JPS591405B2 - α-olefin polymerization method - Google Patents

α-olefin polymerization method

Info

Publication number
JPS591405B2
JPS591405B2 JP9133176A JP9133176A JPS591405B2 JP S591405 B2 JPS591405 B2 JP S591405B2 JP 9133176 A JP9133176 A JP 9133176A JP 9133176 A JP9133176 A JP 9133176A JP S591405 B2 JPS591405 B2 JP S591405B2
Authority
JP
Japan
Prior art keywords
polymerization
titanium
component
catalyst
titanium component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9133176A
Other languages
Japanese (ja)
Other versions
JPS5317683A (en
Inventor
昭 伊藤
健二 岩田
徹也 岩尾
平三 佐々木
正紀 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9133176A priority Critical patent/JPS591405B2/en
Priority to US05/814,690 priority patent/US4175171A/en
Priority to CA283,013A priority patent/CA1107270A/en
Priority to PT66841A priority patent/PT66841B/en
Priority to GR54039A priority patent/GR61637B/en
Priority to GB31709/77A priority patent/GB1550708A/en
Priority to AT563077A priority patent/AT357758B/en
Priority to IT26363/77A priority patent/IT1085427B/en
Priority to NLAANVRAGE7708469,A priority patent/NL184063C/en
Priority to DE19772734652 priority patent/DE2734652A1/en
Priority to YU1884/77A priority patent/YU39811B/en
Priority to BR7705050A priority patent/BR7705050A/en
Priority to CS775123A priority patent/CS207302B2/en
Priority to FR7723814A priority patent/FR2360608A1/en
Priority to MX170090A priority patent/MX146250A/en
Publication of JPS5317683A publication Critical patent/JPS5317683A/en
Publication of JPS591405B2 publication Critical patent/JPS591405B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は特殊な活性化チタン成分と有機アルミニウム化
合物より成る高活性触媒系を用いて高度に立体規則性を
持つたポリ−α−オレフィンを重合する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing highly stereoregular poly-α-olefins using a highly active catalyst system consisting of a special activated titanium component and an organoaluminium compound. .

プロピレン、ブテン等のα−オレフィンをΞ塩化チタン
と有機アルミニウム化合物とから成るいわゆるチーダラ
ー 、ナツタ触媒を用いて立体規則性ポリα−オレフィ
ンを重合することは公知であり、現在工業的に実施され
ている。
It is known to polymerize α-olefins such as propylene and butene to stereoregular polyα-olefins using a so-called Cheedler or Natsuta catalyst consisting of titanium chloride and an organoaluminum compound, and this is not currently being carried out industrially. There is.

近年、チーグラー 、ナツタ触媒のチタン成分を担体に
担持して触媒の活性を高める方法が開発され、エチレン
重合触媒については一般的になりつつあるが、プロピレ
ン、ブテン等のようなα−オレフィンの場合にメチル基
、エチル基等のアルキル基を立体的に制御してアイソタ
クチック構造にしないと有用な結晶性ポリマーを得るこ
とができないため、エチレン重合の場合のように活性が
向上しただけでは崩用な重合触媒にはならず、生成ポリ
マーの立体規則性の制御が大きな問題である。
In recent years, a method has been developed to increase the activity of the catalyst by supporting the titanium component of Ziegler and Natsuta catalysts on a carrier, and this is becoming common for ethylene polymerization catalysts, but for α-olefins such as propylene, butene, etc. Useful crystalline polymers cannot be obtained unless alkyl groups such as methyl and ethyl groups are sterically controlled to form an isotactic structure. However, controlling the stereoregularity of the resulting polymer is a major problem.

これに関連してハロゲン化マグネシウムにチタン化合物
を担持した担体型チタン成分と有機アルミニウム化合物
に第3成分として電子供与体化合物を添加することによ
つて生成ポリマーの立体規則性を向上させる方法が、特
開昭47−9342、特開昭48−16980、特開昭
49−86482等で提案されている。担体型チタン成
分と有機アルミニウム化合物の2成分系触媒でプロピレ
ンを重合すると重合活性は大きいが生成ポリマーの結晶
性が極端に低く、電子供与体化合物を加えると生成ポリ
マーの結晶性は向上するが、活性の低下がはげしく、し
かも結晶性向上効果も充分ではなくて、現在工業的に使
用されている三塩化チタン/ジエチルアルミニウムモノ
クロラード触媒系等で得られている結晶性ポリプロピレ
ンと同等の品質のものを得ることは困難であつた。
In connection with this, there is a method of improving the stereoregularity of the produced polymer by adding an electron donor compound as a third component to a carrier-type titanium component in which a titanium compound is supported on magnesium halide and an organoaluminum compound. It has been proposed in JP-A-47-9342, JP-A-48-16980, JP-A-49-86482, etc. When propylene is polymerized using a two-component catalyst consisting of a supported titanium component and an organoaluminum compound, the polymerization activity is high, but the crystallinity of the resulting polymer is extremely low.Addition of an electron donor compound improves the crystallinity of the resulting polymer, but The activity is severely reduced, and the crystallinity improvement effect is not sufficient, and the quality is equivalent to that of the crystalline polypropylene obtained with the titanium trichloride/diethyl aluminum monochloride catalyst system currently used industrially. It was difficult to obtain.

特開昭50−126590の方法ではハロゲン化マグネ
シウムと有機酸エステル類を共粉砕して得らたれ組成物
に四塩化チタンを反応して得られる組成物と有機アルミ
ニウム化合物より成る触媒系が提案されている力( こ
れでも活性及び生成ポリマーの結晶性が不充分であつて
改良が必要である。
The method of JP-A-50-126590 proposes a catalyst system consisting of a composition obtained by co-pulverizing magnesium halide and an organic acid ester and reacting titanium tetrachloride with an organoaluminum compound. Even with this, the crystallinity of the active and produced polymers is insufficient and needs improvement.

本発明者は高結晶性ポリα−オレフィンを重合すること
のできる高活性触媒について検討した結果(4)ハロゲ
ン化マグネシウムとハロゲン化アルミニウム.有機酸エ
ステル類錯体より成る組成物に四塩化チタンを反応させ
て得られた活性化チタン成分と(B)有機アルミニウム
化合物 とから得られる触媒系がきわめて有効であることを発見
した。
The present inventor investigated highly active catalysts that can polymerize highly crystalline polyα-olefins and found that (4) magnesium halide and aluminum halide. It has been discovered that a catalyst system obtained from an activated titanium component obtained by reacting a composition comprising an organic acid ester complex with titanium tetrachloride and (B) an organoaluminum compound is extremely effective.

本願発明の方法で用いるハロゲン化マグネシウムは実質
的に無水のハロゲン化マグネシウムが好ましく、とくに
塩化マグネシウムが好ましい。
The magnesium halide used in the method of the present invention is preferably a substantially anhydrous magnesium halide, and particularly preferably magnesium chloride.

ハロゲン化アルミニウム.有機酸エステル錯体の調製に
用いられるハロゲン化アルミニウムとしては、とくに三
塩化アルミニウへ三臭化アルーミニウムが好ましい。有
機酸エステルとしては芳香族カルボン酸エステル、脂肪
族カルボン酸エステル、脂環族カルボン酸エステルが用
いらへ例えば安息香酸メチル、安息香酸エチル、安息香
酸プロピル安息香酸フエニル、アニス酸エチノレ、ナフ
トエ酸エチル、酢酸エチル、アクリル酸エチノレ、メタ
アクリル酸エチル、ヘキサヒドロ安息香酸エチル等であ
る。ハロゲン化アルミニウムと有機酸エステル類の錯体
は常法により、例えば両者を常温で混合するか、これを
加熱することによつて調製することができる。本発明の
活性化チタン成分(4)の調製方法について以下に説明
する。
Aluminum halide. As the aluminum halide used for preparing the organic acid ester complex, aluminum trichloride and aluminum tribromide are particularly preferred. As organic acid esters, aromatic carboxylic esters, aliphatic carboxylic esters, and alicyclic carboxylic esters are used, such as methyl benzoate, ethyl benzoate, propyl benzoate, phenyl benzoate, ethyl anisate, and ethyl naphthoate. , ethyl acetate, ethyl acrylate, ethyl methacrylate, ethyl hexahydrobenzoate, and the like. The complex of aluminum halide and organic acid ester can be prepared by a conventional method, for example, by mixing the two at room temperature or heating the mixture. The method for preparing the activated titanium component (4) of the present invention will be explained below.

まず、ハロゲン化マグネシウムとハロゲン化アルーミニ
ウム.有機酸エステル類錯体より成る組成物を調製する
。この調製方法については両者を粉砕する方法が一般的
であり、例えばボールミル.振動ミル等の粉砕機を用い
て行われる。
First, magnesium halide and aluminum halide. A composition comprising an organic acid ester complex is prepared. A common method for preparing this is to grind both, for example, using a ball mill. This is done using a crusher such as a vibrating mill.

粉砕操作は真空または不活性ガス雰囲気中で行われ、水
分、などがほとんど完全に除かれた状態で行わなければ
ならない。粉砕条件についてはとくに制限はない力(温
度は0℃から50℃の範囲が一般的であり、粉砕時間に
ついては粉砕機の種類によつて異なるが、通常は2〜1
00時間程度である。ハロゲン化マグネシウムとハロゲ
ン化アルミニウム.有機酸エステル類錯体との組成物と
四塩化チタンとの処理が続いて行われる。
The grinding operation must be carried out in a vacuum or in an inert gas atmosphere, with water, etc. being almost completely removed. There are no particular restrictions on the crushing conditions (the temperature is generally in the range of 0°C to 50°C, and the crushing time varies depending on the type of crusher, but is usually 2 to 1
00 hours. Magnesium halide and aluminum halide. The composition with the organic acid ester complex is then treated with titanium tetrachloride.

この処理は上記ハロゲン化マグネシウム.有機酸エステ
ル類錯体組成物を四塩化チタンまたはその不活性溶媒の
溶液中に懸濁し40℃から135℃の温度で接触させた
のち、固体物質を分離し、乾燥するか、または不活性溶
媒で洗浄して四塩化チタンを除去し本発明の(4)成分
である活性化チタン成分を得る操作から成る。
This treatment is applied to the above magnesium halide. After suspending the organic acid ester complex composition in a solution of titanium tetrachloride or its inert solvent and contacting it at a temperature of 40°C to 135°C, the solid substance is separated and dried or treated with an inert solvent. It consists of an operation in which titanium tetrachloride is removed by washing to obtain an activated titanium component, which is component (4) of the present invention.

本発明の方法では上記方法によつて調製された活性化チ
タン成分と有機アルミニウム化合物を組合せて高活性α
−オレフイン重合触媒とする。
In the method of the present invention, a highly active α
-Olefin polymerization catalyst.

使用される有機アルミニウム化合物としては一般式At
RmX3−m(ただしRは炭化水素残基、Xはアルコキ
シ基、水素を示し、mは1.5≦m≦3である)で示さ
れるものが用いられ、例えばトリメチルアルミニウム、
トリエチルアルーミニウム、トリ−n−ブチルアルミニ
ウム、 トリ−1s0−ブチルアルミニウム、トリ−n
−ヘキシルアルミニウベ ジエチルアルミニウムハイド
ライド、ジエチルアルミニウムエトキシドなどが用いら
れる。本発明の方法では活性化チタン成分、有機アルミ
ニウム化合物の他に公知の第3成分、例えば前述の有機
酸エステル類などを添加しても良い。本発明の方法にお
いて活性化チタン成分と有機アルミニウム化合物の使用
割合は広範囲に変えることができるが一般には活性化チ
タン成分中のチタン金属に対する有機アルミニウム化合
物の使用モル比は1〜500程度、とくに生成ポリマー
の結晶性を高めるために2〜25が好ましい。また重合
時に有機酸エステル等の第3成分を加えるときはこのモ
ル比を25〜100に増すことが好ましい。本発明の方
法は一般式R−C℃H2(ただしRは炭素数1〜10の
アルキル基を示す)で示されるα−オレフインの単独重
合、及び上記α−オレフイン相互の共重合、またはエチ
レンとの共重合に利用される。
The organoaluminum compound used has the general formula At
Rm
triethylaluminum, tri-n-butylaluminum, tri-1s0-butylaluminum, tri-n
-Hexylaluminum diethylaluminum hydride, diethylaluminum ethoxide, etc. are used. In the method of the present invention, in addition to the activated titanium component and the organic aluminum compound, a known third component, such as the above-mentioned organic acid esters, may be added. In the method of the present invention, the ratio of the activated titanium component to the organoaluminum compound used can be varied over a wide range, but generally the molar ratio of the organoaluminum compound to the titanium metal in the activated titanium component is about 1 to 500, especially when forming The number is preferably 2 to 25 in order to improve the crystallinity of the polymer. Further, when adding a third component such as an organic acid ester during polymerization, it is preferable to increase this molar ratio to 25 to 100. The method of the present invention involves the homopolymerization of α-olefins represented by the general formula R-C℃H2 (wherein R represents an alkyl group having 1 to 10 carbon atoms), and the copolymerization of the α-olefins with each other or with ethylene. Used for copolymerization.

上記のα−オレフインとしてはプロピレン、ブテン−1
、ヘキセン一1、4−メチルベンゼン−1などがあげら
れる。
The above α-olefins include propylene, butene-1
, hexene-1,4-methylbenzene-1, and the like.

本発明の方法による重合反応は従来の当該技術において
通常行なわれている方法および条件が採用できる。
For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed.

その際の重合温度は20〜300℃、好ましくは50〜
200℃範囲であり、重合圧力は常圧〜200気圧、好
ましくは常圧〜150気圧の範囲である。重合反応では
一般に脂肪族、脂環族、芳香族の炭化水素類、またはそ
れらの混合物を溶媒として使用することができ、たとえ
ばプロパン、ブタン、ペンタン、ヘキサン、ヘプタン、
シクロヘキサン、ベンゼン、トルエンなど、およびそれ
らの混合物が好ましく用いられる。また液状のモノマー
自身を溶媒として用いる塊状重合法で行なうこともでき
る。さらにまた溶媒が実質的に存在しない条件、すなわ
ちガス状モノマーと触媒とを接触させる、いわゆる気相
重合法で行なうこともできる。本発明の方法において生
成するポリマーの分子量は反応様式、触媒系、重合条件
によつて変化するが、必要に応じて、たとえば、水素、
ハロゲン化アルキル、ジアルキル亜鉛などの添加によつ
て制御することができる。
The polymerization temperature at that time is 20 to 300°C, preferably 50 to 300°C.
The temperature is 200°C, and the polymerization pressure is in the range of normal pressure to 200 atm, preferably in the range of normal pressure to 150 atm. In general, aliphatic, cycloaliphatic, aromatic hydrocarbons, or mixtures thereof, can be used as solvents in polymerization reactions, such as propane, butane, pentane, hexane, heptane,
Cyclohexane, benzene, toluene, etc., and mixtures thereof are preferably used. It is also possible to perform bulk polymerization using the liquid monomer itself as a solvent. Furthermore, it can also be carried out under conditions in which a solvent is substantially absent, that is, by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst system, and polymerization conditions.
It can be controlled by adding alkyl halides, dialkyl zinc, etc.

以下に、本発明の実施例を示す。Examples of the present invention are shown below.

実施例 1 直径12mmの鋼球80個の入つた内容積600dの粉
砕用ポツトを装備した振動ミルを用意する。
Example 1 A vibratory mill equipped with a crushing pot having an internal volume of 600 d and containing 80 steel balls with a diameter of 12 mm was prepared.

このポツト中に、窒素雰囲気中で塩化マグネシウム20
.0V1塩化アルミニウム.安息香酸エチル錯体10.
07を加え、20時間粉砕した。300m1丸底フラス
コに上記粉砕処理107、四塩化チタン200ffL1
を加えて80℃で2時間かくはんしたのち、デカンテー
シヨンによつて上澄液を除き、次にn−ヘプタン200
m1を加えて室温で30分間かくはんののち、デカンテ
ーシヨンで上澄液を除く洗浄操作を7回くり返したのち
、さらにn−ヘプタン200m1を追加して活性化チタ
ン成分スラリーを得た。
In this pot, in a nitrogen atmosphere, add 20 mg of magnesium chloride.
.. 0V1 aluminum chloride. Ethyl benzoate complex 10.
07 was added and the mixture was ground for 20 hours. In a 300m1 round bottom flask, the above pulverization treatment 107 and titanium tetrachloride 200ffL1
After stirring at 80°C for 2 hours, the supernatant was removed by decantation, and then 200°C of n-heptane was added.
After adding m1 and stirring at room temperature for 30 minutes, the washing operation of removing the supernatant liquid by decantation was repeated seven times, and then 200 m1 of n-heptane was further added to obtain an activated titanium component slurry.

この活性化チタン成分スラリーの一部をサンプリングし
、n−ヘプタンを蒸発させ分析したところ、活性化チタ
ン成分中に1.20wt%のTiを含有していた。内容
積2t(7)SUs−32製オートクレーブ中に窒素雰
囲気下n−ヘプタン1t1上記活性化チタン成分0.2
07(チタン原子換算0.05mM)、トリエチルアル
ミニウム0.07m1(0.5mM)を装入した。
When a part of this activated titanium component slurry was sampled, n-heptane was evaporated, and analyzed, it was found that the activated titanium component contained 1.20 wt% Ti. Inner volume: 2 tons (7) In an autoclave made of SUs-32, n-heptane: 1 ton: 1 ton of the above activated titanium component: 0.2
07 (0.05mM in terms of titanium atoms) and 0.07ml (0.5mM) of triethylaluminum were charged.

オートクレーブ内の窒素を真空ポンプで排気したのち、
水素を気相分圧で0.3kg/Cril装入し、ついで
プロピレンを装入して気相部の圧力を2kg/C7iL
ゲージとした。オートクレーブの内容物を加熱し、5分
後に内部温度を70℃まで昇温し、70℃で重合圧力を
5kg/CTiiゲージに保つようにプロピレンを装入
しながら重合を2時間続けた。オートクレーブを冷却の
のち、未反応プロピノレンをパージして内容物を取出し
、口過し6『Cで減圧乾燥して白色粉末状ポリプロピレ
ン3707を得た。
After exhausting the nitrogen in the autoclave with a vacuum pump,
Charge hydrogen at a gas phase partial pressure of 0.3 kg/Crill, then charge propylene to reduce the pressure in the gas phase to 2 kg/C7iL.
I used it as a gauge. The contents of the autoclave were heated, and the internal temperature was raised to 70° C. after 5 minutes, and polymerization was continued for 2 hours while charging propylene to maintain the polymerization pressure at 70° C. at 5 kg/CTii gauge. After cooling the autoclave, unreacted propylene was purged, the contents were taken out, and the autoclave was dried under reduced pressure at 6'C to obtain white powdery polypropylene 3707.

このポリプロピレンの沸とうn−ヘプタン抽出残ポリマ
ーの割合(以下パウダー11と略記する)96.5%、
かさ比重0.337/Wlll極限粘度数1.90であ
つた。
The proportion of the residual polymer after boiling n-heptane extraction of this polypropylene (hereinafter abbreviated as powder 11) is 96.5%,
The bulk specific gravity was 0.337/Wlll intrinsic viscosity number was 1.90.

一方、口液の濃縮によりn−ヘプタン可溶性重合体17
Vが得られる。
On the other hand, by concentrating oral fluid, n-heptane soluble polymer 17
V is obtained.

全ポリマーに対する沸とうn−ヘプタン抽出残ポリマー
の割合(以下全11と略記する)92.2%であつた。
本重合反応での触媒の重合活性は81k9/7一Ti.
hrであり、取得量は161k9/7一Tiであつた。
The ratio of the boiling n-heptane extraction residual polymer to the total polymer (hereinafter abbreviated as total 11) was 92.2%.
The polymerization activity of the catalyst in this polymerization reaction was 81k9/7-Ti.
hr, and the amount obtained was 161k9/7-Ti.

実施例 2 実施例1で調製した活性化チタン成分を用いてプロピレ
ンの塊状重合を行なつた。
Example 2 The activated titanium component prepared in Example 1 was used to carry out bulk polymerization of propylene.

内容積6t(7)Sus−32製オートクレーブ中に窒
素雰囲気でn−ヘプタン30m1で懸濁した活性化チタ
ン成分0.20y1トリエチルアルミニウム0.1m1
を装入した。
Internal volume 6t (7) 0.20y1 activated titanium component suspended in 30ml n-heptane in a nitrogen atmosphere in a Sus-32 autoclave 0.1ml triethylaluminum
was loaded.

オートクレーブ中の窒素を真空ポンプで排気したのち、
プロピレン2.5kg、及び水素0.5Ntをオートク
レーブに装入した。オートクレーブの内容物を加熱し、
5分後に75℃に昇温し、75℃で3時間重合を行なつ
た。オートクレーブを冷却ののち、プロピレンをパージ
して内容物を取出し、減圧乾燥して908′!7のポリ
プロピレンパウダーを得た。得られたポリプロピレンパ
ウダーの全11は93.5%、極限粘度数1.95、か
さ比重0.38V/mlであつた。
After exhausting the nitrogen in the autoclave with a vacuum pump,
2.5 kg of propylene and 0.5 Nt of hydrogen were charged into the autoclave. Heat the contents of the autoclave,
After 5 minutes, the temperature was raised to 75°C, and polymerization was carried out at 75°C for 3 hours. After cooling the autoclave, the propylene was purged and the contents were taken out and dried under reduced pressure.908'! Polypropylene powder No. 7 was obtained. The resulting polypropylene powder had a total weight of 93.5%, an intrinsic viscosity of 1.95, and a bulk specific gravity of 0.38 V/ml.

本重合反応での触媒の重合活性は126kg/y一Ti
.hrであり、取得量は378kg/7一Tiであつた
The polymerization activity of the catalyst in this polymerization reaction is 126 kg/y-Ti
.. hr, and the amount obtained was 378 kg/7-Ti.

実施例 3 実施例2の方法に於て、トリエチルアルミニウムの代り
にトリ−1s0−ブチルアルミニウム0.15m1を用
いて同様の実験をくり返し880yのポリプロピレンパ
ウダーを得た。
Example 3 The same experiment as in Example 2 was repeated using 0.15 ml of tri-1s0-butylaluminum instead of triethylaluminum to obtain 880y polypropylene powder.

得られたポリプロピレンの全11は93.0%、かさ比
重0.36t/Mll極限粘度数1.95であつた。
The total weight of the obtained polypropylene 11 was 93.0%, the bulk specific gravity was 0.36 t/Mll, and the intrinsic viscosity was 1.95.

本重合反応での重合活性は122kg/7一Tl.hr
l取得量367kg/7一Tiであつた。
The polymerization activity in this polymerization reaction was 122 kg/7-Tl. hr
The amount obtained was 367 kg/7-Ti.

比較例 1塩化マグネシウム2647、四塩化チタン3
.67を用い、実施例1と同様に共粉砕してチタン成分
を調製した。
Comparative example 1 Magnesium chloride 2647, titanium tetrachloride 3
.. 67 and co-pulverized in the same manner as in Example 1 to prepare a titanium component.

(チタン含有率3wt%)得られたチタン成分0.20
7、トリエチルアルミニウム0.107を触媒成分とし
て実施例1と同様に重合を行なつた。
(Titanium content: 3wt%) Obtained titanium component: 0.20
Polymerization was carried out in the same manner as in Example 1 using 0.107% triethylaluminum as the catalyst component.

重合時間3.0時間で重合を止め、オートクレーブを冷
却して内容物を取出したところ粘ちような溶液が生成分
で口過できなかつたので大量のアセトンでポリマーを沈
殿させたのち口過、乾燥してポリマー285yを得た。
得られたポリマーの全1は21.3%であつた。上ピ巣
λ例 2塩化マグネシウム23.67、四塩化チタン
.安息香酸エチル錯体647を実施例1と同様に共粉砕
してチタン含有率3wt%のチタン成分を調製した。
Polymerization was stopped after a polymerization time of 3.0 hours, and when the autoclave was cooled and the contents were taken out, a viscous solution could not be passed through the mouth due to the product, so the polymer was precipitated with a large amount of acetone and then passed through the mouth. After drying, polymer 285y was obtained.
The total 1 content of the resulting polymer was 21.3%. Example of upper piston λ Magnesium dichloride 23.67, Titanium tetrachloride. Ethyl benzoate complex 647 was co-pulverized in the same manner as in Example 1 to prepare a titanium component having a titanium content of 3 wt%.

得られたチタン成分0.20ノ トリエチルアルミニウ
ム0.1miを触媒成分として実施例1と同様に重合を
行なつた。
Polymerization was carried out in the same manner as in Example 1 using 0.20 mi of the obtained titanium component and 0.1 mi of triethylaluminum as the catalyst component.

重合時間2時間でポリプロピレンパウダー1107が得
られた。このポリピレンのパウダー70.3%、極限粘
度数1.80、かさ比重0.22であつた、一方口液か
ら非晶性ポリプロピレン30。
Polypropylene powder 1107 was obtained with a polymerization time of 2 hours. The powder of this polypylene was 70.3%, the intrinsic viscosity was 1.80, and the bulk specific gravity was 0.22. On the other hand, amorphous polypropylene 30 was obtained from the oral fluid.

57が得られ、本重合反応で生成したポリマーの全1は
55.0%であり、触媒の重合活性は11.7k9/7
一Tl.hr取5得量は23.4k9/7一Tiであつ
た。
57 was obtained, the total 1 content of the polymer produced in this polymerization reaction was 55.0%, and the polymerization activity of the catalyst was 11.7k9/7.
1 Tl. The amount of hr obtained was 23.4k9/7-Ti.

比較例 3〜4比較例2の触媒系を改良する目的で安息
香酸工チルを触媒系の第3成分として添加して重合をく
り返した結果を表1に示す。
Comparative Examples 3 to 4 In order to improve the catalyst system of Comparative Example 2, methyl benzoate was added as the third component of the catalyst system and polymerization was repeated. The results are shown in Table 1.

比較例2の触媒系に安息香酸エチルを添加すると生成ポ
リマーの1は向上するが不充分であり、しかも活性の低
下が大ぎい。比較例 5 塩化マグネシウム24.77、安息香酸エチル5.37
を実施例1と同様に共粉砕したのち、実施例1と同様に
四塩化チタンとの反応、n−ヘプタンによる洗浄を行な
い、チタン含有率1.21wr%の活性化チタン成分を
得た。
When ethyl benzoate was added to the catalyst system of Comparative Example 2, 1 of the produced polymer was improved, but not enough, and the activity was greatly reduced. Comparative example 5 Magnesium chloride 24.77, ethyl benzoate 5.37
was co-pulverized in the same manner as in Example 1, and then reacted with titanium tetrachloride and washed with n-heptane in the same manner as in Example 1, to obtain an activated titanium component with a titanium content of 1.21 w%.

活性化チタン成分0.207トリエチルアルミニウム0
.07m1を用いて実施例1と同様に2時間重合を行な
つたところ粉末状ポリプロピレン218y1及びn−ヘ
プタン可溶゛囲ポリプロピレン257を得た。
Activated titanium component 0.207 Triethyl aluminum 0
.. When polymerization was carried out for 2 hours in the same manner as in Example 1 using 07ml, powdered polypropylene 218y1 and n-heptane soluble surrounding polypropylene 257 were obtained.

ポリプロピレンパウダーは95,0%、かさ比重0.2
87/Ml,.極限粘度数1.98であつた。
Polypropylene powder is 95.0%, bulk specific gravity 0.2
87/Ml,. The intrinsic viscosity was 1.98.

本重合反応での触媒の重合活性は51k9/7ーTi.
hrl取得量101k9/7一Til全185.2%で
あつた。実施例 4〜7 実施例1の活性化チタン成分調製工程のうち、安息香酸
エチル.塩化アルミニウム錯体に代えて種々の化合物を
用いて触媒の調製を行ない、これを用いて実施例2と同
様にプロピレンの塊状重合を行なつた結果を表2に示す
The polymerization activity of the catalyst in this polymerization reaction was 51k9/7-Ti.
The amount of hrl acquired was 101k9/7-Til total 185.2%. Examples 4 to 7 Among the activated titanium component preparation steps of Example 1, ethyl benzoate. Table 2 shows the results of bulk polymerization of propylene in the same manner as in Example 2 using catalysts prepared using various compounds in place of the aluminum chloride complex.

実施例 8〜9 実施例1で調製した活性化チタン成分0.087安息香
酸エチル0.157及び表3に示した量のトリIsO−
ブチルアルミニウムを触媒成分とし、実施例1と同様に
重合した結果を表3に示す。
Examples 8-9 The activated titanium component prepared in Example 1 was 0.087 ethyl benzoate 0.157 and the amount of tri-IsO- as shown in Table 3.
Table 3 shows the results of polymerization in the same manner as in Example 1 using butylaluminum as the catalyst component.

Claims (1)

【特許請求の範囲】 1 (A)ハロゲン化マグネシウムとハロゲン化アルミ
ニウム、有機酸エステル類錯体を粉砕して成る組成物を
四塩化チタンで処理して得られる活性化チタン成分と(
B)有機アルミニウム化合物 とから成る触媒の存在下にα−オレフィンを重合するこ
とを特徴とするα−オレフィンの重合方法。
[Scope of Claims] 1 (A) An activated titanium component obtained by treating a composition formed by pulverizing magnesium halide, aluminum halide, and an organic acid ester complex with titanium tetrachloride;
B) A method for polymerizing α-olefins, which comprises polymerizing α-olefins in the presence of a catalyst comprising an organoaluminum compound.
JP9133176A 1976-08-02 1976-08-02 α-olefin polymerization method Expired JPS591405B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP9133176A JPS591405B2 (en) 1976-08-02 1976-08-02 α-olefin polymerization method
US05/814,690 US4175171A (en) 1976-08-02 1977-07-11 Catalyst for polymerizing α-olefins
CA283,013A CA1107270A (en) 1976-08-02 1977-07-19 CATALYST FOR POLYMERIZING .alpha.-OLEFINS
PT66841A PT66841B (en) 1976-08-02 1977-07-22 A catalyst for plymerizing alpha-olefins
GR54039A GR61637B (en) 1976-08-02 1977-07-26 A catalyst for polymerizing a-olefins
GB31709/77A GB1550708A (en) 1976-08-02 1977-07-28 Catalyst for polymerizing -olefins
AT563077A AT357758B (en) 1976-08-02 1977-07-29 METHOD FOR POLYMERIZING AND COPOLYMERIZING ALFA OLEFINS
IT26363/77A IT1085427B (en) 1976-08-02 1977-07-29 CATALYST FOR THE POLYMERIZATION OF OLEFINE
NLAANVRAGE7708469,A NL184063C (en) 1976-08-02 1977-08-01 PROCESS FOR PREPARING A CATALYST FOR POLYMERIZING ALFA-OLEFINS
DE19772734652 DE2734652A1 (en) 1976-08-02 1977-08-01 CATALYST FOR THE POLYMERIZATION OF ALPHA-OLEFINS
YU1884/77A YU39811B (en) 1976-08-02 1977-08-01 Process for the polymerization of alpha-olefines with more than three carbon atoms
BR7705050A BR7705050A (en) 1976-08-02 1977-08-01 CATALYST FOR POLYMERIZATION OF ALPHA-OLEFINS AND PROCESS APPLYING THE SAME
CS775123A CS207302B2 (en) 1976-08-02 1977-08-02 Method of making the catalyser for the polymeration of the alphaolefines
FR7723814A FR2360608A1 (en) 1976-08-02 1977-08-02 CATALYST FOR POLYMERIZING OLEFINS A
MX170090A MX146250A (en) 1976-08-02 1977-08-02 IMPROVED CATALYTIC COMPOSITION TO POLYMERIZE ALPHA-OLEPHINS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133176A JPS591405B2 (en) 1976-08-02 1976-08-02 α-olefin polymerization method

Publications (2)

Publication Number Publication Date
JPS5317683A JPS5317683A (en) 1978-02-17
JPS591405B2 true JPS591405B2 (en) 1984-01-12

Family

ID=14023453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133176A Expired JPS591405B2 (en) 1976-08-02 1976-08-02 α-olefin polymerization method

Country Status (1)

Country Link
JP (1) JPS591405B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575411A (en) * 1978-12-05 1980-06-06 Mitsubishi Petrochem Co Ltd Preparation of catalyst component for polymerizing olefin
DE3068239D1 (en) * 1979-11-20 1984-07-19 Shell Int Research Preparation of catalyst components and polymerization of olefins employing such catalyst components
US4347158A (en) * 1980-05-02 1982-08-31 Dart Industries, Inc. Supported high efficiency polyolefin catalyst component and methods of making and using the same
JPS5930805A (en) * 1982-08-13 1984-02-18 Ube Ind Ltd Method for storing catalytic component for polymerizing alpha-olefin
NO162967C (en) * 1982-08-20 1990-03-14 Phillips Petroleum Co PROCEDURE FOR PREPARING A POLYMERIZATION CATALYST COMPONENT AND USING THE COMPONENT.

Also Published As

Publication number Publication date
JPS5317683A (en) 1978-02-17

Similar Documents

Publication Publication Date Title
JPS6338363B2 (en)
JPS64404B2 (en)
US4220745A (en) Process for polymerization of α-olefins
JPS591405B2 (en) α-olefin polymerization method
JPS5846129B2 (en) Method for producing highly crystalline olefin polymer
JPS6042244B2 (en) Polymerization method of α-olefin
JPS6042243B2 (en) Polymerization method of α-olefins
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS58222103A (en) Production of catalytic component for olefin polymerization
JPS623163B2 (en)
JPS647085B2 (en)
JPH0548241B2 (en)
JPS5817521B2 (en) Olefin polymerization method
JPS591406B2 (en) Method for producing improved olefinic polymers
JPS6338365B2 (en)
KR810001467B1 (en) Process for polymerization of -oleffins
JPS5835521B2 (en) Olefin polymerization catalyst
JPS6339603B2 (en)
JPS5853906A (en) Preparation of ethylenic polymer
KR850000529B1 (en) Process for polymerization of-olefins by catalysts
KR840000917B1 (en) Method for polymerization of -olefin
JPS638124B2 (en)
JPH0575765B2 (en)
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou