JPH059445B2 - - Google Patents

Info

Publication number
JPH059445B2
JPH059445B2 JP58171277A JP17127783A JPH059445B2 JP H059445 B2 JPH059445 B2 JP H059445B2 JP 58171277 A JP58171277 A JP 58171277A JP 17127783 A JP17127783 A JP 17127783A JP H059445 B2 JPH059445 B2 JP H059445B2
Authority
JP
Japan
Prior art keywords
catalyst component
polymerization
titanium
titanium halide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58171277A
Other languages
Japanese (ja)
Other versions
JPS6063207A (en
Inventor
Minoru Terano
Kohei Kimura
Masuo Inoe
Katsuyoshi Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP17127783A priority Critical patent/JPS6063207A/en
Publication of JPS6063207A publication Critical patent/JPS6063207A/en
Publication of JPH059445B2 publication Critical patent/JPH059445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明はオレフイン類の重合に供した際、高活
性に作用し、しかも立体規則制重合体を高収率で
得ることのできる高性能触媒成分の製造方法に係
り更に詳しくはジアルコキシマグネシウム、芳香
族モノカルボン酸エステルおよびチタンハロゲン
化物を同時に接触させることによつて得られた反
応生成物を、該チタンハロゲン化物と同量以上の
不活性有機溶媒で少なくとも10回洗浄した後、更
にチタンハロゲン化物と接触させることを特徴す
るオレフイン類重合用触媒成分の製造方法に関す
るものである。 従来、オレフイン類重合用触媒成分としては固
体のチタンハロゲン化物が周知であり広く用いら
れているが、触媒成分および触媒成分中のチタン
当りの重合体の収量(以下触媒成分および触媒成
分中のチタン当りの重合活性という。)が低いた
め触媒残渣を除去するための所謂脱灰工程が不可
避であつた。この脱灰工程は多量のアルコールま
たはキレート剤を使用するために、それ等の回収
装置または再生装置が必要不可欠であり、資源、
エネルギーその他付随する問題が多く、当業者に
とつては早急に解決を望まれる重要な課題であつ
た。この煩雑な脱灰工程を省くために触媒成分と
りわけ触媒成分中のチタン当りの重合活性を高め
るべく数多くの研究がなされ提案されている。 特に最近の傾向として活性成分であるチタンハ
ロゲン化物等の遷移金属化合物を塩化マグネシウ
ム等の担体物質に担持させ、オレフイン類の重合
に供した際に触媒成分中のチタン当りの重合活性
を飛躍的に高めたという提案が数多く見かけられ
る。 例えば特開昭50−126590号公報においては、担
体物質である塩化マグネシウムを芳香族モノカル
ボン酸エステルと機械的手段によつて接触させ、
得られた固体組成物に四ハロゲン化チタンを液相
中で接触させて触媒成分を得る方法が開示されて
いる。 しかしながら担体物質としてその主流をしめる
塩化マグネシウムに含有される塩素は、生成重合
体に悪影響を及ぼすという欠点を有しており、そ
のために事実上塩素の影響を無視し得る程の高活
性が要求されたり、或いはまた塩化マグネシウム
そのものの濃度を低くおさえる必要に迫られるな
ど未解決な部分を残していた。 従つて担体物質として有効に作用し得るものと
して塩化マグネシウム以外のものを使用する試み
をなされている。しかし従来提案されている方法
においては触媒成分当りの重合活性を高めること
は勿論、立体規則性重合体の収率をも高度に維持
することを求める当該技術分野の要求を十分に充
し得るものは提案されていない。 本発明者等は斯かる従来技術に残された課題を
解決すべく触媒成分当りの重合活性ならびに立体
規則性重合体の収率を高度に維持しつつ、生成重
合体中の残留塩素を低下させることを目的として
鋭意研究の結果本発明に達し、茲に提案するもの
である。 即ち、本発明の特色とするところは(a)ジアルコ
キシマグネシウム、(b)芳香族モノカルボン酸エス
テルおよび(c)一般式TiX4(式中Xはハロゲン元素
である。)で表されるチタンハロゲン化物を同時
に接触させることによつて得られた反応生成物
を、該チタンハロゲン化物と同量以上の不活性有
機溶媒で少なくとも10回洗浄した後、更に(c)一般
式TiX4(式中Xはハロゲン元素である。)で表さ
れるチタンハロゲン化物と接触させてオレフイン
類の重合用触媒成分として用いるところにある。 本発明によつて得られた触媒成分を用いてオレ
フイン類の重合を行なつた場合、非常に高活性で
あるため生成重合体中の触媒残渣を極めて低くお
さえることができ、しかも残留塩素量が微量であ
るために生成重合体に及ぼす塩素の影響を低減す
ることができる。 生成重合体に含まれる塩素は造粒、成形などの
工程に用いる機器の腐食の原因となる上、生成重
合体そのものの劣化、黄変等の原因ともなり、こ
れを低減させることができたことは当業者にとつ
て極めて重要な意味をもつものである。 また、工業的なオレフイン重合体の製造におい
ては重合時に水素を共存させることがMI制御な
どの点から一般的とされているが、前記塩化マグ
ネシウムを担体として用いる触媒成分は水素共存
下では、活性および立体規則性が大幅に低下する
という欠点を有していた。しかし、本発明によつ
て得られた触媒成分を用いてオレフイン類の重合
を行なつた場合、重合時に水素を共存させても殆
んど活性および立体規則性が低下せず、斯かる効
果は当業者にとつて極めて大きな利益をもたらす
ものである。 本発明において使用されるジアルコキシマグネ
シウムとしては、ジエトキシマグネシウム、ジブ
トキシマグネシウム、ジフエノキシマグネシウ
ム、ジプロポキシマグネシウム、ジ−sec−ブト
キシマグネシウム、ジ−tert−ブトキシマグネシ
ウム、ジイソプロポキシマグネシウム等があげら
れるが中でもジエトキシマグネシウム、ジプロポ
キシマグネシウムが好ましい。 本発明において使用される芳香族モノカルボン
酸エステルとしては安息香酸エチル、P−アニス
酸エチルおよびP−トルイル酸エチルが好まし
い。 本発明において使用される一般式TiX4(式中X
はハロゲン元素である。)で表わされるチタンハ
ロゲン化物としてはTiCl4、TiBr4、TiI4等があ
げられるが中でもTiCl4が好ましい。 これ等各成分の使用割合は生成される触媒成分
の性能に悪影響を及ぼすことのない限り任意であ
り、特に限定するものではないが通常ジアルコキ
シマグネシウム1gに対し、芳香族モノカルボン
酸エステルは0.01〜10g、好ましくは0.1〜1g、
チタンハロゲン化物は0.1g以上好ましくは5g
以上の範囲で用いられる。 本発明におけるジアルコキシマグネシウム、電
子供与性物質およびチタンハロゲン化物の接触
は、通常室温ないし用いられるチタンハロゲン化
物の沸点までの温度範囲で行なわれる。接触時間
は上記各物質が十分に反応しうる範囲であれば任
意であるが通常10分ないし100時間の範囲で行な
われる。 本発明におけるジアルコキシマグネシウム、芳
香族モノカルボン酸エステルおよびチタンハロゲ
ン化物は同時に接触させることが必要であり、そ
の際ハロゲン化炭化水素または芳香族炭化水素を
共存させることが好ましい。 前記接触によつて得られた反応生成物を、前記
チタンハロゲン化物と同量以上のn−ヘプタン等
の不活性有機溶媒で少なくとも10回洗浄すること
により未反応成分を除去し、その後更にチタンハ
ロゲン化物と接触させることにより本発明の目的
とするオレフイン類重合用触媒成分が得られる。
該触媒成分は不活性有機溶媒で十分に洗浄した後
乾燥するか、またはそのままでオレフイン類の重
合用に供される。 本発明におけるこれ等一連の操作は酸素および
水分等の不存在下に行なわれることが好ましい。 以上の如くして製造された触媒成分は有機アル
ミニウム化合物と組合せてオレフイン類重合用触
媒を形成する。使用される有機アルミニウム化合
物は触媒成分中のチタン原子のモル当りモル比で
1〜1000、好ましくは1〜300の範囲で用いられ
る。また重合に際しては電子供与性物質などの第
三成分を添加使用すること妨げない。重合は有機
溶媒の存在下でも或いは不存在下でも行なうこと
ができ、またオレフイン単量体は気体および液体
のいずれの状態でも用いることができる。重合温
度は200℃以下好ましくは100℃以下であり、重合
圧力は100Kg/cm2・G以下、好ましくは50Kg/
cm2・G以下である。 本発明方法により製造された触媒成分を用いて
単独重合または共重合されるオレフイン類はエチ
レン、プロピレン、1−ブテン、4−メチル−1
−ペンテン等である。 以下本発明を実施例および比較例により具体的
に説明する。 実施例 1 〔触媒成分の調製〕 窒素ガスで充分に置換され、撹拌機を具備した
容量500mlの丸底フラスコにジエトキシマグネシ
ウム5g、安息香酸エチル2.5ml、塩化メチレン
50mlおよびTiCl4200mlを装入し、90℃に昇温し
て2時間撹拌しながら反応させた。反応終了後40
℃のn−ヘプタン200mlで10回洗浄し、新たに
TiCl4200mlを加えて90℃で2時間撹拌しながら
反応させた。 反応終了後40℃まで冷却し、次いでn−ヘプタ
ン200mlによる洗浄を繰り返し行ない、洗浄液中
に塩素が検出されなくなつた時点で洗浄終了とし
て触媒成分とした。なお、この際該触媒成分中の
固液を分離して固体分のチタン含有率を測定した
ところ3.95重量%であつた。 〔重 合〕 窒素ガスで完全に置換された内容積2.0の撹
拌装置付オートクレーブに、n−ヘプタン700ml
を装入し、窒素ガス雰囲気を保ちつつトリエチル
アルミニウム301mg、p−トルイル酸エチル137
mg、次いで前記触媒成分をチタン原子として0.5
mg装入した。その後水素ガス300mlを装入し60℃
に昇温してプロピレンガスを導入しつつ6Kg/
cm2・Gの圧力を維持して2時間の重合を行なつ
た。重合終了後得られた固体重合体を別し、80
℃に加温して減圧乾燥した。一方液を濃縮して
重合溶媒に溶存する重合体の量を(A)とし、固体重
合体の量を(B)とする。また得られた固体重合体を
沸騰n−ヘプタンで6時間抽出しn−ヘプタンに
不溶解の重合体を得、この量を(C)とする。 触媒成分当りの重合活性(D)を式 (D)=〔(A)+(B)〕(g)/触媒成分量(g) で表わす。 また結晶性重合体の収率(E)を式 (E)=(C)/(B)×100(%) で表わし、全結晶性重合体の収率(F)を式 (F)=(C)/(A)+(B)×100(%) より求めた。また生成重合体中の残留塩素を(G)、
生成重合体のMIを(H)で表わす。得られた結果は、
第1表に示す通りである。 実施例 2 塩化メチレンの代りにトルエンを使用した以外
は実施例1と同様にして実験を行なつた。なお、
この際の固体分中のチタン含有率は3.52重量%で
あつた。重合に際しては実施例1と同様にして実
験を行なつた。得られた結果は第1表に示す通り
である。 実施例 3 塩化メチレンを用いなかつた以外は実施例1と
同様にして実験を行なつた。なお、この際の固体
分中のチタン含有率は3.80重量%であつた。重合
に際しては実施例1と同様にして実験を行なつ
た。得られた結果は第1表に示す通りである。 比較例 1 〔触媒成分の調製〕 MgCl2100g、安息香酸エチル31.5gを窒素ガ
ス雰囲気下で18時間粉砕する。その後該粉砕組成
物100gを分取し、窒素ガス雰囲気下で内容積
2000mlのガラス製容器に装入し、TiCl4500mlを
加えて65℃で2時間撹拌反応を行なつた。反応終
了後40℃まで冷却し、静置してデカンテーシヨン
により上澄液を除去した。次いでn−プタン1000
mlによる洗浄を繰り返し行ない、洗浄液中に塩素
が検出されなくなつた時点を以つて洗浄終了とし
て触媒成分とした。 なお、この際該触媒成分中の固液を分離して固
体分のチタン含有率を測定したところ1.28重量%
であつた。 重合に際しては前記触媒成分をチタン原子とし
て1.0mg使用した以外は実施例1と同様にして行
なつた。得られた結果は第1表に示す通りであ
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-performance catalyst component that exhibits high activity when subjected to the polymerization of olefins and is capable of obtaining a stereoregular polymer in high yield. Specifically, a reaction product obtained by simultaneously contacting dialkoxymagnesium, an aromatic monocarboxylic acid ester, and a titanium halide is washed at least 10 times with an inert organic solvent in an amount equal to or more than that of the titanium halide. The present invention relates to a method for producing a catalyst component for polymerizing olefins, which comprises further contacting the catalyst component with a titanium halide. Conventionally, solid titanium halides have been well known and widely used as catalyst components for the polymerization of olefins. Because of the low polymerization activity (per unit polymerization activity), a so-called deashing step to remove catalyst residues was unavoidable. This deashing process uses a large amount of alcohol or chelating agent, so recovery or regeneration equipment is essential, and resources and
There are many energy and other related problems, and it is an important issue that those skilled in the art would like to solve as soon as possible. In order to eliminate this complicated deashing process, many studies have been made and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially in the catalyst component. In particular, a recent trend is to support transition metal compounds such as titanium halides, which are active ingredients, on carrier materials such as magnesium chloride, and when used in the polymerization of olefins, the polymerization activity per titanium in the catalyst component can be dramatically increased. I've seen many suggestions for increasing it. For example, in JP-A-50-126590, magnesium chloride as a carrier material is brought into contact with an aromatic monocarboxylic acid ester by mechanical means,
A method for obtaining a catalyst component by contacting the obtained solid composition with titanium tetrahalide in a liquid phase is disclosed. However, the chlorine contained in magnesium chloride, which is the main carrier material, has the disadvantage of having an adverse effect on the produced polymer, and therefore requires high activity to the extent that the influence of chlorine can be virtually ignored. However, there were still unresolved issues, such as the need to lower the concentration of magnesium chloride itself. Attempts have therefore been made to use substances other than magnesium chloride that can effectively act as carrier materials. However, the methods proposed so far can not only increase the polymerization activity per catalyst component but also fully satisfy the requirements in the technical field of maintaining a high yield of stereoregular polymers. has not been proposed. In order to solve the problems remaining in the prior art, the present inventors have devised a method to reduce the residual chlorine in the produced polymer while maintaining a high degree of polymerization activity per catalyst component and the yield of stereoregular polymer. As a result of intensive research, we have arrived at the present invention for this purpose, and we hereby propose it to you. That is, the present invention is characterized by (a) dialkoxymagnesium, (b) aromatic monocarboxylic acid ester, and (c) titanium represented by the general formula TiX 4 (wherein X is a halogen element). The reaction product obtained by simultaneously contacting the halides is washed at least 10 times with an inert organic solvent in an amount equal to or more than that of the titanium halide, and then further (c) with the general formula TiX 4 (in the formula X is a halogen element. When olefins are polymerized using the catalyst component obtained by the present invention, the activity is extremely high, so the amount of catalyst residue in the produced polymer can be kept extremely low, and the amount of residual chlorine can be kept very low. Since the amount of chlorine is small, the influence of chlorine on the produced polymer can be reduced. Chlorine contained in the produced polymer not only causes corrosion of equipment used in processes such as granulation and molding, but also causes deterioration and yellowing of the produced polymer itself, and this has been reduced. has extremely important meaning for those skilled in the art. In addition, in the industrial production of olefin polymers, it is common to allow hydrogen to coexist during polymerization from the viewpoint of MI control, but the catalyst component using magnesium chloride as a carrier does not become active in the coexistence of hydrogen. It also had the disadvantage that the stereoregularity was significantly reduced. However, when olefins are polymerized using the catalyst component obtained according to the present invention, the activity and stereoregularity hardly decrease even if hydrogen is present during the polymerization, and such effects are suppressed. This is of great benefit to those skilled in the art. Examples of the dialkoxymagnesium used in the present invention include diethoxymagnesium, dibutoxymagnesium, diphenoxymagnesium, dipropoxymagnesium, di-sec-butoxymagnesium, di-tert-butoxymagnesium, diisopropoxymagnesium, etc. Among them, diethoxymagnesium and dipropoxymagnesium are preferred. As the aromatic monocarboxylic acid ester used in the present invention, ethyl benzoate, ethyl P-anisate and ethyl P-toluate are preferred. The general formula TiX 4 used in the present invention (in the formula
is a halogen element. Examples of the titanium halide represented by ) include TiCl 4 , TiBr 4 , TiI 4 and the like, with TiCl 4 being particularly preferred. The ratio of each component used is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and is not particularly limited, but usually the aromatic monocarboxylic acid ester is 0.01 g for 1 g of dialkoxymagnesium. ~10g, preferably 0.1-1g,
Titanium halide is 0.1g or more, preferably 5g
It is used in the above range. In the present invention, the dialkoxymagnesium, the electron donating substance, and the titanium halide are usually brought into contact at a temperature ranging from room temperature to the boiling point of the titanium halide used. The contact time is arbitrary as long as the above-mentioned substances can react sufficiently, but the contact time is usually in the range of 10 minutes to 100 hours. In the present invention, dialkoxymagnesium, aromatic monocarboxylic acid ester, and titanium halide need to be brought into contact at the same time, and in this case, it is preferable that a halogenated hydrocarbon or an aromatic hydrocarbon be present. The reaction product obtained by the contact is washed at least 10 times with an inert organic solvent such as n-heptane in an amount equal to or more than the titanium halide to remove unreacted components, and then further washed with the titanium halide. The catalyst component for polymerizing olefins, which is the object of the present invention, can be obtained by contacting with the compound.
The catalyst component is thoroughly washed with an inert organic solvent and then dried, or used as it is for the polymerization of olefins. These series of operations in the present invention are preferably carried out in the absence of oxygen, moisture, and the like. The catalyst component produced as described above is combined with an organoaluminum compound to form a catalyst for polymerizing olefins. The organoaluminum compound used is used in a molar ratio of 1 to 1000, preferably 1 to 300, per mole of titanium atoms in the catalyst component. Further, during the polymerization, it is possible to add and use a third component such as an electron-donating substance. Polymerization can be carried out in the presence or absence of an organic solvent, and the olefin monomer can be used in either gas or liquid state. The polymerization temperature is 200℃ or less, preferably 100℃ or less, and the polymerization pressure is 100Kg/cm 2 ·G or less, preferably 50Kg/cm2.G or less.
cm2・G or less. Olefins homopolymerized or copolymerized using the catalyst component produced by the method of the present invention include ethylene, propylene, 1-butene, 4-methyl-1
-Pentene etc. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 [Preparation of catalyst components] 5 g of diethoxymagnesium, 2.5 ml of ethyl benzoate, and methylene chloride were placed in a 500 ml round bottom flask that was sufficiently purged with nitrogen gas and equipped with a stirrer.
50 ml and 200 ml of TiCl 4 were charged, the temperature was raised to 90°C, and the reaction was carried out with stirring for 2 hours. 40 minutes after the reaction
Wash 10 times with 200 ml of n-heptane at
200 ml of TiCl 4 was added and reacted at 90°C for 2 hours with stirring. After the reaction was completed, the mixture was cooled to 40° C., and washed with 200 ml of n-heptane repeatedly. When chlorine was no longer detected in the washing solution, the washing was completed and the catalyst component was used. At this time, when the solid and liquid in the catalyst component was separated and the titanium content in the solid was measured, it was found to be 3.95% by weight. [Polymerization] Add 700 ml of n-heptane to an autoclave with an internal volume of 2.0 and a stirring device that was completely purged with nitrogen gas.
301 mg of triethylaluminum and 137 mg of ethyl p-toluate were charged while maintaining a nitrogen gas atmosphere.
mg, then 0.5 titanium atoms of the catalyst component.
mg was charged. After that, 300ml of hydrogen gas was charged and the temperature was raised to 60℃.
6Kg/ while increasing the temperature and introducing propylene gas.
Polymerization was carried out for 2 hours while maintaining a pressure of cm 2 ·G. After completion of polymerization, separate the solid polymer obtained and add 80
It was heated to ℃ and dried under reduced pressure. On the other hand, the amount of polymer dissolved in the polymerization solvent after concentrating the liquid is defined as (A), and the amount of solid polymer is defined as (B). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount was designated as (C). The polymerization activity (D) per catalyst component is expressed by the formula (D)=[(A)+(B)](g)/Amount of catalyst component (g). Furthermore, the yield (E) of crystalline polymer is expressed by the formula (E)=(C)/(B)×100(%), and the yield (F) of total crystalline polymer is expressed by the formula (F)=( Calculated from C)/(A)+(B)×100(%). In addition, residual chlorine in the produced polymer (G),
The MI of the produced polymer is represented by (H). The results obtained are
As shown in Table 1. Example 2 An experiment was conducted in the same manner as in Example 1 except that toluene was used instead of methylene chloride. In addition,
The titanium content in the solid content at this time was 3.52% by weight. The polymerization was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Example 3 An experiment was conducted in the same manner as in Example 1 except that methylene chloride was not used. Note that the titanium content in the solid content at this time was 3.80% by weight. The polymerization was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 1 [Preparation of catalyst component] 100 g of MgCl 2 and 31.5 g of ethyl benzoate are pulverized for 18 hours under a nitrogen gas atmosphere. Thereafter, 100 g of the pulverized composition was taken out and the internal volume was
The mixture was placed in a 2000 ml glass container, 500 ml of TiCl 4 was added thereto, and the reaction was stirred at 65° C. for 2 hours. After the reaction was completed, the mixture was cooled to 40°C, left to stand, and the supernatant liquid was removed by decantation. Next, n-butane 1000
ml was repeatedly washed, and when chlorine was no longer detected in the washing solution, the washing was completed and the catalyst component was used. At this time, when the solid and liquid in the catalyst component was separated and the titanium content in the solid was measured, it was 1.28% by weight.
It was hot. The polymerization was carried out in the same manner as in Example 1, except that 1.0 mg of the catalyst component was used as a titanium atom. The results obtained are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのフローチヤー
トである。
FIG. 1 is a flow chart for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)ジアルコキシマグネシウム、(b)芳香族モノ
カルボン酸エステルおよび(c)一般式TiX4(式中X
はハロゲン元素である。)で表されるチタンハロ
ゲン化物を同時に接触させることによつて得られ
た反応生成物を、該チタンハロゲン化物と同量以
上の不活性有機溶媒で少なくとも10回洗浄した
後、更に(c)一般式TiX4(式中Xはハロゲン元素で
ある。)で表されるチタンハロゲン化物と接触さ
せることを特徴とするオレフイン類重合用触媒成
分の製造方法。
1 (a) dialkoxymagnesium, (b) aromatic monocarboxylic acid ester and (c) general formula TiX 4 (in the formula
is a halogen element. ) The reaction product obtained by simultaneously contacting the titanium halide represented by is washed at least 10 times with an inert organic solvent in an amount equal to or more than that of the titanium halide, and then (c) general 1. A method for producing a catalyst component for polymerizing olefins, which comprises bringing it into contact with a titanium halide represented by the formula TiX 4 (wherein X is a halogen element).
JP17127783A 1983-09-19 1983-09-19 Preparation of catalyst component for polymerization of olefin Granted JPS6063207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17127783A JPS6063207A (en) 1983-09-19 1983-09-19 Preparation of catalyst component for polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17127783A JPS6063207A (en) 1983-09-19 1983-09-19 Preparation of catalyst component for polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS6063207A JPS6063207A (en) 1985-04-11
JPH059445B2 true JPH059445B2 (en) 1993-02-05

Family

ID=15920342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17127783A Granted JPS6063207A (en) 1983-09-19 1983-09-19 Preparation of catalyst component for polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS6063207A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745242A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Method and apparatus for manufacturing semiconductor integrated circuit
JPS5763309A (en) * 1980-10-03 1982-04-16 Idemitsu Kosan Co Ltd Polymerization of alpha-olefin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745242A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Method and apparatus for manufacturing semiconductor integrated circuit
JPS5763309A (en) * 1980-10-03 1982-04-16 Idemitsu Kosan Co Ltd Polymerization of alpha-olefin

Also Published As

Publication number Publication date
JPS6063207A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
JPH0348207B2 (en)
JPH0417206B2 (en)
JPH0425286B2 (en)
JPS61126109A (en) Catalyst component and catalyst for polymerization of olefin
JPS60139706A (en) Olefin polymerization catalyst component
JPH059445B2 (en)
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPH0565522B2 (en)
JPH0415809B2 (en)
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JPH0532405B2 (en)
JP2587247B2 (en) Olefin polymerization catalyst
JPH0442409B2 (en)
JPH0446284B2 (en)
JPH059444B2 (en)
JPH0348204B2 (en)
JPH0348208B2 (en)
JPS58109508A (en) Production of catalytic component for olefin polymerization
JPS61108612A (en) Catalyst component for olefin polymerization and catalyst
JPH0446283B2 (en)
JPH0340045B2 (en)
JPH0532406B2 (en)
JPH0416481B2 (en)
JPS59213709A (en) Preparation of catalytic component for alpha-olefin polymerization
JPH0348205B2 (en)