JPS6042243B2 - Polymerization method of α-olefins - Google Patents

Polymerization method of α-olefins

Info

Publication number
JPS6042243B2
JPS6042243B2 JP9133076A JP9133076A JPS6042243B2 JP S6042243 B2 JPS6042243 B2 JP S6042243B2 JP 9133076 A JP9133076 A JP 9133076A JP 9133076 A JP9133076 A JP 9133076A JP S6042243 B2 JPS6042243 B2 JP S6042243B2
Authority
JP
Japan
Prior art keywords
titanium
polymerization
compound
magnesium
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9133076A
Other languages
Japanese (ja)
Other versions
JPS5317682A (en
Inventor
昭 伊藤
平三 佐々木
正紀 大沢
徹也 岩尾
健二 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9133076A priority Critical patent/JPS6042243B2/en
Priority to US05/814,690 priority patent/US4175171A/en
Priority to CA283,013A priority patent/CA1107270A/en
Priority to PT6683777A priority patent/PT66837B/en
Priority to PT66841A priority patent/PT66841B/en
Priority to GR54039A priority patent/GR61637B/en
Priority to GR54040A priority patent/GR61638B/en
Priority to GB31709/77A priority patent/GB1550708A/en
Priority to IT2627877A priority patent/IT1077448B/en
Priority to AT563077A priority patent/AT357758B/en
Priority to IT26363/77A priority patent/IT1085427B/en
Priority to AT563177A priority patent/AT357759B/en
Priority to NLAANVRAGE7708469,A priority patent/NL184063C/en
Priority to YU1884/77A priority patent/YU39811B/en
Priority to YU188577A priority patent/YU39682B/en
Priority to DE19772734652 priority patent/DE2734652A1/en
Priority to BR7705050A priority patent/BR7705050A/en
Priority to MX170090A priority patent/MX146250A/en
Priority to CS512277A priority patent/CS197251B2/en
Priority to SU772510154A priority patent/SU1303030A3/en
Priority to FR7723814A priority patent/FR2360608A1/en
Priority to CS775123A priority patent/CS207302B2/en
Priority to FR7723815A priority patent/FR2360609A1/en
Priority to BR7705052A priority patent/BR7705052A/en
Publication of JPS5317682A publication Critical patent/JPS5317682A/en
Publication of JPS6042243B2 publication Critical patent/JPS6042243B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Description

【発明の詳細な説明】 本発明は特殊な活性化チタン成分と有機アルミニウム化
合物より成る高活性触媒系を用いて高度に立体規則性を
持つたポリ−α−オレフィンを重合する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing highly stereoregular poly-α-olefins using a highly active catalyst system consisting of a special activated titanium component and an organoaluminum compound. .

プロピレン、ブテン等のα−オレフィンをΞ塩化チタン
と有機アルミニウム化合物とから成るいわゆるチーグラ
ー・ナツタ触媒を用いて立体規則性ポリα−オレフィン
を重合することは公知であり、現在工業的に実施されて
いる。
It is known to polymerize α-olefins such as propylene and butene to stereoregular polyα-olefins using a so-called Ziegler-Natsuta catalyst consisting of Ξ titanium chloride and an organoaluminum compound, and it is not currently being carried out industrially. There is.

近年、チーグラー・ナツタ触媒のチタン成分を担体に担
持して触媒の活性を高める方法が開発され、エチレン重
合触媒については一般的になりつつあるが、プロピレン
、ブデン等のようなα−オレフィンの場合にメチル基、
エチル基、等のアルキル基を立体的に制御してアイソタ
クチック構造にしないと有用な結晶性ポリマーを得るこ
とができないため、エチレン重合の場合のように活性が
向上しただけでは有用な重合触媒にはならず、生成ポリ
マーの立体規則性の制御が大きな問題である。
In recent years, a method has been developed to increase the activity of the catalyst by supporting the titanium component of the Ziegler-Natsuta catalyst on a carrier, and it is becoming common for ethylene polymerization catalysts, but for α-olefins such as propylene and budene, methyl group,
Useful crystalline polymers cannot be obtained unless alkyl groups such as ethyl groups are sterically controlled to form an isotactic structure. Therefore, merely improving activity as in the case of ethylene polymerization is not enough to make a useful polymerization catalyst. However, controlling the stereoregularity of the resulting polymer is a major problem.

これに関連してハロゲン化マグネシウムにチタン化合物
を担持した担体型チタン成分と有機アルミニウム化合物
に第3成分として電子供与体化合、物を添加することに
よつて生成ポリマーの立体規則性を向上させる方法が、
特開昭47−9342、特開昭48−16昭代特開昭4
9−8648壽で提案されている。
In connection with this, a method of improving the stereoregularity of the produced polymer by adding an electron donor compound as a third component to a carrier-type titanium component in which a titanium compound is supported on magnesium halide and an organoaluminum compound. but,
JP-A-47-9342, JP-A-48-16, JP-A-4
It was proposed in 9-8648 Hisashi.

担体型チタン成分と有機アルミニウム化合物の2成分系
触媒でプロピレンを重合すると重合活性は大きいが生成
ポリマーの結晶性が極端に低く、電子供与体化合物を加
えると生成ポリマーの結晶性は向上するが、活性の低下
がはげしく、しかも結晶性向上効果も充分ではなくて、
現在工業的に使用されている三塩化チタン/ジエチルア
ルミニウムモノクロラード触媒系等で得られている結晶
性ポリプロピレンと同様の品質のものを得ること’は困
難であつた。本発明者は高結晶性のポリα−オレフィン
を高活性で得る方法について検討した結果囚 マグネシ
ウム化合物にチタン化合物を担持した組成物・(B)有
機アルミニウム化合物 (C)ハロゲン化アルミニウム、有機酸エステル類錯体
より成る触媒がきわめて有効であることを発見した。
When propylene is polymerized using a two-component catalyst consisting of a supported titanium component and an organoaluminum compound, the polymerization activity is high, but the crystallinity of the resulting polymer is extremely low.Addition of an electron donor compound improves the crystallinity of the resulting polymer, but The activity decreased significantly, and the crystallinity improvement effect was not sufficient.
It has been difficult to obtain crystalline polypropylene of the same quality as that obtained with the titanium trichloride/diethylaluminum monochloride catalyst system currently used industrially. The present inventor investigated a method for obtaining a highly crystalline poly-α-olefin with high activity, and as a result produced the following results: Composition in which a titanium compound is supported on a magnesium compound (B) Organoaluminum compound (C) Aluminum halide, organic acid ester We have discovered that catalysts consisting of similar complexes are extremely effective.

従来の方法ては電子供与体化合物をチタン化合物および
/または有機アルミニウム化合物と錯化させることによ
つて生成ポリマーの結晶性を向上させているが、電子供
与体化合物の作用によつて活性が大巾に低下してしまう
のに対して、本発明では電子供与体化合物とは全く異な
るハロゲン化アルミニウム・有機酸エステル錯体を添加
することによつて高結晶性ポリマーを効率的に製造する
ことができる。
In conventional methods, the crystallinity of the resulting polymer is improved by complexing an electron donor compound with a titanium compound and/or an organoaluminium compound, but the activity is greatly increased by the action of the electron donor compound. In contrast, in the present invention, a highly crystalline polymer can be efficiently produced by adding an aluminum halide/organic acid ester complex, which is completely different from the electron donor compound. .

本発明の方法で用いる(4)成分であるチタン成分はマ
グネシウム化合物にチタン化合物を担持した組成物であ
る。
The titanium component (4) component used in the method of the present invention is a composition in which a titanium compound is supported on a magnesium compound.

使用するマグネシウム化合物はハロゲン化マグネシウム
、マグネシウムヒドロキシハライド、酸化マグネシウム
、水酸化マグネシウムなどである。チタン化合物は四塩
化チタン、三塩化チタンまたはこれらと電子供与体化合
物との錯体などが用いられる。チタン化合物をマグネシ
ウム化合物に担持する方法について種々の方法を用いる
ことがてき、代表的な例としては次のようなものがあげ
られる。担持の態様は、物理的であつても、化学的であ
つてもよい。(1)マグネシウム化合物をチタン化合物
と共粉砕する。
Magnesium compounds used include magnesium halides, magnesium hydroxyhalides, magnesium oxide, and magnesium hydroxide. As the titanium compound, titanium tetrachloride, titanium trichloride, or a complex of these with an electron donor compound is used. Various methods can be used to support the titanium compound on the magnesium compound, and typical examples include the following. The mode of support may be physical or chemical. (1) Co-pulverizing a magnesium compound with a titanium compound.

この場合は前述のマグネシウム化合物、,チタン化合物
の他に種々の金属化合物、電子供与体化合物、四塩化ケ
イ素、ポリシロキサン、ハロゲン化アルミニウム●有機
酸エステル類錯体を共存させて粉砕しても良い。(2)
マグネシウム化合物と四塩化チタンを熱処理!させる。
In this case, in addition to the above-mentioned magnesium compounds and titanium compounds, various metal compounds, electron donor compounds, silicon tetrachloride, polysiloxane, and aluminum halide/organic acid ester complexes may be present in the pulverization. (2)
Heat treatment of magnesium compounds and titanium tetrachloride! let

この場合は前述のマグネシウム化合物と四塩化チタンを
反応させるか、マグネシウム化合物と電子供与体または
電子供与体化合物と種々の金属化合物との錯体等より成
る組成物を調製したのち、四塩化チタンと熱処理させて
も3良い。(1)で示した囚成分の調製、または(2)
で示したマグネシウムと種々の化合物より成る組成物の
調製には粉砕手段が用いられる。
In this case, the above-mentioned magnesium compound and titanium tetrachloride are reacted, or a composition consisting of a magnesium compound and an electron donor or a complex of an electron donor compound and various metal compounds is prepared, and then heat treatment is performed with titanium tetrachloride. 3 is good even if I let you. Preparation of the prisoner ingredient shown in (1), or (2)
Grinding means are used to prepare compositions consisting of magnesium and various compounds shown in .

粉砕に用いられる粉砕機は粉体を粉砕するた4めに用い
られる通常のもので良く、例えばボールミル、振動ミル
が一般的である。
The pulverizer used for pulverization may be any conventional pulverizer used for pulverizing powder, such as a ball mill or a vibration mill.

粉砕操作は真空、または不活性ガス雰囲気中で行われ、
水分、酸素などがほとんど完全に除かれた状態で行わな
ければならない。
The grinding operation is carried out in a vacuum or in an inert gas atmosphere.
It must be carried out in a state where moisture, oxygen, etc. are almost completely removed.

粉砕条件についてはとくに制限はないが、温度は0℃か
ら50℃の範囲が一般的であり、粉砕時間については粉
砕機の種類によつて異なるが通常は2〜10叫間程度で
ある。
There are no particular restrictions on the pulverization conditions, but the temperature is generally in the range of 0°C to 50°C, and the pulverization time varies depending on the type of pulverizer, but is usually about 2 to 10 minutes.

(1)の場合のように直接(4)成分を共粉砕により調
製する場合は金属チタンとして(4)成分中に0.1か
ら10Wt%の範囲でチタン化合物が存在するように原
料の割合を調節し共粉砕を行う。
When preparing the component (4) directly by co-pulverization as in the case of (1), the proportion of the raw material is adjusted so that the titanium compound is present in the range of 0.1 to 10 wt% in the component (4) as metallic titanium. Adjust and co-grind.

(2)のマグネシウム化合物と四塩化チタンとの熱処
理についてはマグネシウムヒドロキシクロライド、酸化
マグネシウム、水酸化マグネシウム等の場合は四塩化チ
タンと直接接触させる方法が用いられ、ハロゲン化マグ
ネシウムの場合にはハロゲン化マグネシウムと電子供与
体化合物、またはこれと種々の金属化合物との錯体を共
粉砕したのち、四塩化チタンと接触させて(4)成分を
調製する。 この場合前述のマグネシウム化合物、また
はマグネシウム化合物を含む組成物を四塩化チタン、ま
たはその不活性溶媒の溶液中に懸濁し、40℃から13
5℃の温度で接触させたのち、遊離の四塩化チタンを不
活性溶媒で洗浄するか、乾燥(必要により減圧下)する
ことによつて活性化チタン成分を得ることができる。
Regarding the heat treatment of the magnesium compound and titanium tetrachloride (2), in the case of magnesium hydroxychloride, magnesium oxide, magnesium hydroxide, etc., a method of direct contact with titanium tetrachloride is used, and in the case of magnesium halide, a method of direct contact with titanium tetrachloride is used. Component (4) is prepared by co-pulverizing magnesium and an electron donor compound, or a complex of this and various metal compounds, and then contacting it with titanium tetrachloride. In this case, the above-mentioned magnesium compound or a composition containing the magnesium compound is suspended in a solution of titanium tetrachloride or its inert solvent, and
After contacting at a temperature of 5°C, an activated titanium component can be obtained by washing free titanium tetrachloride with an inert solvent or drying (if necessary under reduced pressure).

本発明の方法で用いる(B)成分である有機アルミニウ
ム化合物としては一般式AlRmX3−m(ただしRは
炭化水素残基、Xはアルコキシ基、水素を示し、mは1
.5≦m≦3である)で示されるもので用いられ、例え
ばトリメチルアルミニウム、トリエチルアルミニウム、
トリーn−ブチルアルミニウム、トリーJsO−ブチル
アルミニウム、トリーn−ヘキシルアルミニウム、ジエ
チルアルミニウムハイドライド、ジエチルアルミニウム
エトラキシドなどを用いられる。
The organic aluminum compound used as component (B) in the method of the present invention has the general formula AlRmX3-m (where R is a hydrocarbon residue, X is an alkoxy group, and hydrogen is
.. 5≦m≦3), such as trimethylaluminum, triethylaluminum,
Tri-n-butylaluminum, tri-JsO-butylaluminum, tri-n-hexylaluminum, diethylaluminum hydride, diethylaluminum ethroxide, etc. can be used.

本発明の方法において活性化チタン成分と有機アルミニ
ウム化合物の使用割合は広範囲に変えることができるが
、一般には活性化チタン成分中のチタン金属に対する有
機アルミニウム化合物の使用モル比は1〜5(1)程度
、とくに重合活性を大きくするために20〜100の範
囲が好ましい。
In the method of the present invention, the ratio of the activated titanium component to the organoaluminum compound used can vary over a wide range, but generally the molar ratio of the organoaluminum compound to titanium metal in the activated titanium component is 1 to 5(1). In particular, the range of 20 to 100 is preferable in order to increase the polymerization activity.

本発明の方法では(C)成分としてハロゲン化アルミニ
ウム・有機酸エステル類錯体が用いられる。この錯体調
製に用いられるハロゲン化アルミニウムとしてはとくに
三塩化アルミニウム・三臭化アルミニウムが好ましく、
有機酸エステルとしては芳香族カルボン酸エステル、脂
肪族カルボン酸エステル、脂環族カルボン酸エステルが
用いられ、例えば安息香酸メチル、安息香酸エチル、安
息香−酸プロピル、安息香酸フェニル、アニス酸エチル
、ナフトエ酸エチル、酢酸エチル、アクリル酸エチル、
メタアクリル酸エチル、ヘキサヒドロ安息香酸エチル等
があげられる。ハロゲン化アルミニウムと有機酸エステ
ルiの錯体は常法により、例えば両者を常温で混合tる
か、これを加熱することによつて調製することができる
。本発明の方法は一般式R−CH=CFI2(ただしR
は炭素数1〜10のアルキル基を示す)で示されるα−
オレフィンの単独重合、及び上記α−オレフィン同志、
またはエチレンとの共重合に利用される。
In the method of the present invention, an aluminum halide/organic acid ester complex is used as component (C). As the aluminum halide used for preparing this complex, aluminum trichloride and aluminum tribromide are particularly preferred.
As the organic acid ester, aromatic carboxylic acid ester, aliphatic carboxylic acid ester, and alicyclic carboxylic acid ester are used, such as methyl benzoate, ethyl benzoate, propyl benzoate, phenyl benzoate, ethyl anisate, and naphthoate. Ethyl acid, ethyl acetate, ethyl acrylate,
Examples include ethyl methacrylate and ethyl hexahydrobenzoate. The complex of aluminum halide and organic acid ester can be prepared by a conventional method, for example, by mixing the two at room temperature or by heating the mixture. The method of the present invention uses the general formula R-CH=CFI2, where R
represents an alkyl group having 1 to 10 carbon atoms)
Homopolymerization of olefins, and the above α-olefins,
Or used for copolymerization with ethylene.

上記のα−オレフィンとしてはプロピレン、ブテンー1
、ヘキセンー1、4−メチルペンテンー1などがあげら
れる。
The above α-olefins include propylene, butene-1
, hexene-1,4-methylpentene-1, and the like.

本発明の方法による重合反応は従来の当該技術において
通常行なわれている方法および条件が採用てきる。
For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed.

その際の重合温度は20〜300℃好ましくは50〜2
00℃の範囲であり、重合圧力は常圧〜2叩気圧、好ま
しくは常圧〜l(4)気圧の範囲てある。重合反応では
一般に脂肪族、脂環族、芳香族の炭化水素類、またはそ
れらの混合物を溶媒として使用することができ、たとえ
ばプロパン、ブタン、ペンタン、ヘキサン、ヘプタン、
シクロヘキサン、ベンゼン、トルエンなど、およびそれ
らの混合物が好ましく用いられる。また液状のモノマー
自身を溶媒として用いる塊状重合法で行なうこともでき
る。さらにまた溶媒が実質的に存在しない条件、すなわ
ちガス状モノマーと触媒とを接触させる、いわゆる気相
重合法で行なうこともできる。本発明の方法において生
成するポリマーの分子量は反応様式、触媒系、重合条件
によつて変化するが、必要に応じて、たとえば水素、ハ
ロゲン化アルキル、ジアルキル亜鉛などの添加によつて
制御することができる。
The polymerization temperature at that time is 20 to 300℃, preferably 50 to 2
The polymerization pressure is in the range of normal pressure to 2 atm, preferably in the range of normal pressure to 1(4) atm. In general, aliphatic, cycloaliphatic, aromatic hydrocarbons, or mixtures thereof, can be used as solvents in polymerization reactions, such as propane, butane, pentane, hexane, heptane,
Cyclohexane, benzene, toluene, etc., and mixtures thereof are preferably used. It is also possible to perform bulk polymerization using the liquid monomer itself as a solvent. Furthermore, it can also be carried out under conditions in which a solvent is substantially absent, that is, by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst system, and polymerization conditions, but can be controlled, if necessary, by adding hydrogen, alkyl halides, dialkyl zinc, etc. can.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

実施例1〜3 直径1271m(7)鋼球a個の入つた内容積600m
1の粉砕用ポットを装備した振動ミルを用意する。
Examples 1 to 3 Diameter 1271 m (7) Internal volume 600 m containing a steel balls
Prepare a vibrating mill equipped with a grinding pot.

このポットの中に、窒素雰囲気中で塩化マグネシウム2
0.0y1塩化アルミニウム・安息香酸エチル錯体10
.0yを加え2叫間粉砕した。300mt丸底フラスコ
に上記粉砕処理物10y1四塩化チタン200mtを加
えて80℃で2時間かくはんしたのち、デカンテーシヨ
ンによつて上澄液を除き、次にn−ヘプタン200m1
を加えて室温て30分間かくはんののち、デカンテーシ
ヨンで上澄液を除く操作を7回くり返し、さらにn−ヘ
プタン200m1を追加して活性化チタン成分スラリー
を得た。
In this pot, in a nitrogen atmosphere, add 2 magnesium chloride.
0.0y1 aluminum chloride/ethyl benzoate complex 10
.. 0y was added and crushed for 2 seconds. After adding 10y1 of the above pulverized product and 200mt of titanium tetrachloride into a 300mt round bottom flask and stirring at 80°C for 2 hours, the supernatant liquid was removed by decantation, and then 200m1 of n-heptane was added.
After stirring at room temperature for 30 minutes, the operation of removing the supernatant liquid by decantation was repeated seven times, and 200 ml of n-heptane was further added to obtain an activated titanium component slurry.

この活性化チタン成分スラリーの一部をサンプリングし
、n−ヘプタンを蒸発させ分析したところ、活性化チタ
ン成分中に1.20wt%のTiを含有していた。内容
積2eのSUS−3瀬オートクレーブ中に窒素雰囲気下
n−ヘプタン1e1上記活性化チタン成分0.10y(
チタン原子換算0.025n1M)、トリエチルアルミ
ニウム0.2m1(1.45n1M)、及び所定のの塩
化アルミニウム・安息香酸エチル錯体を装入した。オー
トクレーブ内の窒素を真空ポンプで排気したのち、水素
を気相分圧で0.3k9/Cl,装入し、ついでプロピ
レンを装入して気相部の圧力を2k9/Cltゲージと
した。オ一トクレーブの内容物を加熱し、5分後に内部
温度を70℃まで昇温し、70℃て重合圧力を5k9/
Cltゲージに保つようにプロピレンを装入しながら重
合を2時間続けた。オートクレーブを冷却ののち、未反
応プロピレンをパージして内容物を取出し、口過し60
゜Cで減圧乾燥して白色ポリプロピレンパウダーを得た
。一方口液を濃縮してn−ヘプタン可溶性の非晶性ポリ
マーを回収した。
When a part of this activated titanium component slurry was sampled, n-heptane was evaporated, and analyzed, it was found that the activated titanium component contained 1.20 wt% Ti. In a SUS-3S autoclave with an internal volume of 2e, n-heptane 1e1 and the above activated titanium component 0.10y (
0.025 n1M (calculated as a titanium atom), 0.2 ml (1.45 n1M) of triethylaluminum, and a predetermined aluminum chloride/ethyl benzoate complex were charged. After the nitrogen in the autoclave was evacuated using a vacuum pump, hydrogen was charged at a gas phase partial pressure of 0.3 k9/Cl, and then propylene was charged to set the pressure in the gas phase to 2 k9/Clt gauge. The contents of the autoclave were heated, and after 5 minutes the internal temperature was raised to 70°C, and the polymerization pressure was increased to 5k9/cm at 70°C.
Polymerization was continued for 2 hours while charging propylene to maintain the Clt gauge. After cooling the autoclave, purge unreacted propylene, take out the contents, and pass through the mouth for 60 minutes.
It was dried under reduced pressure at °C to obtain a white polypropylene powder. On the other hand, the oral fluid was concentrated to recover an n-heptane soluble amorphous polymer.

ポリプロピレンパウダーについては沸とうn一5ヘプタ
ン抽出残ポリマーの割合(以下パウダー■と略記する)
、極限粘度数(135℃、テトラリン)、かさ比重を測
定し、またポリプロピレンパウダー、非晶性ポリプロピ
レン収量、及びパウダー■から全ポリマーに対するn−
ヘプタン抽出残Oポリマーの割合(全■、以下同様)を
求めた。
For polypropylene powder, the proportion of polymer remaining after boiling n-5 heptane extraction (hereinafter abbreviated as powder ■)
, intrinsic viscosity (135°C, tetralin), bulk specific gravity were measured, and polypropylene powder, amorphous polypropylene yield, and n- to total polymer from powder ■ were measured.
The proportion of O polymer remaining after heptane extraction (total ■, the same applies hereinafter) was determined.

安息香酸エチル・塩化アルミニウム錯体の使用量を代え
て行なつた重合結果を表1に示す。実施例4 実施例2の方法に於てトリエチルアルミニウムに代えて
トリイソブチルアルミニウム0.35m1を用いて実験
をくり返した結果を表1に示す。
Table 1 shows the results of polymerizations conducted with different amounts of the ethyl benzoate/aluminum chloride complex used. Example 4 Table 1 shows the results of repeating the experiment in the method of Example 2 using 0.35 ml of triisobutylaluminum instead of triethylaluminum.

比較例1〜3 実施例1〜4の方法に於て重合時に触媒(C)成分とし
て加える安息香酸エチル・塩化アルミニウム錯体に代え
て安息香酸エチルを用いて比較した結果を表2に示す。
Comparative Examples 1 to 3 Table 2 shows the results of a comparison using ethyl benzoate in place of the ethyl benzoate/aluminum chloride complex added as the catalyst (C) component during polymerization in the methods of Examples 1 to 4.

実施例5塩化マグネシウム26.8y、四塩化チタン・
安息香酸エチル錯体3.2yを実施例1と同様な方法で
共粉砕してチタン含有率1.5Wt%の活性化チタン成
分を調製した。
Example 5 Magnesium chloride 26.8y, titanium tetrachloride.
Ethyl benzoate complex 3.2y was co-pulverized in the same manner as in Example 1 to prepare an activated titanium component having a titanium content of 1.5 wt%.

得られた活性化チタン成分0.10y1トリエチルアル
ミニウム0.20TrLt1安息香酸エチル・塩化アル
ミニウム錯体0.10yを触媒成分として実施例1と同
様に重合を行なつた。
Polymerization was carried out in the same manner as in Example 1 using the obtained activated titanium component 0.10y1 triethylaluminum 0.20TrLt1 ethyl benzoate/aluminum chloride complex 0.10y as catalyst components.

重合時間2時間でポリプロピレンパウダー224yが得
られた。
Polypropylene powder 224y was obtained with a polymerization time of 2 hours.

このポリプロピレンパウダーのパウダー■96.3%、
極限粘度数1.89、かさ比重0.32であつた。一方
口液から非晶性ポリプロピレン11yが得られ、本重合
反応で生成したポリマーの全■は92.0%てあり、触
媒の重合活性は98k9/y−Tr・Hrl取得量は1
95kg/y−Tlであつた。
This polypropylene powder ■96.3%,
The intrinsic viscosity was 1.89 and the bulk specific gravity was 0.32. On the other hand, amorphous polypropylene 11y was obtained from the oral liquid, and the total amount of the polymer produced in this polymerization reaction was 92.0%, and the polymerization activity of the catalyst was 98k9/y-Tr・Hrl obtained amount was 1
It was 95 kg/y-Tl.

比較例4〜6実施例4の方法に於て触媒の(C)成分と
して用いた安息香酸エチル・塩化アルミニウム錯体の添
加を省略した場合、及びこれに代えて安息香酸エチルを
用いた結果を表3に示す。
Comparative Examples 4 to 6 The results are shown when the addition of the ethyl benzoate/aluminum chloride complex used as the (C) component of the catalyst in the method of Example 4 is omitted, and when ethyl benzoate is used instead. Shown in 3.

実施例6 実施例1で調製した活性化チタン成分を用いてプロピレ
ンの塊状重合を行なつた。
Example 6 The activated titanium component prepared in Example 1 was used to carry out bulk polymerization of propylene.

内容積6f(7)SUS−3Sオートクレーブ中にn−
ヘプタン30m1中に懸濁した活性化チタン成分0.1
0y1トリエチルアルミニウム0.2mL1安息香酸エ
チル・塩化アルミニウム錯体0.10gを装入した。
Inner volume 6f (7) SUS-3S n- in autoclave
0.1 activated titanium component suspended in 30 ml heptane
0y1 0.2 mL of triethylaluminum and 0.10 g of ethyl benzoate/aluminum chloride complex were charged.

次にオートクレーブ中の窒素を真空ポンプで排気したの
ち、プロピレン2.5kg、及び水素0.5N1をオー
トクレーブに装入した。
Next, after evacuating the nitrogen in the autoclave using a vacuum pump, 2.5 kg of propylene and 0.5 N1 of hydrogen were charged into the autoclave.

オートクレーブの内容物を加熱し、5分後に75℃に昇
温し、75℃で3時間重合を行なつた。オートクレーブ
を冷却ののち、プロピレンをパージして内容物を取出し
、減圧乾燥して985qのポリプロピレンパウダーを得
た。得られたポリプロピレンパウダーの全■は93.3
%、極限粘度数1.77、かさ比重0.36y/mlで
あつた。
The contents of the autoclave were heated and the temperature was raised to 75°C after 5 minutes, and polymerization was carried out at 75°C for 3 hours. After cooling the autoclave, propylene was purged and the contents were taken out and dried under reduced pressure to obtain 985q of polypropylene powder. The total ■ of the obtained polypropylene powder is 93.3
%, intrinsic viscosity number 1.77, and bulk specific gravity 0.36 y/ml.

本重合反応での触媒の重合活性は273k9/y−Ti
−Hrてあり、取得量は820k9/f−Tiであつた
The polymerization activity of the catalyst in this polymerization reaction is 273k9/y-Ti
-Hr, and the amount obtained was 820k9/f-Ti.

実施例7〜10 実施例6の実験のうち重合時に添加する安息香酸エチル
・塩化アルミニウム錯体に代えて種々の化合物を用いて
プロピレンの塊状重合を行なつた結果を表4に示す。
Examples 7 to 10 Among the experiments in Example 6, propylene was bulk polymerized using various compounds in place of the ethyl benzoate/aluminum chloride complex added during polymerization. The results are shown in Table 4.

実施例11 実施例1で用いた粉砕装置を用いて塩化マグネシウム2
0y1安息香酸エチル・塩化アルミニウム錯体8.4y
1四塩化チタン1.6f!を2時間粉砕してチタン含有
率1.5Wt%の活性化チタン成分を得た。
Example 11 Using the crusher used in Example 1, magnesium chloride 2
0y1 Ethyl benzoate/aluminum chloride complex 8.4y
1 Titanium tetrachloride 1.6f! was ground for 2 hours to obtain an activated titanium component with a titanium content of 1.5 wt%.

この活性化チタン成分を用いる以外は実施例6と同様に
重合を行ない全■92.5%、かさ比重0.34g/M
L、極限粘度数2.01、のポリプロピレン760yが
得られた。
Polymerization was carried out in the same manner as in Example 6 except for using this activated titanium component.
A polypropylene 760y having an intrinsic viscosity of 2.01 was obtained.

この重合反応での触媒の活性は169y/y−Ti−H
r取得量506k9/y−Tiであつた。
The activity of the catalyst in this polymerization reaction is 169y/y-Ti-H
The amount of r obtained was 506k9/y-Ti.

比較例7実施例11の方法に於て重合時に添加する安息
香酸エチル●ハロゲン化アルミニウム錯体に代えて等モ
ルの安息香酸0.05yを用いて重合をくり返したとこ
ろ全■88.0%、かさ比重0.33y/ml、極限粘
度数1.9ヌのポリプロピレン403yが得られた。
Comparative Example 7 Polymerization was repeated using the same mole of benzoic acid 0.05y instead of the ethyl benzoate aluminum halide complex added during polymerization in the method of Example 11, resulting in a total volume of 88.0%. Polypropylene 403y having a specific gravity of 0.33y/ml and an intrinsic viscosity of 1.9 was obtained.

この重合反応での触媒の活性は90y/y一Ti−Hr
l取得量286k9/y−Tiであつた。
The activity of the catalyst in this polymerization reaction is 90y/y-Ti-Hr
The amount obtained was 286k9/y-Ti.

【図面の簡単な説明】[Brief explanation of the drawing]

実施例1〜3、比較例1〜3、の重合結果から重合反応
での取得量と全■の関係を横対数目盛、縦普通目盛の図
表にプロットすると図1のようになる。
From the polymerization results of Examples 1 to 3 and Comparative Examples 1 to 3, the relationship between the amount obtained in the polymerization reaction and the total ■ is plotted on a chart with a horizontal logarithmic scale and a vertical regular scale, as shown in FIG.

Claims (1)

【特許請求の範囲】 1 (A)マグネシウム化合物にチタン化合物を担持し
た組成物(B)有機アルミニウム化合物 (C)ハロゲン化アルミニウム・有機酸エステル類錯体
より成る触媒の存在下にα−オレフィンを重合すること
を特徴とするα−オレフィンの重合方法。
[Claims] 1. (A) A composition in which a titanium compound is supported on a magnesium compound (B) An organoaluminum compound (C) Polymerization of α-olefin in the presence of a catalyst consisting of an aluminum halide/organic acid ester complex A method for polymerizing α-olefins, characterized in that:
JP9133076A 1976-08-02 1976-08-02 Polymerization method of α-olefins Expired JPS6042243B2 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
JP9133076A JPS6042243B2 (en) 1976-08-02 1976-08-02 Polymerization method of α-olefins
US05/814,690 US4175171A (en) 1976-08-02 1977-07-11 Catalyst for polymerizing α-olefins
CA283,013A CA1107270A (en) 1976-08-02 1977-07-19 CATALYST FOR POLYMERIZING .alpha.-OLEFINS
PT6683777A PT66837B (en) 1976-08-02 1977-07-21 A method of polymerizing alpha-olefins
PT66841A PT66841B (en) 1976-08-02 1977-07-22 A catalyst for plymerizing alpha-olefins
GR54039A GR61637B (en) 1976-08-02 1977-07-26 A catalyst for polymerizing a-olefins
GR54040A GR61638B (en) 1976-08-02 1977-07-26 A catalyst for polymerizing a-olefins
GB31709/77A GB1550708A (en) 1976-08-02 1977-07-28 Catalyst for polymerizing -olefins
IT2627877A IT1077448B (en) 1976-08-02 1977-07-28 CATALYST FOR POLYMERIZING OC-OLEFINE
AT563077A AT357758B (en) 1976-08-02 1977-07-29 METHOD FOR POLYMERIZING AND COPOLYMERIZING ALFA OLEFINS
IT26363/77A IT1085427B (en) 1976-08-02 1977-07-29 CATALYST FOR THE POLYMERIZATION OF OLEFINE
AT563177A AT357759B (en) 1976-08-02 1977-07-29 METHOD FOR POLYMERIZING AND COPOLYMERIZING ALFA OLEFINS
NLAANVRAGE7708469,A NL184063C (en) 1976-08-02 1977-08-01 PROCESS FOR PREPARING A CATALYST FOR POLYMERIZING ALFA-OLEFINS
YU1884/77A YU39811B (en) 1976-08-02 1977-08-01 Process for the polymerization of alpha-olefines with more than three carbon atoms
YU188577A YU39682B (en) 1976-08-02 1977-08-01 Process for the polymerization of alpha-olefines
DE19772734652 DE2734652A1 (en) 1976-08-02 1977-08-01 CATALYST FOR THE POLYMERIZATION OF ALPHA-OLEFINS
BR7705050A BR7705050A (en) 1976-08-02 1977-08-01 CATALYST FOR POLYMERIZATION OF ALPHA-OLEFINS AND PROCESS APPLYING THE SAME
MX170090A MX146250A (en) 1976-08-02 1977-08-02 IMPROVED CATALYTIC COMPOSITION TO POLYMERIZE ALPHA-OLEPHINS
CS512277A CS197251B2 (en) 1976-08-02 1977-08-02 Method of producing catalyst for alpha-olefins polymerisation
SU772510154A SU1303030A3 (en) 1976-08-02 1977-08-02 Catalyst for (co)polymerization of c3-c6-alpha-olefins
FR7723814A FR2360608A1 (en) 1976-08-02 1977-08-02 CATALYST FOR POLYMERIZING OLEFINS A
CS775123A CS207302B2 (en) 1976-08-02 1977-08-02 Method of making the catalyser for the polymeration of the alphaolefines
FR7723815A FR2360609A1 (en) 1976-08-02 1977-08-02 Modified Ziegler olefin polymerisation catalyst - from organo-aluminium cpd., carboxylic ester, magnesium, aluminium and titanium hales (NL 6.2.78)
BR7705052A BR7705052A (en) 1976-08-02 1977-08-07 CATALYST FOR POLYMERIZATION OF ALPHA-OLEFINS AND PROCESSES APPLIED SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133076A JPS6042243B2 (en) 1976-08-02 1976-08-02 Polymerization method of α-olefins

Publications (2)

Publication Number Publication Date
JPS5317682A JPS5317682A (en) 1978-02-17
JPS6042243B2 true JPS6042243B2 (en) 1985-09-20

Family

ID=14023429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133076A Expired JPS6042243B2 (en) 1976-08-02 1976-08-02 Polymerization method of α-olefins

Country Status (10)

Country Link
JP (1) JPS6042243B2 (en)
AT (1) AT357759B (en)
BR (1) BR7705052A (en)
CS (1) CS197251B2 (en)
FR (1) FR2360609A1 (en)
GR (1) GR61638B (en)
IT (1) IT1077448B (en)
PT (1) PT66837B (en)
SU (1) SU1303030A3 (en)
YU (1) YU39682B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158489A (en) * 1978-06-05 1979-12-14 Mitsubishi Petrochem Co Ltd Polymerization of olefin
US4618661A (en) * 1980-05-02 1986-10-21 Phillips Petroleum Company Supported high efficiency polyolefin catalyst component and methods of making and using the same
US4425257A (en) * 1980-05-02 1984-01-10 Phillips Petroleum Company Supported high efficiency polyolefin catalyst component and methods of making and using the same

Also Published As

Publication number Publication date
ATA563177A (en) 1979-12-15
AT357759B (en) 1980-07-25
YU39682B (en) 1985-03-20
FR2360609B1 (en) 1984-07-20
JPS5317682A (en) 1978-02-17
GR61638B (en) 1978-12-04
IT1077448B (en) 1985-05-04
CS197251B2 (en) 1980-04-30
PT66837B (en) 1978-12-27
FR2360609A1 (en) 1978-03-03
SU1303030A3 (en) 1987-04-07
BR7705052A (en) 1978-04-04
YU188577A (en) 1983-02-28
PT66837A (en) 1977-08-01

Similar Documents

Publication Publication Date Title
US4581426A (en) Process for polymerization of α-olefins and catalysts therefor
JPS58162607A (en) Polymerization of alpha-olefin
US4220745A (en) Process for polymerization of α-olefins
JPH0532403B2 (en)
US4364853A (en) Catalyst for polymerizing olefins
JPS6042243B2 (en) Polymerization method of α-olefins
JPS591405B2 (en) α-olefin polymerization method
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS6339603B2 (en)
JPS6042244B2 (en) Polymerization method of α-olefin
JPS623163B2 (en)
JPS6338365B2 (en)
KR810001467B1 (en) Process for polymerization of -oleffins
JPS6338364B2 (en)
JPS5817521B2 (en) Olefin polymerization method
JPH0548241B2 (en)
GB2134911A (en) Process of producing polyolefins and catalysts therefor
JPS5840964B2 (en) Stereoregular polymerization method of α↓-olefins
JPS5831083B2 (en) Method for manufacturing polyolefin
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPH0532404B2 (en)
KR840000917B1 (en) Method for polymerization of -olefin
JPH0532407B2 (en)
JPS588705A (en) Polymerization of alpha-olefin