JPS623163B2 - - Google Patents

Info

Publication number
JPS623163B2
JPS623163B2 JP11677779A JP11677779A JPS623163B2 JP S623163 B2 JPS623163 B2 JP S623163B2 JP 11677779 A JP11677779 A JP 11677779A JP 11677779 A JP11677779 A JP 11677779A JP S623163 B2 JPS623163 B2 JP S623163B2
Authority
JP
Japan
Prior art keywords
compound
general formula
titanium
carbon atoms
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11677779A
Other languages
Japanese (ja)
Other versions
JPS5641206A (en
Inventor
Tadashi Asanuma
Tetsunosuke Shiomura
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11677779A priority Critical patent/JPS5641206A/en
Publication of JPS5641206A publication Critical patent/JPS5641206A/en
Publication of JPS623163B2 publication Critical patent/JPS623163B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高活性触媒を用いて高度に立体規則性
をもつポリ−α−オレフインを製造する方法に関
するものである。 従来プロピレン等のα−オレフインを工業的に
重合するに際して、チーグラー・ナツタ触媒のチ
タン成分を担体に担持して触媒の活性を高める方
法が開発され、エチレンの重合触媒については一
般的になりつつある。しかしながら、プロピレ
ン、ブテン等のようなα−オレフインの場合には
メチル基、エチル基等のアルキル基を立体的に制
御してアイソタチツク構造にしないと有用な結晶
性ポリマーを得ることができないためエチレンの
重合の場合のように単に活性が向上しただけでは
有用な重合触媒とはならず生成ポリマーの立体規
則性の制御が大きな課題である。この問題に関し
てハロゲン化マグネシウムにチタン化合物を担持
した担体型チタン成分と有機アルミニウム化合物
からなる触媒に、第3成分として電子供与性化合
物を添加することにより生成ポリマーの立体規則
性を向上させる方法が提案されている。例えば特
開昭52−100596の方法ではハロゲン化マグネシウ
ムと有機酸エステル類と有機ケイ素化合物を共粉
砕して得られた組成物にハロゲン化チタンを反応
させて得られる組成物と有機アルミニウムと有機
酸エステル類からなる触媒が提案されている。ま
た特公昭54−7318では担体型チタン成分とトリア
ルキルアルミニウムとルイス塩基とさらにはハロ
ゲン含有有機アルミニウム化合物とからなる触媒
が提案されている。本発明の目的はこれらの方法
よりさらに高活性で、高結晶性のポリ−α−オレ
フインを与える触媒を提供するものである。 本発明者らは種々の触媒について検討した結
果、(A)活性チタン化合物、(B)トリアルキルアルミ
ニウム、(C)ケイ素化合物、(D)一般式Al2R SO4
表わされる有機硫酸アルミニウム化合物とからな
る触媒が非常に良い結果を与えることを見出し、
本発明に至つた。 本発明の活性チタン化合物(A)には、少くともマ
グネシウム、ハロゲン、3価または4価のチタン
及び電子供与性化合物を含むことを必須条件とす
る公知の複合体がある。活性チタン化合物の各成
分の割合は、たとえばマグネシウムとチタンのモ
ル比が通常3−40、好ましくは10−30である。電
子供与性化合物とチタンのモル比は0.1以上であ
り好ましくは0.3−6である。この活性チタン成
分はたとえばハロゲン化マグネシウムまたはジア
ルコキシマグネシウムと電子供与性化合物を粉砕
処理したものを液状の四ハロゲン化チタンで処理
し、さらには得られた固体成分をn−ヘプタンな
どの不活性溶媒で洗浄することによつて得られ
る。また電子供与性化合物とハロゲン化チタンの
錯体をハロゲン化マグネシウムと粉砕することに
よつても得られる。ここで用いる電子供与性化合
物としては、アミン、アミド、エーテル、ケト
ン、ニトリル、ホスフイン、ホスホルアミド、エ
ステル、チオエーテル、チオエステル、酸無水
物、酸ハライド、アルデヒド、アルコレート、有
機酸、含ケイ素化合物、周期律表の第1族ないし
第4族に属する金属のアミド及び塩が挙げられ、
中でもエステル、エーテル、含ケイ素化合物、ジ
アミンが好ましい。 本発明の(B)成分としては、トリエチルアルミニ
ウム、トリメチルアルミニウム、トリ−n−プロ
ピルアルミニウム、トリイソブチルアルミニウ
ム、などのトリアルキルアルミニウムまたはその
混合物、または公知の方法に従つてトリアルキル
アルミニウム化合物と水、アンモニアまたは一級
アミンとの反応によつて得られる化合物、たとえ
ば(C2H52Al−O−Al(C2H52
The present invention relates to a method for producing highly stereoregular poly-α-olefins using highly active catalysts. Conventionally, when industrially polymerizing α-olefins such as propylene, a method was developed to increase the activity of the catalyst by supporting the titanium component of the Ziegler-Natsuta catalyst on a carrier, and this method is becoming common for ethylene polymerization catalysts. . However, in the case of α-olefins such as propylene and butene, useful crystalline polymers cannot be obtained unless alkyl groups such as methyl and ethyl groups are sterically controlled to form an isotactic structure. As in the case of polymerization, simply improving the activity does not result in a useful polymerization catalyst, and controlling the stereoregularity of the resulting polymer is a major issue. Regarding this problem, a method has been proposed in which the stereoregularity of the resulting polymer is improved by adding an electron-donating compound as a third component to a catalyst consisting of a carrier-type titanium component in which a titanium compound is supported on magnesium halide and an organoaluminum compound. has been done. For example, in the method of JP-A-52-100596, a composition obtained by co-pulverizing a magnesium halide, an organic acid ester, and an organosilicon compound is reacted with a titanium halide, an organoaluminium, and an organic acid. Catalysts consisting of esters have been proposed. Furthermore, Japanese Patent Publication No. 7318/1983 proposed a catalyst comprising a carrier-type titanium component, a trialkylaluminium, a Lewis base, and further a halogen-containing organoaluminum compound. An object of the present invention is to provide a catalyst which provides a poly-α-olefin with higher activity and crystallinity than those obtained by these methods. The present inventors investigated various catalysts and found that (A) active titanium compounds, (B) trialkyl aluminum, (C) silicon compounds, and (D) organic sulfuric acid represented by the general formula Al 2 R 1 4 SO 4 . discovered that a catalyst consisting of an aluminum compound gave very good results,
This led to the present invention. The active titanium compound (A) of the present invention includes a known complex which essentially contains at least magnesium, halogen, trivalent or tetravalent titanium, and an electron-donating compound. Regarding the ratio of each component of the active titanium compound, for example, the molar ratio of magnesium to titanium is usually 3-40, preferably 10-30. The molar ratio of the electron donating compound to titanium is 0.1 or more, preferably 0.3-6. This active titanium component is obtained by, for example, pulverizing magnesium halide or dialkoxymagnesium and an electron-donating compound, treating it with liquid titanium tetrahalide, and then using the resulting solid component in an inert solvent such as n-heptane. Obtained by washing with It can also be obtained by grinding a complex of an electron donating compound and titanium halide with magnesium halide. The electron-donating compounds used here include amines, amides, ethers, ketones, nitriles, phosphines, phosphoramides, esters, thioethers, thioesters, acid anhydrides, acid halides, aldehydes, alcoholates, organic acids, silicon-containing compounds, periodic Examples include amides and salts of metals belonging to Groups 1 to 4 of the Table of Contents,
Among these, esters, ethers, silicon-containing compounds, and diamines are preferred. Component (B) of the present invention includes trialkylaluminum such as triethylaluminum, trimethylaluminum, tri-n-propylaluminum, triisobutylaluminum, or a mixture thereof, or a trialkylaluminum compound and water according to a known method, Compounds obtained by reaction with ammonia or primary amines, such as ( C2H5 ) 2Al -O-Al( C2H5 ) 2 ,

【式】などである。 本発明の(C)成分としては、一般式Si(OR24
はSi(OR3lR Xo(ただしR2、R3、R4は1−12
炭素原子を有する炭化水素残基、Xはハロゲン原
子又はカルボニルオキシ基、o≦l≦4、o≦m
≦4、o≦n≦4かつl+m+n=4)で表わさ
れる化合物であり、具体的にはSi(OC2H54、Si
(C2H5)(OC2H53、Si(C2H52(OC2H53、Si
(C2H52(OC2H52、Si(CH3)(OCOCH33、Si
(OC2H53Clなどが挙げられ、中でもSi
(OC2H54、Si(C2H52(OC2H52、Si(C2H5
(OC2H53、Si(C6H5)(OC2H53などが好まし
い。 本発明の(D)成分としては一般式Al2R SO4(た
だしR1は1−12炭素原子を有するアルキル基を
表わし該R1基は同じか異るものである)で表わ
される化合物であり具体的にはAl2
(C2H54SO4、Al2(i−C3H74SO4、Al2
(C6H54SO4などが挙げられる。 本発明の重合方法においては、(A)成分に(B)(C)及
び(D)成分を共に存在させて行なうことに特徴があ
り、(A)、(B)、(C)、(D)の混合順序は任意であり、例
えば(A)、(B)、(C)、(D)4成分を同時に混合する方
法、(B)、(C)、(D)を同時に混合し次いで(A)を混合す
る方法、(B)、(D)を混合しついで(C)を混合しさらに
(A)を混合する方法などを採用することができる。
(C)成分の添加量は(A)成分中のチタン原子当り0.1
−20モルが好ましく、(B)成分は(A)成分中のチタン
原子当り1−100モルが好ましく、(D)成分は(A)成
分中のチタン原子当り1−100モルが好ましい。 本発明の重合方法に用いるα−オレフインとし
てはプロピレン、1−ブテン、4−メチル−1−
ペンテン、1−オクテンなどであり、これらの単
独重合、相互の共重合或はエチレンとの共重合を
行うことができる。共重合に際しては共役ジエン
や非共役ジエンのような多不飽和化合物を共重合
成分に選ぶことができる。 重合は液相、気相の何れの相においても行うこ
とができる。液相重合を行う場合はヘキサン、ヘ
プタン、灯油のような不活性溶媒を反応媒体とし
てもよいが液化オレフインそれ自身を反応媒体と
することもできる。α−オレフインの重合温度は
一般には0−100℃好ましくは20−90℃の範囲で
あり重合圧力は常圧−50気圧、好ましくは常圧−
40気圧の範囲である。本発明の方法において生成
するポリマーの分子量は反応様式、触媒、重合条
件によつて変化するが、必要に応じて例えば水
素、ハロゲン化アルキル、ジアルキル亜鉛などの
添加によつて制御することもできる。 本発明の方法を用いることにより、ポリマーの
物性に悪影響を与える非結晶性ポリ−α−オレフ
インを除去する工程を実質的に必要としない高結
晶性ポリ−α−オレフインを触媒当り高収率で得
ることができ、実用価値が非常に高い。 実施例 1 直径12mmの鋼球80個の入つた内容積600mlの粉
砕用ポツトを装備した振動ミルを用意する。この
ポツト中に、窒素雰囲気中で塩化マグネシウム20
gテトラエトキシシラン4ml、α・α・α−トリ
クロロトルエン3mlを加え40時間粉砕した。200
ml丸底フラスコに上記粉砕処理物10g、四塩化チ
タン50mlを加えて80℃で2時間撹拌した後デカン
テーシヨンによつて上澄液を除き、次にn−ヘプ
タン100mlを加えて30℃で15分間撹拌ののちデカ
ンテーシヨンで上澄液を除く洗浄操作を7回繰り
返した後にさらにn−ヘプタン100mlを追加して
活性化チタン成分スラリーを得た。この活性化チ
タン成分スラリーの一部をサンプリングしn−ヘ
プタンを蒸発させ分析したところ活性化チタン成
分中に1.71wt%のTiを含有していた。内容積3
のSUS−32製オートクレーブ中に窒素雰囲気下
n−ヘプタン1上記活性化チタン成分102mg、
トリエチルアルミニウム0.12ml、Al2
(C2H54SO476mg、テトラエトキシシラン0.09ml
を装入した。オートクレーブ内の窒素を真空ポン
プで排気したのち水素を気相分圧で0.2Kg/cm2
入しついでプロピレンを装入して気相部の圧力を
2Kg/cm2ゲージとした。オートクレーブの内容物
を加熱し、5分後内部温度を70℃まで昇温し、70
℃で重合圧力を5Kg/cm2ゲージに保つようにプロ
ピレンを装入しながら重合を2時間続けた。オー
トクレーブを冷却したのち未反応のプロピレンを
パージして内容物を取り出して過し、60℃で減
圧乾燥して白色粉末のポリプロピレン262.5gを
得た。このポリプロピレンの沸騰n−ヘプタンで
10時間抽出した残ポリマーの割合(以下パウダー
と略記する。)は98.2%、かさ比重0.34g/
c.c.極限粘度数(135℃テトラリン液で測定以下同
様)1.82であつた。一方液の濃縮によりn−ヘ
プタン可溶性重合体4.0gが得られる。全ポリマ
ーに対する沸騰n−ヘプチン抽出残ポリマーの割
合(以下全と略記する)は96.7%であつた。
又重合反応での触媒の重合活性は76.8Kg/g−
Ti・hrであつた。 比較例 1 実施例1の活性チタン成分を100.2mg、トリエ
チルアルミニウム0.12ml、テトラエトキシシラン
0.09mlを用いた他は実施例1と同じようにして重
合を行つた。結果は表2に示すとうりである。 比較例 2 実施例1の活性チタン成分を110.5mg、トリエ
チルアルミニウム0.12ml、テトラエトキシシラン
0.09ml、ジエチルアルミニウムクロラトド0.07ml
を用いた他は実施例1と同じようにして重合を行
つた。結果は表2に示すとうりである。 比較例 3 実施例1の活性チタン成分を115.5mg、トリエ
チルアルミニウム0.12ml、テトラエトキシシラン
0.09ml、ジエチルアルミニウムセスキクロライド
0.07mlを用いた他は実施例1と同じようにして重
合を行つた。結果は表2に示すとうりである。 実施例 2〜4 実施例1の活性チタン成分を用いて(B)、(C)、(D)
成分を表1に示すものを用いた他は実施例1と同
じようにして重合を行つた。結果は表1に示す通
りである。 実施例 5 充分に乾燥し窒素で置換された5のオートク
レーブに実施例1の活性チタン成分を68.2mgと
(B)、(C)、(D)成分を表1に示す量装入し、このオー
トクレーブをプロピレンガスで置換しさらに液状
のプロピレンを1.5Kg装入しさらに水素を3.9N
装入し、撹拌しながらオートクレーブを75℃に昇
温し、2時間75℃に保つた。重合終了後、未反応
のプロピレンをパージして内容物を取り出した。
この結果は表1に示す通りである。
[Formula] etc. The component (C) of the present invention has the general formula Si(OR 2 ) 4 or Si(OR 3 ) l R 4 n X o (wherein R 2 , R 3 , and R 4 are 1-12
Hydrocarbon residue having a carbon atom, X is a halogen atom or a carbonyloxy group, o≦l≦4, o≦m
≦4, o≦n≦4 and l+m+n=4), specifically Si(OC 2 H 5 ) 4 , Si
(C 2 H 5 ) (OC 2 H 5 ) 3 , Si (C 2 H 5 ) 2 (OC 2 H 5 ) 3 , Si
(C 2 H 5 ) 2 (OC 2 H 5 ) 2 , Si (CH 3 ) (OCOCH 3 ) 3 , Si
(OC 2 H 5 ) 3 Cl, among others, Si
(OC 2 H 5 ) 4 , Si(C 2 H 5 ) 2 (OC 2 H 5 ) 2 , Si(C 2 H 5 )
(OC 2 H 5 ) 3 , Si(C 6 H 5 )(OC 2 H 5 ) 3 and the like are preferred. Component (D) of the present invention is represented by the general formula Al 2 R 1 4 SO 4 (wherein R 1 represents an alkyl group having 1-12 carbon atoms, and the R 1 groups are the same or different). compound, specifically Al 2
(C 2 H 5 ) 4 SO 4 , Al 2 (i−C 3 H 7 ) 4 SO 4 , Al 2
(C 6 H 5 ) 4 SO 4 and the like. The polymerization method of the present invention is characterized in that components (A), (B), (C), and (D) are present together in the presence of (A), (B), (C), and (D). ) can be mixed in any order; for example, a method in which four components (A), (B), (C), and (D) are mixed simultaneously; Method of mixing A), mixing (B) and (D), then mixing (C), and then
A method such as mixing (A) can be adopted.
The amount of component (C) added is 0.1 per titanium atom in component (A).
Component (B) is preferably 1 to 100 mol per titanium atom in component (A), and component (D) is preferably 1 to 100 mol per titanium atom in component (A). The α-olefins used in the polymerization method of the present invention include propylene, 1-butene, 4-methyl-1-
These include pentene and 1-octene, and these can be homopolymerized, copolymerized with each other, or copolymerized with ethylene. In copolymerization, polyunsaturated compounds such as conjugated dienes and non-conjugated dienes can be selected as copolymerization components. Polymerization can be carried out in either liquid phase or gas phase. When carrying out liquid phase polymerization, an inert solvent such as hexane, heptane or kerosene may be used as the reaction medium, but the liquefied olefin itself may also be used as the reaction medium. The polymerization temperature of α-olefin is generally in the range of 0-100°C, preferably 20-90°C, and the polymerization pressure is normal pressure -50 atmospheres, preferably normal pressure -
It is in the range of 40 atmospheres. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst, and polymerization conditions, but can be controlled by adding hydrogen, alkyl halide, dialkylzinc, etc., if necessary. By using the method of the present invention, highly crystalline poly-α-olefin can be produced in high yield per catalyst without substantially requiring a step to remove amorphous poly-α-olefin that adversely affects the physical properties of the polymer. can be obtained and has very high practical value. Example 1 A vibratory mill equipped with a grinding pot having an internal volume of 600 ml and containing 80 steel balls with a diameter of 12 mm was prepared. In this pot, add 20% magnesium chloride in a nitrogen atmosphere.
g 4 ml of tetraethoxysilane and 3 ml of α・α・α-trichlorotoluene were added and pulverized for 40 hours. 200
Add 10 g of the above pulverized product and 50 ml of titanium tetrachloride to a ml round bottom flask, stir at 80°C for 2 hours, remove the supernatant liquid by decantation, then add 100 ml of n-heptane and stir at 30°C. After stirring for 15 minutes, a washing operation in which the supernatant liquid was removed by decantation was repeated seven times, and then 100 ml of n-heptane was added to obtain an activated titanium component slurry. When a part of this activated titanium component slurry was sampled, n-heptane was evaporated, and analyzed, it was found that the activated titanium component contained 1.71 wt% Ti. Internal volume 3
n-heptane 1 102 mg of the above activated titanium component in a SUS-32 autoclave under nitrogen atmosphere,
Triethyl aluminum 0.12ml, Al 2
( C2H5 ) 4SO4 76mg , tetraethoxysilane 0.09ml
was loaded. After the nitrogen in the autoclave was evacuated using a vacuum pump, hydrogen was charged at a gas phase partial pressure of 0.2 kg/cm 2 , and then propylene was charged to bring the pressure in the gas phase to 2 kg/cm 2 gauge. Heat the contents of the autoclave and increase the internal temperature to 70℃ after 5 minutes.
Polymerization was continued for 2 hours while charging propylene to maintain the polymerization pressure at 5 Kg/cm 2 gauge. After cooling the autoclave, unreacted propylene was purged and the contents were taken out, filtered, and dried under reduced pressure at 60°C to obtain 262.5 g of white powder polypropylene. With this polypropylene boiling n-heptane
The proportion of residual polymer after 10 hours of extraction (hereinafter abbreviated as powder) is 98.2%, bulk specific gravity 0.34g/
The cc intrinsic viscosity number (measured with tetralin liquid at 135°C, same as below) was 1.82. On the other hand, 4.0 g of n-heptane soluble polymer was obtained by concentrating the liquid. The ratio of the boiling n-heptine extraction residue polymer to the total polymer (hereinafter abbreviated as total) was 96.7%.
In addition, the polymerization activity of the catalyst in the polymerization reaction is 76.8Kg/g-
It was Ti・hr. Comparative Example 1 100.2 mg of the active titanium component of Example 1, 0.12 ml of triethylaluminum, and tetraethoxysilane
Polymerization was carried out in the same manner as in Example 1, except that 0.09 ml was used. The results are shown in Table 2. Comparative Example 2 110.5 mg of the active titanium component of Example 1, 0.12 ml of triethylaluminum, and tetraethoxysilane
0.09ml, diethyl aluminum chlorate 0.07ml
Polymerization was carried out in the same manner as in Example 1, except that . The results are shown in Table 2. Comparative Example 3 115.5 mg of the active titanium component of Example 1, 0.12 ml of triethylaluminum, and tetraethoxysilane
0.09ml, diethylaluminum sesquichloride
Polymerization was carried out in the same manner as in Example 1, except that 0.07 ml was used. The results are shown in Table 2. Examples 2 to 4 (B), (C), (D) using the active titanium component of Example 1
Polymerization was carried out in the same manner as in Example 1, except that the components shown in Table 1 were used. The results are shown in Table 1. Example 5 68.2 mg of the active titanium component of Example 1 was placed in an autoclave No. 5 that had been thoroughly dried and purged with nitrogen.
Components (B), (C), and (D) were charged in the amounts shown in Table 1, the autoclave was replaced with propylene gas, 1.5Kg of liquid propylene was charged, and 3.9N of hydrogen was charged.
The temperature of the autoclave was raised to 75°C while stirring, and the temperature was kept at 75°C for 2 hours. After the polymerization was completed, unreacted propylene was purged and the contents were taken out.
The results are shown in Table 1.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) ハロゲン化マグネシウム又はジアルコキ
シマグネシウムと電子供与性化合物を粉砕処理
したものを液状の四塩化チタンで処理して得る
か或いは電子供与性化合物とハロゲン化チタン
の錯体をハロゲン化マグネシウムと粉砕するこ
とによつて得られる活性チタン成分、 (B) トリアリルキルアルミニウム化合物、または
酸素もしくは窒素原子によつて互いに結合した
2個以上のアルミニウム原子を有する有機アル
ミニウム化合物、 (C) ケイ素化合物、および、 (D) 一般式 Al2R1 4SO4 (但し、R1は炭素数1〜12のアルキル基を表
し、4個のR1は同一または異なる場合を含
む。) で表される有機アルミニウム化合物、 を共に含む触媒を用いることを特徴とする立体規
則性を有するポリα−オレフインの製造方法。 2 電子供性化合物が、アミン、アミド、アルデ
ヒド、アルコレート、エーテル、エステル、含ケ
イ素化合物、ケトン、酸ハライド、酸無水物、チ
オエーテル、チオエステル、ニトリル、ホスフイ
ン、ホスホルアミド、有機酸、及び周期律表の第
1族乃至第4族に属する金属のアミドまたは塩か
ら選ばれた1種または2種以上の化合物である特
許請求の範囲第1項記載の製造方法。 3 ケイ素化合物(C)が一般式 Si(OR24 (但し、R2は炭素数1〜12の炭化水素基で、4個
のR2は同一または異なる場合を含む。) で表されるケイ酸エステル、 または一般式 Si(OR3lR4 nXo (但し、R3、R4は炭素数1〜12の炭化水素基で、
互いに同一または異なる場合を含む。Xはハロゲ
ン原子またはカルボニルオキシ基であり、l、
m、nは0≦l<4、0≦m≦4、0≦n<4か
つl+m+n=4である。) で表されるオルガノアルコキシシラン である特許請求の範囲第1項または第2項記載の
製造方法。
[Scope of Claims] 1 (A) Magnesium halide or dialkoxymagnesium and an electron-donating compound are pulverized and treated with liquid titanium tetrachloride, or a complex of an electron-donating compound and titanium halide is obtained. (B) triallykyl aluminum compounds or organoaluminum compounds having two or more aluminum atoms bonded to each other by oxygen or nitrogen atoms; C) silicon compound, and (D) general formula Al 2 R 1 4 SO 4 (However, R 1 represents an alkyl group having 1 to 12 carbon atoms, and the four R 1s may be the same or different.) A method for producing a polyα-olefin having stereoregularity, characterized by using a catalyst containing both an organoaluminum compound represented by the following. 2 The electronic compound is an amine, amide, aldehyde, alcoholate, ether, ester, silicon-containing compound, ketone, acid halide, acid anhydride, thioether, thioester, nitrile, phosphine, phosphoramide, organic acid, and periodic table The manufacturing method according to claim 1, wherein the compound is one or more compounds selected from amides or salts of metals belonging to Groups 1 to 4. 3 The silicon compound (C) is represented by the general formula Si(OR 2 ) 4 (However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and the four R 2 may be the same or different.) Silicate ester, or general formula Si(OR 3 ) l R 4 n X o (However, R 3 and R 4 are hydrocarbon groups having 1 to 12 carbon atoms,
Including cases where they are the same or different from each other. X is a halogen atom or a carbonyloxy group, l,
m and n are 0≦l<4, 0≦m≦4, 0≦n<4, and l+m+n=4. ) The manufacturing method according to claim 1 or 2, which is an organoalkoxysilane represented by:
JP11677779A 1979-09-13 1979-09-13 Polymerization of alpha-olefin Granted JPS5641206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11677779A JPS5641206A (en) 1979-09-13 1979-09-13 Polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11677779A JPS5641206A (en) 1979-09-13 1979-09-13 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS5641206A JPS5641206A (en) 1981-04-17
JPS623163B2 true JPS623163B2 (en) 1987-01-23

Family

ID=14695454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11677779A Granted JPS5641206A (en) 1979-09-13 1979-09-13 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS5641206A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1190683B (en) * 1982-02-12 1988-02-24 Montedison Spa COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
IT1190681B (en) * 1982-02-12 1988-02-24 Montedison Spa COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
IT1190682B (en) * 1982-02-12 1988-02-24 Montedison Spa CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
EP0844259B1 (en) * 1993-12-06 2002-09-25 Sumitomo Chemical Company, Limited Alpha-olefin polymers, alpha olefin-polymerizing catalyst and process for producing alpha-olefin polymers
EP1038888B1 (en) * 1993-12-07 2004-10-13 Sumitomo Chemical Company, Limited A polypropylene for use in the production of a biaxially oriented film and biaxially oriented film obtained therefrom by stretching

Also Published As

Publication number Publication date
JPS5641206A (en) 1981-04-17

Similar Documents

Publication Publication Date Title
JPH03115310A (en) Composition and catalyst for polymerization of olefin
CS200193B2 (en) Method of producing catalyst for alpha-olefins polymerization
JPH0377801B2 (en)
JPS6338363B2 (en)
JPS64404B2 (en)
US4220745A (en) Process for polymerization of α-olefins
JPS60130607A (en) Production of alpha-olefin polymerization catalyst component
JPH0344564B2 (en)
JPH07651B2 (en) Method for producing olefin polymer
US4357452A (en) Process for polymerizing propylene
JPS623163B2 (en)
KR810001467B1 (en) Process for polymerization of -oleffins
JPS591405B2 (en) α-olefin polymerization method
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPH06815B2 (en) Method for producing propylene polymer
JPS5941649B2 (en) Continuous polymerization method of α-olefin
JPS6042243B2 (en) Polymerization method of α-olefins
JPH0532404B2 (en)
JPH0532407B2 (en)
JPS6338365B2 (en)
JPS6339603B2 (en)
EP0194457B1 (en) Process for preparing polyolefins, polydienes and copolymers thereof
JPH0134446B2 (en)
JPH0128048B2 (en)
JPS6125727B2 (en)