to some extent, the yield of the stereoregular polymer decreases, and the polymerization activity per catalyst component does not necessarily improve in proportion to the increase in the amount of titanium supported.
Simply increasing the loading rate of titanium on the supporting material is insufficient to further increase the polymerization activity per catalyst component, and therefore it is necessary to selectively support titanium that is effective for polymerization activity per catalyst component. required. The present inventors have made a proposal based on their extensive research to solve the problems remaining in the prior art. That is, the feature of the present invention is that (a) the general formula
Magnesium halide represented by MgX 2 (wherein X is a halogen element) and (b) general formula Al
(OR)mX 3 -m (in the formula, R is an alkyl group or an aryl group, and one or two selected from gaseous olefins and inert gases.
(d) The solid composition obtained by co-pulverizing by mechanical means under pressure with at least one gas
Contact with a titanium halide represented by TiX 4 (wherein X is a halogen element) in a liquid or gas phase, and then use an inert organic solvent until the presence of a halogen element is no longer recognized in the cleaning solution. After washing, the solid and liquid are separated and dried, or an appropriate amount of an inert organic solvent is added to form a slurry, which is used as it is as a catalyst component for the polymerization of α-olefins. According to the present invention, by co-pulverizing a magnesium halide, an aluminum alkoxide, and an electron-donating substance under pressure, the polymerization activity per catalyst component is obtained when the solid composition obtained is contacted with a titanium halide. This makes it possible to selectively support effective titanium in the catalyst, which increases the polymerization activity per titanium in the catalyst component without sacrificing the polymerization activity per catalyst component and the yield of stereoregular polymer. This will have the effect of increasing the amount by an astonishing amount. As a conventional trend in the technical field of a method for producing a supported catalyst component for polymerizing α-olefins,
Efforts have been made to further increase the loading of titanium, an active ingredient. However, as mentioned above, it is not necessarily the case that the polymerization activity per catalyst component increases in proportion to the amount of titanium supported; as a result, the polymerization activity per titanium supported in the catalyst component increases. As the titanium content increases,
In fact, it will tend to decline. Due to this fact, the titanium content in the produced polymer, which is said to have the most adverse effect on the produced polymer and is avoided, increases, resulting in the need for a complicated deashing process. For the above reasons, it is desirable that the titanium component contained in the catalyst component selectively support titanium that is effective for polymerization activity per catalyst component when subjected to polymerization, and as a result, the polymerization activity per titanium in the catalyst component increases. The so-called deashing step of removing titanium from the resulting polymer can be omitted. The present invention has been made with attention to these points, and as a result, the polymerization properties, especially the polymerization activity per titanium in the catalyst component, have been dramatically increased, and the yield of stereoregular polymers has also been improved. It was also effective in maintaining a high level of performance. The magnesium halide represented by the general formula MgX 2 (wherein X is a halogen element) used in the present invention is anhydrous MgCl 2 , MgBr 2 ,
Among them, MgCl 2 is preferable, such as MgI 2 . General formula Al(OR) used in the present invention
Aluminum alkoxides represented by mX 3 -m (in the formula, R is an alkyl group or an aryl group, X is a halogen element, and m is an integer of 1 to 3) are aluminum methoxide, aluminum ethoxide, aluminum isopropoxy Among them, aluminum isopropoxide is preferred. The electron-donating substance used in the present invention is selected from organic compounds containing at least one atom selected from oxygen, nitrogen, sulfur, and phosphorus atoms in its molecule, such as ether, ester,
Examples include ketones, amines, phosphines, phosphinamides, and the like. More specifically, aliphatic ethers such as diethyl ether, aromatic ethers such as anisole, aliphatic carboxylic acid esters such as ethyl acetate and methyl methacrylate, ethyl benzoate, methyl toluate, ethyl toluate,
Examples include aromatic carboxylic acid esters such as ethyl anisate and diethyl phthalate, ketones such as acetone, phosphines such as triphenylphosphine, and phosphinamides such as hexaphosphineamide. Among these, aromatic carboxylic acid esters are particularly preferred. The general formula TiX 4 used in the present invention (in the formula
is a halogen element. Examples of the titanium halide represented by ) include TiCI 4 , TiBr 4 , TiI 4 and the like, with TiCl 4 being particularly preferred. Furthermore, it is not prohibited to use this titanium halide in the form of a complex with the above-mentioned electron donating substance. Examples of the inert organic solvent used in the present invention include saturated aliphatic and aromatic hydrocarbon compounds such as hexane, heptane, octane, cyclohexane, benzene, and toluene. It is desirable to use one that has been sufficiently dehydrated using Kyura sieves or the like. The ratio of each component to be used is arbitrary and not particularly limited as long as it does not adversely affect the performance of the catalyst component produced, but the aluminum alkoxide is usually 0.001 to 1 mole per mole of magnesium halide. , preferably 0.005-0.5
The electron-donating substance is used in an amount of 0.01 to 10 mol, preferably 0.05 to 1 mol. The method of contacting the magnesium halide with the aluminum alkoxide and the electron-donating substance in the present invention is carried out by mechanical treatment, but a conventional pulverizer capable of crushing the powder under pressure, such as a ball mill or a vibration mill, is used. , a tower-type mill, an impact mill, etc., may be selected arbitrarily. In the mechanical pulverization treatment of the present invention, each component, that is, the material to be processed, is sufficiently removed from moisture and air when charged, and then operated at normal pressure while being protected in an inert gas atmosphere such as nitrogen or argon. Pulverization treatment is carried out under pressure using one or more gases selected from olefins and inert gases. As the gaseous olefins, ethylene, propylene, 1-butene, 4-methylpentene-1, etc. are suitable. The inert gas may be arbitrarily selected from nitrogen, argon, carbon dioxide, helium, etc. as long as it does not adversely affect the production of the present catalyst component. The pressure during pressurization is not particularly limited, but is determined by the allowable pressure of the crusher, and is usually 1.
The preferred range is ~20 Kg/cm 2 ·G. Although the pulverization treatment time naturally varies depending on the capacity of the pulverizer, it is usually preferable to carry out the treatment in a range of 0.5 to 100 hours. The temperature during the pulverization treatment is not particularly limited as long as the object to be treated can be pulverized, but is usually preferably 80° C. or lower. Furthermore, the order of contacting each component is also arbitrary, and can be freely selected to be added separately, simultaneously, or sequentially and dividedly. However, the timing of pressurization is at or after the time when each component has finally been added. The catalyst component of the present invention is obtained by contacting the thus obtained solid composition with a titanium halide in a liquid or gas phase to support titanium, and then washing with an inert organic solvent. The contact between the titanium halide and the magnesium halide treatment product, ie, the solid composition, is usually carried out at a temperature in the range of 20 to 100°C using a container equipped with a cooling device and equipped with a stirrer. The contact treatment time is arbitrary as long as the titanium in the titanium halide is sufficiently supported on the solid composition, but it is usually carried out for 0.5 to 10 hours. After the treatment, the resulting slurry composition is washed with an inert organic solvent. At this time, the time when halogen elements are no longer detected in the cleaning solution is considered to be the end of cleaning, and the solid and liquid are separated and dried.
Alternatively, an appropriate amount of an inert organic solvent may be further added to form a slurry, and the slurry may be used as it is as a catalyst component for polymerizing α-olefins in the present invention. These series of operations in the present invention are preferably carried out in the absence of oxygen, moisture, and the like. The catalyst component produced as described above has the general formula
AlRmX 3 -m (in the formula, R is hydrogen or has 1 to 10 carbon atoms)
is an alkyl group, X is a halogen element, and m is an integer of 1 to 3. ) to form a catalyst for polymerizing α-olefins. The organoaluminum compound used is used in a weight ratio of 1 to 300, preferably 1 to 100, based on the titanium atomic weight of the catalyst component. Further, it is not prohibited to add a third component such as an aromatic carboxylic acid ester during the polymerization. The polymerization process can be carried out either in the presence of an inert organic solvent or in the presence of a liquid olefin monomer. The polymerization temperature is 200°C or less, preferably 100°C or less, and the polymerization pressure is 100Kg/cm 2 ·G or less, preferably 50Kg/cm 2 ·G or less. Olefins that can be polymerized singly or copolymerized using the catalyst component produced by the method of the present invention include ethylene, propylene, 1-butene, 4-methyl-pentene-1, and the like. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 [Preparation of catalyst component] 30 g of commercially available anhydrous magnesium chloride and 1.2 g of aluminum isopropoxide were mixed with 15 g of aluminum isopropoxide in a nitrogen atmosphere.
A stainless steel ball of mmφ was charged into a vibrating mill pot with a capacity of 1.2 filled with 3/5 of the total volume, and the vibration frequency was
Grinding was carried out for 1 hour at 1430 v.pm and a shaking width of 3.5 mm. After grinding, add ethyl benzoate while maintaining nitrogen atmosphere.
After charging 9.5 g of the vibrating mill pot with propylene gas and sealing it under pressure until the internal pressure of the vibrating mill pot reached 5 kg/cm 2 ·G, the mill pot was further pulverized for 17 hours under the same conditions. Incidentally, all of these pulverization treatments were performed at room temperature. TiCl 4 50 in a 200 ml round bottom flask with a cooling device, well purged with nitrogen gas and equipped with a stirrer.
ml and the solid composition obtained by the pulverization process.
10 g was charged, and a stirring reaction was carried out at 65° C. for 2 hours. After the reaction was completed, the mixture was cooled to room temperature, left to stand, and the supernatant liquid was removed by decantation. Next, wash with 100ml of dehydrated normal heptane repeatedly.
When chlorine was no longer detected in the cleaning solution, the cleaning was completed and the catalyst component was used. At this time, when the solid and liquid in the catalyst component was separated and the titanium content in the solid was measured, it was found to be 1.37% by weight. [Polymerization] Dehydrated n-heptane in an autoclave with an internal volume of 1.5 and a stirring device completely purged with nitrogen gas.
500 ml of the reactor was charged, and while maintaining a nitrogen gas atmosphere, 20 mg of triethylaluminum was charged, followed by 1.01 mg of the catalyst component as titanium atoms. After that, the temperature was raised to 60℃ and propylene gas was introduced, and the temperature was increased to 4Kg/cm 2 .
Propylene polymerization was carried out for 2 hours while maintaining the pressure of G. After the polymerization was completed, the obtained solid polymer was filtered, heated to 80°C, and dried under reduced pressure. On the other hand, the liquid was concentrated to obtain a polymer soluble in the polymerization solvent. Let the amount of polymer dissolved in the polymerization solvent be (A), and the amount of solid polymer be (B). In addition, the obtained solid polymer was extracted with boiling normal heptane for 6 hours to obtain a polymer insoluble in normal heptane.
Let this amount be (C). Polymerization activity (D) per catalyst component is calculated using the formula (D) = [(A) + (B)] (g) / amount of catalyst component (
g) Polymerization activity (E) per titanium in the catalyst component, expressed as
is expressed by the formula (E)=(D)/titanium content ratio in the catalyst component, and the yield (F) of the crystalline polymer is expressed by the formula (F)=(C)/(B)×100(%). Further, the total crystalline polymer yield (stereoregular polymer yield) (G) was determined from the formula (G)=(C)/(A)+(B)×100(%). The results obtained are shown in Table 1. Example 2 A catalyst component was prepared in the same manner as in Example 1, except that the pulverization time after addition of ethyl benzoate was changed to 27 hours. Incidentally, the titanium content of the solid component at this time was 1.30% by weight. During the polymerization, 0.92 mg of the obtained catalyst component as titanium atoms was charged, and the experiment was carried out in the same manner as in Example 1. The results obtained are shown in Table 1. Example 3 A catalyst component was prepared in the same manner as in Example 2, except that the pressure applied by propylene gas was changed to 2 kg/cm 2 ·G. Incidentally, the titanium content of the solid component at this time was 1.51% by weight. During the polymerization, 1.08 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Example 4 A catalyst component was prepared in the same manner as in Example 1, except that ethylene gas was used instead of propylene gas for pressurization. Incidentally, the titanium content of the solid component at this time was 1.35% by weight. During the polymerization, 0.89 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 1 A catalyst component was prepared in the same manner as in Example 1, except that pressurization with propylene gas was not performed. In addition, the titanium content of the solid component at this time was 1.71
It was in weight%. During polymerization, 1.30 mg of the obtained catalyst component as titanium atoms was charged, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 2 A catalyst component was prepared in the same manner as in Example 1 except that aluminum isopropoxide was not added. In addition, the titanium content of the solid component at this time is
It was 1.04% by weight. During the polymerization, 0.76 mg of the obtained catalyst component as titanium atoms was charged, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

【表】【table】

【表】 第1表からも明らかなように担体物質であるマ
グネシウムハロゲン化物を、アルミニウムアルコ
キシド類と電子供与性物質とを用い、更にプロピ
レンガス等によつて加圧した状態で共粉砕し、得
られた固体組成物を四ハロゲン化チタンに接触さ
せ、次いで不活性有機溶剤で洗浄するという本発
明方法により調製された触媒成分を用いてα−オ
レフイン類の重合に行なつた場合、重合特性値と
りわけ触媒成分中のチタン当りの重合活性が著し
く向上している。しかも触媒成分当りの重合活性
および立体規則性重合体の収率(全結晶性ポリマ
ーの収率)も高度に維持されている点が特に注目
される。 その要因は明らかでないが、担体物質であるマ
グネシウムハロゲン化物に活性成分であるチタン
を担持させるに際し、該マグネシウムハロゲン化
物をアルミニウムアルコキシド類および電子供与
性物質を用いて処理する工程において、プロピレ
ンガス等によつて加圧して共粉砕するという本発
明方法の前処理を施すことにより、触媒成分当り
の重合活性に有効なチタンを選択的に担持させる
ことに成功し、結果として前記のような効果を得
たものといえる。更に具体的に付言すれば、マグ
ネシウムハロゲン化物をアルミニウムアルコキシ
ド類、更には電子供与性物質によつて処理するこ
とによつて、立体規則性重合体の収率を高い水準
で維持することに寄与し、その処理工程をプロピ
レンガス等の加圧下において機械的手段によつて
粉砕処理することにより、四ハロゲン化チタンと
の接触の際触媒成分当りの重合活性に有効なチタ
ンを選択的に担持させる作用を果したものと推定
される。即ち、担体物質であるマグネシウムハロ
ゲン化物が、アルミニウムアルコキシド類と電子
供与性物質とを用いて処理するに際し、プロピレ
ンガス等によつて加圧粉砕することにより処理変
性され、触媒成分当りの重合活性に有効なチタン
を選択的に担持し得たものであり、その相乗的効
果により所期の目的である触媒成分当りの重合活
性および立体規則性重合体の収率を高度に維持し
つつ、触媒成分中のチタン当りの重合活性を驚異
的数値で高めたものであり、工業的に実用度の高
い触媒成分として期待される。
[Table] As is clear from Table 1, magnesium halide, which is a carrier material, is co-pulverized with an aluminum alkoxide and an electron-donating substance under pressure using propylene gas, etc. When α-olefins were polymerized using the catalyst component prepared by the method of the present invention in which the solid composition was brought into contact with titanium tetrahalide and then washed with an inert organic solvent, the polymerization characteristic values were In particular, the polymerization activity per titanium in the catalyst component is significantly improved. Furthermore, it is particularly noteworthy that the polymerization activity per catalyst component and the yield of stereoregular polymer (yield of total crystalline polymer) are maintained at a high level. The reason for this is not clear, but when supporting titanium, the active ingredient, on magnesium halide, which is a carrier material, in the process of treating the magnesium halide with aluminum alkoxides and electron-donating substances, propylene gas etc. Therefore, by performing the pretreatment of the present invention method of pressurizing and co-pulverizing, it was possible to selectively support titanium, which is effective for polymerization activity per catalyst component, and as a result, the above-mentioned effects were obtained. It can be said that To be more specific, treating magnesium halides with aluminum alkoxides and further with electron-donating substances contributes to maintaining the yield of stereoregular polymers at a high level. , by pulverizing the treatment process by mechanical means under pressure with propylene gas, etc., titanium effective for polymerization activity per catalyst component is selectively supported upon contact with titanium tetrahalide. It is presumed that this was achieved. That is, when magnesium halide, which is a carrier material, is treated with an aluminum alkoxide and an electron-donating substance, it is denatured by crushing under pressure with propylene gas, etc., and the polymerization activity per catalyst component is modified. It was able to selectively support effective titanium, and due to its synergistic effect, the desired target polymerization activity per catalyst component and the yield of stereoregular polymer were maintained at a high level, while the catalyst component It has a surprisingly high polymerization activity per titanium content, and is expected to be a highly practical catalyst component industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を説明するためのフローチヤ
ート図である。
FIG. 1 is a flow chart for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)一般式MgX1(式中Xはハロゲン元素であ
る。)で表わされるマグネシウムハロゲン化物と、
(b)一般式Al(OR)nX1-n(式中Rはアルキル基また
はアリール基、Xはハロゲン元素、mは1〜3の
整数である。)で表わされるアルミニウムアルコ
キシド類と、(c)芳香族カルボン酸エステルとを、
ガス状オレフイン類および不活性ガスから選ばれ
た1種または2種以上のガスによる加圧下におい
て機械的手段により共粉砕し、得られた固体組成
物を、(d)一般式TiX4(式中Xはハロゲン元素であ
る。)で表わされるチタンハロゲン化物と液相ま
たは気相中で接触させ、次いで不活性有機溶剤で
洗浄することを特徴とするα−オレフイン類重合
用触媒成分の製造方法。
1 (a) a magnesium halide represented by the general formula MgX 1 (wherein X is a halogen element);
(b) Aluminum alkoxides represented by the general formula Al(OR) n X 1-n (wherein R is an alkyl group or an aryl group, c) aromatic carboxylic acid ester;
Co-pulverization is carried out by mechanical means under pressure with one or more gases selected from gaseous olefins and inert gases, and the resulting solid composition is (d) with the general formula TiX 4 (in the formula 1. A method for producing a catalyst component for polymerizing α-olefins, which comprises contacting titanium halide represented by (X is a halogen element) in a liquid phase or gas phase, and then washing with an inert organic solvent.
JP2985481A 1981-03-04 1981-03-04 Production of catalytic component for alpha-olefin polymerization Granted JPS57145104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2985481A JPS57145104A (en) 1981-03-04 1981-03-04 Production of catalytic component for alpha-olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2985481A JPS57145104A (en) 1981-03-04 1981-03-04 Production of catalytic component for alpha-olefin polymerization

Publications (2)

Publication Number Publication Date
JPS57145104A JPS57145104A (en) 1982-09-08
JPS648004B2 true JPS648004B2 (en) 1989-02-10

Family

ID=12287544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2985481A Granted JPS57145104A (en) 1981-03-04 1981-03-04 Production of catalytic component for alpha-olefin polymerization

Country Status (1)

Country Link
JP (1) JPS57145104A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2164273T3 (en) 1994-01-31 2002-02-16 Toho Titanium Co Ltd SOLID CATALYTIC COMPONENT FOR OLEFIN POLYMERIZATION AND OLEFIN POLYMERIZATION CATALYST.

Also Published As

Publication number Publication date
JPS57145104A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
JPS6155104A (en) Olefin polymerization catalyst component and catalyst
JPS6338363B2 (en)
JPS648004B2 (en)
JPS6354723B2 (en)
JPS591405B2 (en) α-olefin polymerization method
JPS6346083B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JP2514028B2 (en) Solid catalyst component for olefin polymerization
JPH0565522B2 (en)
JP2525157B2 (en) Solid catalyst component for olefin polymerization
JPS648641B2 (en)
JPH0415809B2 (en)
JPH06104688B2 (en) Process for producing catalyst component for α-olefin polymerization
JPS6338365B2 (en)
JPS6215562B2 (en)
JP2513998B2 (en) Catalyst for olefin polymerization
JPH0548241B2 (en)
JPH0694487B2 (en) Catalyst for olefin polymerization
JPH059445B2 (en)
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPS61106609A (en) Catalyst component for olefin polymerization
JPS6338364B2 (en)
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst