JPS59142206A - Production of catalyst component for alpha-olefin polymerization - Google Patents

Production of catalyst component for alpha-olefin polymerization

Info

Publication number
JPS59142206A
JPS59142206A JP1460883A JP1460883A JPS59142206A JP S59142206 A JPS59142206 A JP S59142206A JP 1460883 A JP1460883 A JP 1460883A JP 1460883 A JP1460883 A JP 1460883A JP S59142206 A JPS59142206 A JP S59142206A
Authority
JP
Japan
Prior art keywords
catalyst component
titanium
component
polymerization
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1460883A
Other languages
Japanese (ja)
Other versions
JPH0425283B2 (en
Inventor
Minoru Terano
稔 寺野
Kazufumi Yokoyama
横山 和史
Masuo Inoue
益男 井上
Katsuyoshi Miyoshi
三好 勝芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP1460883A priority Critical patent/JPS59142206A/en
Publication of JPS59142206A publication Critical patent/JPS59142206A/en
Publication of JPH0425283B2 publication Critical patent/JPH0425283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To produce the titled component capable of providing a stereoregular polymer in high yields, by suspending a specified dialkoxymagnesium and a carboxylic acid ester in an aromatic hydrocarbon, and contacting the resulting suspension with a titanium halide. CONSTITUTION:A suspension is prepared by adding (A) 1g of a dialkoxymagnesium of the formula Mg(OR)2 (wherein R is alkyl, cycloalkyl, or aryl) and 0.01- 2g of a carboxylic acid ester (e.g., methyl acetate) to (C) an aromatic hydrocarbon (e.g., toluene) and stirring the mixture for 100hr or shorter at a temperature of from room temperature to the b.p. of component (C). This suspension is contacted with at least 0.1g of (D) a titanium halide of the formula TiX4 (wherein X is a halogen) for 10min-10hr at a temperature of from -20 deg.C to the b.p. of component (D). The product is washed with an organic solvent such as n-heptane to obtain a catalyst component for alpha-olefin polymerization.

Description

【発明の詳細な説明】 本発明はα−オレフィン類の重合に供し7た際。[Detailed description of the invention] The present invention is applied to the polymerization of α-olefins.

高活性に作用し、しかも立体規則性重合体を高収率で得
ることのできる高性能触媒成分の製造方法に係り更に詳
しくはジアルコキシマグネシウムをカルボン酸エステル
の存在下で液体のハロゲン化炭化水素中に懸濁させ、し
かる後にハロゲン化チタンに接触させることを特徴とす
るα−オレフィン類重合用触媒成分の製造方法に関する
ものである。
A method for producing a high-performance catalyst component that acts with high activity and can obtain a stereoregular polymer in high yield. The present invention relates to a method for producing a catalyst component for polymerizing α-olefins, which comprises suspending the catalyst component in a titanium halide and then bringing it into contact with a titanium halide.

従来、α−オレフィン類重合用触媒成分としては固体の
チタンハロゲン化物が周知であり広く用いられているが
、触媒成分および触媒成分中のチタン当りの重合体の収
量(以下触媒成分および触媒成分中のチタン当りの重合
活性という。)が低いため触媒残渣を除去するだめの所
謂脱灰工程が不可避であった。との脱灰工程は多量のア
ルコール寸たはキレート剤を使用するために、それ等の
回収装置源だは再生装置が必要子す欠であり、資源、エ
ネルギーその他付随する問題が多く、尚業者にとっては
早急に解決を望まれる重要な課題であった。この煩雑な
脱灰工程を省< プjめに触媒成分とりわけ触媒成分中
のチタン当りの重合活性を高めるべく数多くの研究がな
され提案されている3゜特に最近の傾向として活性成分
であるチタンハロゲン化物等の遷移金属化合物を塩化マ
グネシウム等の担体物質に担持させ、α−オレフィン類
の重合に供した際に触媒成分中のチタン当りの重合活性
を飛躍的に高めたという提案が数多く見かけられる。
Conventionally, solid titanium halides have been well known and widely used as catalyst components for the polymerization of α-olefins. Since the polymerization activity per titanium is low, a so-called demineralization step to remove catalyst residues was unavoidable. Because the deashing process uses a large amount of alcohol or chelating agents, recycling equipment is not necessary for the recovery equipment source, and there are many resource, energy, and other problems associated with it, and it is difficult for operators to This was an important issue that needed to be resolved as soon as possible. In order to eliminate this complicated deashing process, many studies have been conducted and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially the titanium halogen active component. There have been many proposals for dramatically increasing the polymerization activity per titanium in the catalyst component when a transition metal compound such as a compound is supported on a carrier material such as magnesium chloride and used for the polymerization of α-olefins.

例えば特開昭50−126590号公報においては。For example, in JP-A-50-126590.

担体物質である塩化マグネシウムを芳香族カルボン酸エ
ステルと機械的手段によって接触させ、得られた固体組
成物に四・・ロゲン化チタンを液相中で接触させて触媒
成分を得る方法が開示されている。
A method is disclosed in which a catalyst component is obtained by contacting magnesium chloride as a carrier material with an aromatic carboxylic acid ester by mechanical means, and contacting the obtained solid composition with titanium tetrachloride in a liquid phase. There is.

しかしながら塩化マグネシウムに含有される塩素は、生
成重合体の劣化、黄変等の原因となるばかシか、造粒、
成形などの工程に用いる機器の腐食の原因ともなり、そ
のために事実上塩素の影響を無視し得る程の高活性が要
求されているが、前記公報等に開示されている塩化マグ
ネシウムを担体物質として用いた触媒成分においては、
現在に至るまで十分な性能を示すものは得られていない
のが現状である。
However, the chlorine contained in magnesium chloride may cause deterioration and yellowing of the produced polymer, granulation, etc.
It also causes corrosion of equipment used in processes such as molding, and therefore high activity is required to the extent that the effects of chlorine can be virtually ignored. In the catalyst components used,
The current situation is that nothing showing sufficient performance has been obtained to date.

従ってより高い性能を得ることを目的として塩化マグネ
シウム以外のものを使用する試みもなされている。
Therefore, attempts have been made to use substances other than magnesium chloride in order to obtain higher performance.

例えば、特開昭!56−166205号公報にばMg(
OF2)nX2−n(R′は炭素数1〜10のアルキル
基。
For example, Tokukai Akira! No. 56-166205 describes Mg (
OF2) nX2-n (R' is an alkyl group having 1 to 10 carbon atoms.

シクロアルキル基、アリール基寸たはアラルキル基を示
し、Xはハロゲン原子を示し、nは10〜2.0を示す
。)を用いた触媒成分の調製法が開示されている。しか
し乍らこの方法ではTi(OR2)4(R2i[素数1
〜10のアルキル基、シクロアルキル基、アリール基ま
たはアラルキル基を示す。)で表わされる酸素含有チタ
ン化合物を必要とする上、性能的にも当該技術分野の要
求を満足させる程度のものは得られていない。
It represents a cycloalkyl group, an aryl group, or an aralkyl group, X represents a halogen atom, and n represents 10 to 2.0. ) is disclosed. However, in this method, Ti(OR2)4(R2i[prime number 1
~10 alkyl, cycloalkyl, aryl or aralkyl groups. ) is required, and in terms of performance, no one has been obtained that satisfies the requirements of the technical field.

まだ、特開昭57−40510号公報では金属マグネシ
ウム、テトラアルコキンチタン、アルコール、電子供力
性化合物、ハロゲン化チタンを反応させることによって
触媒成分を得る方法が開示されているが、金属マグネ7
ウムから反応を開始することが必要な上、テトラアルコ
キシチタンの使6勺 用も必須要件となっており、なおかつ性能幹にも十分な
値を示していない。
Still, JP-A-57-40510 discloses a method for obtaining a catalyst component by reacting metal magnesium, tetraalcoquine titanium, alcohol, an electrodynamic compound, and titanium halide;
It is necessary to start the reaction from titanium, and the use of tetraalkoxytitanium is also an essential requirement, and it does not show sufficient performance values.

さらに、特開昭57−65509号公報においては9M
g(OF2)2’ (R’は炭素数1〜20のアルキル
基。
Furthermore, in Japanese Patent Application Laid-open No. 57-65509, 9M
g(OF2)2'(R' is an alkyl group having 1 to 20 carbon atoms.

ンクロアルキル基、アリール基あるいはアラルキル基を
示す。)を電子供与性化合物と接触させ。
cycloalkyl group, aryl group, or aralkyl group. ) is brought into contact with an electron-donating compound.

次いでTi(OR”)nX、−n(R2は炭素数1〜1
0のアル゛キル基、シクロアルキル基、アリール基、ア
ルケニル基またはアラルキル基を示し、nは0以上4未
満の実数であり、■は)・ロゲン原子を示す。)と2回
以上反応させることによって触媒成分を得る方法が開示
されているが1重合特性値等において尚該技術分野の要
求を十分に満し得るところまては至っていない。なお、
該Mg(OF2)2を電子供与性化合物と接触させる際
、ヘキサン、ヘプタン等の脂肪族炭化水素を溶媒として
加えることもできるとの記述もあるが、後述の比較例に
示されるように十分な性能を示しているとはいえない。
Next, Ti(OR”)nX, -n (R2 is a carbon number of 1 to 1
0 represents an alkyl group, cycloalkyl group, aryl group, alkenyl group or aralkyl group, n is a real number of 0 or more and less than 4, and ■ represents a ).rogen atom. ) has been disclosed, but it has not yet reached the point where it can fully satisfy the requirements of the technical field in terms of single polymerization characteristic values, etc. In addition,
There is also a description that an aliphatic hydrocarbon such as hexane or heptane can be added as a solvent when bringing the Mg(OF2)2 into contact with an electron-donating compound, but as shown in the comparative example below, sufficient This cannot be said to indicate performance.

本発明者等は斯かる従来技術に残された問題点を解決す
べく鋭意研究の結果、一般式Mg(OR)2(式中Rは
アルキル基、シクロアルキル基まだはアリール基である
。)で表わされるジアルコキシマグネシウムを、カルボ
ン酸エステルの存在下。
As a result of intensive research to solve the problems remaining in the prior art, the present inventors found that the general formula Mg(OR)2 (wherein R is an alkyl group, a cycloalkyl group, or an aryl group). dialkoxymagnesium represented by in the presence of a carboxylic acid ester.

芳香族炭化水素中に懸濁させ、しかる後に一般式TiX
、(式中Xはハロゲン元素である。)で表わされる・・
ロゲン化チタンに接触させることによって触媒性能を飛
躍的に向上させることができだ。その結果触媒成分中に
含まれる塩素量の減少と併せて生成重合体中の塩素量を
、全く無視できる程度にまで低減することができだ。
suspended in an aromatic hydrocarbon and then formed with the general formula TiX
, (in the formula, X is a halogen element)...
Catalytic performance can be dramatically improved by bringing it into contact with titanium halogenide. As a result, the amount of chlorine contained in the catalyst component and the amount of chlorine in the produced polymer can be reduced to a completely negligible level.

更に付随する効果として、生成重合体がほぼ球状である
上2粒度分布が狭く1粒径が大きいという特徴を有して
いる。このだめ、後処理装置への移送等、生成重合体の
取扱いが極めて容易になった。
Further, as an accompanying effect, the produced polymer has a substantially spherical shape, a narrow particle size distribution, and a large particle size. This has made it extremely easy to handle the produced polymer, such as transporting it to post-processing equipment.

現在、工業的なα−オレフィン重合体の製造工程におい
て、造粒工程を省略することが斯界の急務とされている
が2本発明によって得られた触媒成分を使用することに
よって造粒工程を省略し得る可能性がひらけたものとい
える。
Currently, there is an urgent need in the industry to omit the granulation step in the industrial production process of α-olefin polymers, but the granulation step can be omitted by using the catalyst component obtained by the present invention. It can be said that the possibility of doing so has been opened.

また、工業的なα−オレフィン重合体の製造に赴いては
重合時に水素を共存させることがM I制御などの点か
ら一般的とされているが、前記塩化マグネシウムを担体
と己て用いる触媒成分は水素共存下では、活性および立
体規則性が大巾に低下するという欠点を有していた。し
かし2本発明によって得られた触媒成分を用いてα−オ
レフィン類の重合を行なった場合1重合時に水素を共存
させても殆んど活性および立体規則性が低下せず。
In addition, in the industrial production of α-olefin polymers, it is common to allow hydrogen to coexist during polymerization from the viewpoint of MI control, but the catalyst components that use magnesium chloride as a carrier are had the disadvantage that the activity and stereoregularity were greatly reduced in the presence of hydrogen. However, when α-olefins are polymerized using the catalyst components obtained according to the present invention, the activity and stereoregularity hardly decrease even if hydrogen is present during the first polymerization.

斯かる効果は当業者にとって極めて大きな利益をもたら
すものである。
Such an effect is of great benefit to those skilled in the art.

本発明において使用されるジアルコキシマグネシウムと
しては、ジェトキシマグネシウム、ジブトキシマグネシ
ウム、ジフェノキシマグネシウム。
Examples of dialkoxymagnesium used in the present invention include jetoxymagnesium, dibutoxymagnesium, and diphenoxymagnesium.

ジプロポキノマグネシウム、ジー5ee−ブトキシマグ
ネシウム、ジーtert−ブトキシマグネシウム。
Dipropoquinomagnesium, di-5ee-butoxymagnesium, di-tert-butoxymagnesium.

ジインプロポキシマグネシウム等があげられる。Examples include diimpropoxymagnesium.

本発明において使用されるカルボン酸エステルとしては
、酢酸エチル、。メタクリル酸メチルなどの脂肪族カル
ボン酸エステル類、トルイル酸エチル、アニス酸エチル
、安息香酸エチルなどの芳香族カルボン酸エステル類等
があげられるが、これ等のうち好ましいものは芳香族カ
ルボン酸エステル類である。
The carboxylic acid ester used in the present invention includes ethyl acetate. Examples include aliphatic carboxylic acid esters such as methyl methacrylate, aromatic carboxylic acid esters such as ethyl toluate, ethyl anisate, and ethyl benzoate, among which aromatic carboxylic acid esters are preferred. It is.

本発明において使用される芳香族炭化水素とし  −て
は、ベンゼン、トルエン、キシレン等がアケラれる。
Aromatic hydrocarbons used in the present invention include benzene, toluene, xylene and the like.

本発明において使用される一般式TiX4 (式中又は
ハロゲン元素である。)で表わされるハロゲン化チタン
としては、  TiO4,TIB、r4.  TiI4
等があげられるが中でもTict、が好ましい。
The titanium halides represented by the general formula TiX4 (in the formula or a halogen element) used in the present invention include TiO4, TIB, r4. TiI4
Among them, Tict is preferable.

本発明における各成分の使用割合は生成する触媒成分の
性能に悪影響を及ぼすことの無い限り任意であシ、特に
限定するものではないが通常アルコキシマグネシウム1
fに対し、カルボン酸エステル類は001〜22.好ま
しぐはo1〜12の範囲であり、・・1コゲン化チタン
は0.11以上、好1しくは1g以上の範囲で用いられ
る。また、芳香族炭化水素は懸濁液を形成し得る量であ
れば任意の割合で用いられる。
The ratio of each component used in the present invention is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and is not particularly limited, but usually alkoxymagnesium 1 1
f, carboxylic acid esters are 001 to 22. Preferably, the amount is in the range of o1 to 12, and the amount of monocogenated titanium is 0.11 or more, preferably 1 g or more. Further, the aromatic hydrocarbon can be used in any proportion as long as it can form a suspension.

本発明におけるアルコキシマグネシウムのカルボン酸エ
ステル共存下での芳香族炭化水素への懸濁は1通常室温
ないし用いられる芳香族炭化水素の沸点までの温度で1
00時間以下、好ましくは10時間以下の範囲で行々わ
れる。この際、該懸濁液が均一な溶液にならな己ことが
必要である。
In the present invention, suspension of alkoxymagnesium in an aromatic hydrocarbon in the presence of a carboxylic acid ester is carried out at a temperature ranging from usually room temperature to the boiling point of the aromatic hydrocarbon used.
It is carried out within a range of 00 hours or less, preferably 10 hours or less. At this time, it is necessary that the suspension does not become a uniform solution.

まだ、該懸濁液とハロゲン化チタンの接触は1通常−2
0℃ないし用いられるノ・ロゲン化チタンの沸点まで、
好ましくは一10℃〜100℃の温度で10分ないし1
0時間の範囲で行なわれる。この際該懸濁液をハロゲン
化チタンに加えることが好ましい。
Still, the contact between the suspension and titanium halide is usually 1-2.
From 0℃ to the boiling point of the titanium chloride used,
Preferably at a temperature of -10°C to 100°C for 10 minutes to 1
It is carried out in the range of 0 hours. At this time, it is preferable to add the suspension to the titanium halide.

本発明における各成分の接触手段は各成分が十分に接触
し得る方法であれば特に制限は無いが。
The means for contacting each component in the present invention is not particularly limited as long as it is a method that allows sufficient contact between each component.

通常攪拌機を具備した容器を用いて攪拌し乍ら行なわれ
る。
This is usually carried out while stirring using a container equipped with a stirrer.

本発明においてアルコキシマグネシウムをカルボン酸エ
ステルの存在下、芳香族炭化水素溶媒中に懸濁させ、し
かる後にハロゲン化チタンに接触きせた後、n−ヘプタ
ン等の有機溶媒で洗浄することも可能であり、更に・・
ロゲン化チタンとの接触を繰返し行なうことも妨げない
In the present invention, it is also possible to suspend alkoxymagnesium in an aromatic hydrocarbon solvent in the presence of a carboxylic acid ester, then contact it with a titanium halide, and then wash it with an organic solvent such as n-heptane. , even more...
There is no hindrance to repeated contact with titanium halide.

本発明のこれ等一連の操作は酸素、水分等の不存在下に
行なわれることが好ましい。
These series of operations of the present invention are preferably carried out in the absence of oxygen, moisture, and the like.

以上の如くして製造された触媒成分は有機アルミニウム
化合物と組合せてα−オレフィン類重合用触媒を形成す
る。使用される有機アルミニウム化合物は触媒成分中の
チタン原子のモル当りモル比で1〜1000.好壕しく
は1〜300の範囲で用いられる。また重合に際l〜て
電子供与性物質などの第三成分を添加使用することも妨
げない。
The catalyst component produced as described above is combined with an organoaluminum compound to form a catalyst for polymerizing α-olefins. The organoaluminum compound used has a molar ratio of 1 to 1000.0% per mole of titanium atoms in the catalyst component. It is preferably used in the range of 1 to 300. Furthermore, it is not prohibited to add a third component such as an electron-donating substance during the polymerization.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、またα−オレフィン単量体は気体および液
体のいずれの状態でも用いることができる。重合温度は
200℃以下好′ましくは100℃以下であシ2重合圧
力は100 Kg/c4−o以下、好1しくは”’ O
K9/cd−G以下である、。
Polymerization can be carried out in the presence or absence of an organic solvent, and the α-olefin monomer can be used in either gas or liquid state. The polymerization temperature is 200°C or less, preferably 100°C or less, and the polymerization pressure is 100 kg/c4-o or less, preferably 100 kg/c4-o or less.
K9/cd-G or lower.

本発明方法により製造された触媒成分を用いて単独重合
または共重合されるα−オレフィン類はプロピレン、1
−7’テン、4−メチル−1−ぺ/テン等であり、また
α−オレフィン類とエチレンとの共重合も可能である。
The α-olefins to be homopolymerized or copolymerized using the catalyst component produced by the method of the present invention are propylene, 1
-7'tene, 4-methyl-1-pe/tene, etc., and copolymerization of α-olefins and ethylene is also possible.

以下本発明を実施例および比較例により具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 〔触媒成分の調製〕 窒素ガスで十分に置換され、攪拌機を具備した容量20
0 mlの丸底フラスコにジェトキシマグネシウム51
.安息香酸エチル2. Odおよびトルエン25m1を
装入して懸濁状態とし、70℃で1時間攪拌した。次い
でこの懸濁液を攪拌機を具備した容量500m7!の丸
底フラスコ中の0℃のTiC!74200m1中に圧送
後70℃に昇温して2時間攪拌し寿から反応させた。反
応終了後40℃のn−へブタン30ローで6回洗浄し、
新たにTiC4+50m1を加えて70℃で2時間攪拌
しながら反応させた。反応終了後40℃壕で冷却し2次
いでn−へブタン200 mlによる洗浄を繰り返し行
ない、洗浄液中に塩素が検出されなくなった時点で洗浄
終了として触媒成分としだ。なお、この際該触媒成分中
の固液を分離して固体分のチタン含有率を測定したとこ
ろ5.89重量係であった。
Example 1 [Preparation of catalyst components] A 20-volume tank sufficiently purged with nitrogen gas and equipped with a stirrer
Jetoxymagnesium 51 in a 0 ml round bottom flask
.. Ethyl benzoate2. Od and 25 ml of toluene were charged to form a suspension, and the mixture was stirred at 70°C for 1 hour. This suspension was then poured into a 500 m7 volume equipped with a stirrer. TiC at 0°C in a round bottom flask of! After the mixture was pumped into a 74,200 ml vessel, the temperature was raised to 70°C, and the mixture was stirred for 2 hours to react from the beginning. After the reaction was completed, it was washed 6 times with 30 rows of n-hebutane at 40°C.
50 ml of TiC4+ was newly added and reacted at 70°C for 2 hours with stirring. After the reaction was completed, the mixture was cooled in a trench at 40°C and washed repeatedly with 200 ml of n-hebutane. When chlorine was no longer detected in the washing solution, the washing was completed and the catalyst component was removed. At this time, when the solid and liquid in the catalyst component was separated and the titanium content of the solid was measured, it was found to be 5.89 by weight.

〔重 合〕[Overlapping]

窒素ガスで完全に置換された内容積2.0tの攪拌装置
付オートクレーブに、n−へブタン70〇−を装入し、
窒素ガス雰囲気を保ちつつトリエチルアルミニウム30
1〜.P−)ルイル酸エチル137m@、次いで前記触
媒成分をチタン原子として1.0■装入した。その後水
素ガス500dlを装入し60℃に昇温してプロピレン
ガスを導入しつつ6 Kg/c++!−Gの圧力を維持
して2時間の重合を行なった。重合終了後得られた固体
重合体をE別し。
700 - of n-hebutane was charged into an autoclave with an internal volume of 2.0 t and equipped with a stirring device, which was completely purged with nitrogen gas.
Triethyl aluminum 30 while maintaining nitrogen gas atmosphere
1~. P-) 137 m@ of ethyl ruylate, and then 1.0 μm of the above catalyst component as titanium atoms were charged. After that, 500 dl of hydrogen gas was charged, the temperature was raised to 60℃, and while propylene gas was introduced, 6 Kg/c++! Polymerization was carried out for 2 hours while maintaining the pressure of -G. After completion of polymerization, the obtained solid polymer was separated into E.

80℃に加温して減圧乾燥した0、一方沢液を濃縮して
重合溶媒に溶存する重合体の量を(A)とし、固体重合
体の量を(B)とする。寸だ得られた同体重合体を沸騰
n−へブタンで6時間抽出しn−へブタンに不溶解の重
合体を得、この量を(C)とする。
The amount of polymer dissolved in the polymerization solvent after heating to 80° C. and drying under reduced pressure, and concentrating the filtrate, is defined as (A), and the amount of solid polymer is defined as (B). The obtained isopolymer was extracted with boiling n-hebutane for 6 hours to obtain a polymer insoluble in n-hebutane, and this amount was designated as (C).

触媒成分当りの重合活性(D)を式 まだ結晶性重合体の収率(E)を式 で表わし、全結晶性重合体の収率(F)を式より求めた
。まだ生成重合体中の残留塩素を(G)。
The polymerization activity (D) per catalyst component was expressed by the formula, and the yield (E) of the crystalline polymer was expressed by the formula, and the yield (F) of the total crystalline polymer was determined from the formula. There is still residual chlorine in the produced polymer (G).

生成重合体のM工を()1)で表わす。得られた結果は
The M process of the produced polymer is represented by ()1). The results obtained are:

第1表に示す通りである。As shown in Table 1.

実施例2 安息香酸エチルを3〇−使用した以外は実施例1と同様
にして実験を行なった。なお、この際の固体分中のチタ
ン含有率は3.60重量係であった。
Example 2 An experiment was carried out in the same manner as in Example 1 except that 30-ethyl benzoate was used. Incidentally, the titanium content in the solid content at this time was 3.60% by weight.

重合に際しては実施例1と同様にして実験を行なった。During polymerization, an experiment was conducted in the same manner as in Example 1.

得られた結果は第1表に示す通、りである。The results obtained are shown in Table 1.

実施例6 懸濁液を圧送する際、  TiCL、の温度を室温とし
た以外は実施例1と同様にして実験を行なった。
Example 6 An experiment was conducted in the same manner as in Example 1 except that the temperature of TiCL was set to room temperature when the suspension was pumped.

なお、この際の固体分中のチタン含有率は3.26重量
係であった。重合に際しては実施例1と同様にして実験
を行なった。得られた結果は第1表に示す通りである。
Incidentally, the titanium content in the solid content at this time was 3.26% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

実施例4 ジェトキシマグネシウム52と安息香酸エチル2.0y
d、)ルエン25−よりなる懸濁液の攪拌およびしかる
後のTiC44との反応を80℃で行なった以外は実施
例1と同様にして実験を行なった。
Example 4 Jetoxymagnesium 52 and ethyl benzoate 2.0y
d.) An experiment was carried out in the same manner as in Example 1, except that the suspension of toluene 25- was stirred and the subsequent reaction with TiC44 was carried out at 80°C.

なお、この際の固体分中のチタン含有率は681重量係
であった。重合に際しては触媒成分をチタン原子として
0.5 mg装入1〜だ以外は実施例1と同様にして実
験を行なった。得られた結果は第1表に示す通りである
Incidentally, the titanium content in the solid content at this time was 681% by weight. During the polymerization, an experiment was carried out in the same manner as in Example 1, except that 0.5 mg of titanium atoms were used as the catalyst component. The results obtained are shown in Table 1.

実施例5 トルエンの代りに0−キルンを用いた以外ハ実施例1と
同様にして実験を行なった。なお、この際の固体分中の
チタン含有率は622重量係であった。重合に際しては
実施例1と同様にして実験を行なった。得られた結果は
第1表に示す通りである。
Example 5 An experiment was conducted in the same manner as in Example 1 except that an O-kiln was used instead of toluene. Incidentally, the titanium content in the solid content at this time was 622% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

比較例1 トルエンのかわりにn−へブタンを用いた以外は実施例
1と同様にして実験を行なった。なお。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that n-hebutane was used instead of toluene. In addition.

この際の固体分生のチタン含有率は256重量係であっ
た。
The titanium content of the solid fraction at this time was 256% by weight.

′  重合に際しては実施例1と同様にして実験を行な
った。得られた結果は第1表に示す通りである。
' For polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

比較例2 窒素ガスで十分に置換され、攪拌機を具備した容量20
0−の丸底フラスコにジェトキシマグネシウム51.安
息香酸エチル201dおよびTiCA425m1を装入
り、70℃で1時間攪拌下で反応させた。次いで攪拌機
を具備した容量501]m7!の丸底フラスコ中の0℃
のTiO4,200ml中に圧送後。
Comparative Example 2 Capacity 20 fully purged with nitrogen gas and equipped with a stirrer
Jetoxymagnesium 51.0- in a round bottom flask. 201 d of ethyl benzoate and 425 ml of TiCA were charged and reacted at 70° C. for 1 hour with stirring. Then the capacity 501] m7 equipped with a stirrer! 0°C in a round bottom flask of
After pumping into 200 ml of TiO4.

70℃に昇温しで2時間攪拌しながら反応させた。The temperature was raised to 70° C., and the reaction was allowed to proceed with stirring for 2 hours.

反応終了後40℃まで冷却し1次いでローへブタン20
0m7!による洗浄を繰返し行ない、洗浄液中に塩素が
検出されなくなった時点で洗浄終了として触媒成分とし
た。なお、この際の固体分生のチタン含有率を測定した
ところ399重量係であづた。
After the reaction was completed, it was cooled to 40°C and then diluted with 20% of rhobutane.
0m7! The cleaning was repeated, and when chlorine was no longer detected in the cleaning solution, the cleaning was completed and the catalyst component was used. Incidentally, when the titanium content of the solid agglomerate was measured, it was found to be 399% by weight.

重合に際しては実施例1と同様にして実験を行なった。During polymerization, an experiment was conducted in the same manner as in Example 1.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

Claims (1)

【特許請求の範囲】 (F)  (a)一般式Mg (OR)2 (式中Rは
アルキル基。 シクロアルキル基またはアリール基である。)で表わさ
れるジアルコキシマグネシラムラ、(b)カルボン酸エ
ステルの存在下、(C)芳香族炭化水素中に懸濁させ、
しかる後に(d)一般式T1X4(式中Xはハロゲン元
素である。)で表わされるハロゲン化チタンに接触させ
ることを特徴とするα−オレフィン類重合用触媒成分の
製造方法。
[Scope of Claims] (F) (a) Dialkoxymagnesiramura represented by the general formula Mg (OR)2 (in the formula, R is an alkyl group, a cycloalkyl group or an aryl group), (b) a carboxylic acid (C) suspended in an aromatic hydrocarbon in the presence of an ester;
A method for producing a catalyst component for polymerizing α-olefins, which is then brought into contact with (d) a titanium halide represented by the general formula T1X4 (wherein X is a halogen element).
JP1460883A 1983-02-02 1983-02-02 Production of catalyst component for alpha-olefin polymerization Granted JPS59142206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1460883A JPS59142206A (en) 1983-02-02 1983-02-02 Production of catalyst component for alpha-olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1460883A JPS59142206A (en) 1983-02-02 1983-02-02 Production of catalyst component for alpha-olefin polymerization

Publications (2)

Publication Number Publication Date
JPS59142206A true JPS59142206A (en) 1984-08-15
JPH0425283B2 JPH0425283B2 (en) 1992-04-30

Family

ID=11865912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1460883A Granted JPS59142206A (en) 1983-02-02 1983-02-02 Production of catalyst component for alpha-olefin polymerization

Country Status (1)

Country Link
JP (1) JPS59142206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158704A (en) * 1986-01-06 1987-07-14 Toho Titanium Co Ltd Catalyst for polymerization of olefin
JPS62164702A (en) * 1986-01-17 1987-07-21 Toho Titanium Co Ltd Catalyst component and catalyst for polymerization of olefin
WO1987006945A1 (en) * 1986-05-06 1987-11-19 Toho Titanium Co., Ltd. Catalyst for polymerizing olefins
WO2018026331A1 (en) * 2016-08-04 2018-02-08 Irpc Public Company Limited Olefin polymerization catalyst and process for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122113A (en) * 1981-01-21 1982-07-29 Yamaha Motor Co Ltd Exhaust tube for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122113A (en) * 1981-01-21 1982-07-29 Yamaha Motor Co Ltd Exhaust tube for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158704A (en) * 1986-01-06 1987-07-14 Toho Titanium Co Ltd Catalyst for polymerization of olefin
JPH06104693B2 (en) * 1986-01-06 1994-12-21 東邦チタニウム株式会社 Catalyst for olefin polymerization
JPS62164702A (en) * 1986-01-17 1987-07-21 Toho Titanium Co Ltd Catalyst component and catalyst for polymerization of olefin
JPH0730129B2 (en) * 1986-01-17 1995-04-05 東邦チタニウム株式会社 Olefin polymerization catalyst
WO1987006945A1 (en) * 1986-05-06 1987-11-19 Toho Titanium Co., Ltd. Catalyst for polymerizing olefins
US4829037A (en) * 1986-05-06 1989-05-09 Toho Titanium Co., Ltd. Catalyst for polymerization of olefins
WO2018026331A1 (en) * 2016-08-04 2018-02-08 Irpc Public Company Limited Olefin polymerization catalyst and process for preparing the same

Also Published As

Publication number Publication date
JPH0425283B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JPS6155104A (en) Olefin polymerization catalyst component and catalyst
EP0576411B1 (en) An improved catalyst system for the polymerization of olefins
JPS633010A (en) Catalyst for polymerization of olefin
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPS61108611A (en) Catalyst component for olefin polymerization and catalyst
JPS6038407A (en) Production of catalyst component for alpha-olefin polymerization
JPS5912904A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPH0415809B2 (en)
JP2673555B2 (en) Solid catalyst component for ethylene-propylene copolymer heavy rubber production
JPS59213709A (en) Preparation of catalytic component for alpha-olefin polymerization
JPS59221308A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS6067510A (en) Production of catalyst components for olefin polymerization
JP2617901B2 (en) Method for producing solid catalyst component for olefin polymerization
JPH059445B2 (en)
JPH0565522B2 (en)
JPH0446284B2 (en)
JPH01245002A (en) Catalyst for polymerizing olefins
JPS64965B2 (en)
JPH0442409B2 (en)
JPS6018504A (en) Preparation of catalyst component for polymerization of olefin
JPS58109508A (en) Production of catalytic component for olefin polymerization
JPS61108612A (en) Catalyst component for olefin polymerization and catalyst
JPS60243103A (en) Catalyst component and catalyst for polymerizing olefin
JPS61233005A (en) Catalyst component for polymerizing olefin and catalyst
JPS6356506A (en) Catalyst for polymerization of olefins