JPS6067510A - Production of catalyst components for olefin polymerization - Google Patents

Production of catalyst components for olefin polymerization

Info

Publication number
JPS6067510A
JPS6067510A JP17627383A JP17627383A JPS6067510A JP S6067510 A JPS6067510 A JP S6067510A JP 17627383 A JP17627383 A JP 17627383A JP 17627383 A JP17627383 A JP 17627383A JP S6067510 A JPS6067510 A JP S6067510A
Authority
JP
Japan
Prior art keywords
titanium
component
catalyst component
catalyst
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17627383A
Other languages
Japanese (ja)
Other versions
JPH0532405B2 (en
Inventor
Minoru Terano
稔 寺野
Kazufumi Yokoyama
横山 和史
Masuo Inoue
益男 井上
Katsuyoshi Miyoshi
三好 勝芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP17627383A priority Critical patent/JPS6067510A/en
Publication of JPS6067510A publication Critical patent/JPS6067510A/en
Publication of JPH0532405B2 publication Critical patent/JPH0532405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:Magnesium dialkoxide, an electron donor, a titanium halide and a specific composition are brought into contact together to give the titled component with reduced chlorine remaining for polymerization catalyst of high activity giving stereoregular polymer in high yield. CONSTITUTION:(A) magnesium dialkoxide, preferably magnesium diethoxide, (B) an electron donor, preferably ethyl benzoate, (C) a titanium halide of the formula: TiX4, preferably titanium tetrachloride and (D) a composition resulting from reaction between oxide or hydroxide of an element in group I -IV in the periodic table, preferably aluminum oxide and component C are brought into contact with one another to give the objective catalyst component. Usually, the resultant component is used in combination with an organoaluminum compound. EFFECT:The residual amount of the catalyst can be reduced.

Description

【発明の詳細な説明】 本発明はオレフィン類の重合に供した際、高活性に作用
し、しかも立体規則性重合体を高収率で得ることのでき
る高性能触媒成分の製造方法に係り更に詳しくはジアル
コキシマグネシウムと電子供与性物質、チタ/・・ロゲ
ン化物および周期律表第■〜■族の元素の酸化物または
水酸化物を該チタン・・ロゲン化物と反応させて得られ
る組成物と接触させることを特徴とするオレフィン類重
合用触媒成分の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-performance catalyst component that exhibits high activity when subjected to the polymerization of olefins and is capable of obtaining a stereoregular polymer in high yield. More specifically, a composition obtained by reacting dialkoxymagnesium with an electron-donating substance, titanium/...logenide, and an oxide or hydroxide of an element of Groups ■ to ■ of the periodic table with said titanium...logenide. The present invention relates to a method for producing a catalyst component for polymerizing olefins, which comprises contacting with a catalyst component for polymerizing olefins.

従来、オレフィン類重合用触媒成分としては固体のチタ
ンハロゲン化物が周知であシ広く用いられているが、触
媒成分および触媒成分中のチタン当りの重合体の収量(
以下触媒成分および触媒成分中のチタン当りの重合活性
という。)が低いため触媒残渣を除去するための所謂脱
灰工程が不可避であった。この脱灰工程は多量のアルコ
ールまたはキレート剤を使用するために、それ等の回収
装置または再生装置が必要不可欠であり、資源、エネル
ギーその他付随する問題が多く、当業者にとっては早急
に解決を望まれる重要な課題であった。この煩雑な脱灰
工程を省くために触媒成分とりわけ触媒成分中のチタン
当りの重合活性を高めるべく数多くの研究がなされ提案
されている。
Conventionally, solid titanium halides have been well known and widely used as catalyst components for polymerizing olefins, but the yield of polymer per catalyst component and titanium in the catalyst component (
Hereinafter, it will be referred to as the catalyst component and the polymerization activity per titanium in the catalyst component. ) was so low that a so-called deashing step was necessary to remove catalyst residues. Since this deashing process uses a large amount of alcohol or chelating agent, recovery equipment or regeneration equipment for these is indispensable, and there are many problems associated with resources, energy, etc., and those skilled in the art would like to solve them as soon as possible. This was an important issue. In order to eliminate this complicated deashing step, many studies have been made and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially in the catalyst component.

特に最近の傾向として活性成分であるチタン・・ロゲン
化物等の遷移金属化合物を塩化マグネシウム等の担体物
質に担持させ、オレフィン類の重合に供した際に触媒成
分中のチタン当シの重合活性を飛躍的に高めたという提
案が数多く見かけられる。
In particular, a recent trend is to support transition metal compounds such as titanium chlorides, which are active ingredients, on a carrier material such as magnesium chloride, and when used in the polymerization of olefins, the polymerization activity of titanium in the catalyst component is reduced. There are many proposals that have dramatically improved this.

例えば特開昭50−126590号公報においては、担
体物質である塩化マグネシウムを芳香族カルボン酸エス
テルと機械的手段によって接触させ、得られた固体組成
物に四・・ロゲン化チタンを液相中で接触させて触媒成
分を得る方法が開示されている。
For example, in JP-A No. 50-126590, magnesium chloride as a carrier material is brought into contact with an aromatic carboxylic acid ester by mechanical means, and titanium tetrachloride is added to the obtained solid composition in a liquid phase. A method of contacting catalyst components is disclosed.

しかしながら担体物質としてその主流をしめる塩化マグ
ネシウムに含有される塩素は、生成重合体に悪影響を及
ぼすという欠点を有しておシ、そのだめに事実上塩素の
影響を無視し得る程の高活性が要求されたり、或いはま
た塩化マグネシウムそのものの濃度を低くおさえる必要
に迫られるなど未解決な部分を残していた。
However, the chlorine contained in magnesium chloride, which is the predominant carrier material, has the disadvantage of having a negative effect on the polymer produced, and the activity is so high that the influence of chlorine can be virtually ignored. However, there remained unresolved issues such as the need to lower the concentration of magnesium chloride itself or the need to lower the concentration of magnesium chloride itself.

従って担体物質として有効に作用し得るものとして塩化
マグネシウム以外のものを使用する試みもなされている
。しかし従来提案されている方法においては触媒成分当
りの重合活性を高めることは勿論、立体規則性重合体の
収率をも高度に維持することをめる当該技術分野の要求
を十分に充し得るものは提案されていない。
Therefore, attempts have been made to use substances other than magnesium chloride that can effectively act as carrier materials. However, the methods proposed so far can not only increase the polymerization activity per catalyst component but also fully satisfy the requirements of the technical field of maintaining a high yield of stereoregular polymers. Nothing has been proposed.

本発明者等は斯かる従来技術に残された課題を解決すべ
く触媒成分当りの重合活性ならびに立体規則性重合体の
収率を高度に維持しつつ、生成重合体中の残留塩素を低
下させることを目的として鋭意研究の結果本発明に達し
、荘に提案するものである。
In order to solve the problems remaining in the prior art, the present inventors have devised a method to reduce the residual chlorine in the produced polymer while maintaining a high degree of polymerization activity per catalyst component and the yield of stereoregular polymer. As a result of intensive research, we have arrived at the present invention and propose it to So.

即ち、本発明の特色とするところは(a)ジアルコキシ
マグネシウム、(b)電子供与性物質、(C)一般式T
i X4(式中Xはハロゲン元素である。)で表わされ
るチタン・・ロゲン化物および(d)周期律表第1〜■
族の元素の酸化物または水酸化物を該チタンハロゲン化
物と反応させて得られる組成物と接触させてオレフィン
類の重合用触媒成分として用いるところにあり、斯かる
操作を行なうことにより単に周期律表第1〜第■族の元
素の酸化物または水酸化物を共存させた場合に比較し、
極めて高い触媒性能を得ることができる。
That is, the features of the present invention are (a) dialkoxymagnesium, (b) electron-donating substance, and (C) general formula T.
i Titanium halide represented by X4 (wherein X is a halogen element) and (d) Periodic Table No. 1 to ■
The oxide or hydroxide of a group element is brought into contact with the composition obtained by reacting with the titanium halide and used as a catalyst component for the polymerization of olefins. Comparing the cases where oxides or hydroxides of elements of Groups 1 to Ⅰ of Table 1 are coexisting,
Extremely high catalytic performance can be obtained.

本発明によれば従来かかる技術分野でその主流 3− をしめていた塩化マグネシウム担体付触媒成分に残され
ていた課題である塩素含量を極めて低くおさえることを
可能ならしめた。
According to the present invention, it has become possible to suppress the chlorine content to an extremely low level, which is a problem that remains in the catalyst component with a magnesium chloride support, which has conventionally been the mainstream in this technical field.

生成重合体に含まれる塩素は造粒、成形などの工程に用
いる機器の腐食の原因となる上、生成重合体そのものの
劣化、黄変等の原因ともなり、これを低減させることが
できたことは当業者にとって極めて重要な意味をもつも
のである。
Chlorine contained in the produced polymer not only causes corrosion of equipment used in processes such as granulation and molding, but also causes deterioration and yellowing of the produced polymer itself, and this has been reduced. has extremely important meaning for those skilled in the art.

勿論、所期の目的である重合活性を犠牲にすることなく
、立体規則性重合体の収率においても極めて優れた効果
を奏することが実証されている。
Of course, it has been demonstrated that the method has extremely excellent effects on the yield of stereoregular polymers without sacrificing the intended purpose of polymerization activity.

本発明によって得られた触媒成分を用いてオレフィン類
の重合を行なった場合、生成重合体中の触媒残渣を極め
て低くおさえることができ、しかも残留塩素量が微量で
あるために生成重合体に及ぼす塩素の影響を低減するこ
とができる。更に立体規則性重合体の収率においても極
めて優れた効果を示している。
When olefins are polymerized using the catalyst component obtained according to the present invention, the amount of catalyst residue in the produced polymer can be kept extremely low, and since the amount of residual chlorine is very small, there is no effect on the produced polymer. The influence of chlorine can be reduced. Furthermore, it shows extremely excellent effects in terms of the yield of stereoregular polymers.

本発明において使用されるジアルコキシマグネシウムと
してはジェトキシマグネシウム、ジブト 4− キシマグネシウム、ジフェノキシマグネシウム、ジプロ
ポキシマグネシウム、ジー5ec−プトキシマグネシウ
ム、ジーtert−ブトキシマグネシウム、ジインプロ
ポキシマグネシウム等があげられるが中でもジェトキシ
マグネシウム、ジプロポキシマグネシウムが好ましい。
Examples of the dialkoxymagnesium used in the present invention include jetoxymagnesium, dibut4-xymagnesium, diphenoxymagnesium, dipropoxymagnesium, di-5ec-ptoxymagnesium, di-tert-butoxymagnesium, diimpropoxymagnesium, etc. Among them, jetoxymagnesium and dipropoxymagnesium are preferred.

本発明において使用される電子供与性物質としては芳香
族カルボン酸エステル類が好ましく、その中でも安息香
酸エチル、p−アニス酸エチルおよびp−トルイル酸エ
チルが特に好ましい。
As the electron donating substance used in the present invention, aromatic carboxylic acid esters are preferred, and among these, ethyl benzoate, ethyl p-anisate, and ethyl p-toluate are particularly preferred.

本発明において使用される一般式TiXn(式中Xはハ
ロゲン元素である。)で表わされるチタンハロゲン化物
としてはTiCl2. TiBr4. TiI4等があ
げられるが中でも’piCt4が好ましい。
The titanium halide represented by the general formula TiXn (wherein X is a halogen element) used in the present invention includes TiCl2. TiBr4. Examples include TiI4, among which 'piCt4 is preferred.

本発明において使用される周期律表第■〜■族の元素の
酸化物まだは水酸化物としては、酸化ナトリウム、酸化
カリウム、酸化カルシウム、酸化ホウ素、酸化アルミニ
ウム、酸化ケイ素、水酸化マグネシウム、水酸化カルシ
ウム、等があげられるが、中でも酸化マグネシウム、酸
化アルミニウム、酸化ケイ素、および水酸化マグネシウ
ムが好ましい。
Examples of the oxides and hydroxides of elements in Groups ■ to ■ of the periodic table used in the present invention include sodium oxide, potassium oxide, calcium oxide, boron oxide, aluminum oxide, silicon oxide, magnesium hydroxide, and water. Examples include calcium oxide, among which magnesium oxide, aluminum oxide, silicon oxide, and magnesium hydroxide are preferred.

これ等各成分の使用割合は生成される触媒成分の性能に
悪影響を及ぼすことの無い限り任意であり、特に限定す
るものではないが通常ジアルコキシマグネシウム1モル
に対し、電子供与性物質は0.01〜50モル、好まし
くは0.1〜5モル、チタン・・ロゲン化物は0.01
モル以上好1しくは1モル以上の範囲で用いられる。
The ratio of each of these components used is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and is not particularly limited, but usually 0.0% of the electron donating substance is used per 1 mole of dialkoxymagnesium. 01 to 50 mol, preferably 0.1 to 5 mol, titanium...loginide is 0.01 mol
It is used in a range of 1 mole or more, preferably 1 mole or more.

また、周期律表第r〜■族の元素の酸化物または水酸化
物をチタン・・ロゲン化物と反応させて得られる組成物
は、ジアルコキシマグネシウム12に対して0.01〜
102、好ましくは0.12〜1.07の範囲で用いら
れる。
In addition, a composition obtained by reacting an oxide or hydroxide of an element of groups R to II of the periodic table with a titanium chloride has a content of 0.01 to 12% of dialkoxymagnesium 12.
102, preferably in the range of 0.12 to 1.07.

本発明におけるジアルコキシマグネシウムト電子供与性
物質とチタン・・ロゲン化物および周期律表第1〜■族
の元素の酸化物または水酸化物を該チタンハロゲン化物
と反応させて得られる組成物の接触は、通常室温ないし
用いられるチタンハロゲン化物の沸点までの温度範囲で
行なわれる。接触時間は上記各物質が十分に反応しうる
範囲であれば任意であるが通常10分ないし100時間
の範囲で行なわれる。
Contact of the composition obtained by reacting the dialkoxymagnesium electron-donating substance in the present invention with the titanium halide, and the oxide or hydroxide of an element of Groups 1 to 2 of the Periodic Table. This is usually carried out at a temperature ranging from room temperature to the boiling point of the titanium halide used. The contact time is arbitrary as long as the above-mentioned substances can sufficiently react, but the contact time is usually in the range of 10 minutes to 100 hours.

なお、この際各成分の接触方法等は特に限定されず、ま
だ・・ロゲン化炭化水素等の有機溶媒を共存させること
も妨げない。
At this time, the method of contacting each component is not particularly limited, and an organic solvent such as a logenated hydrocarbon may also be allowed to coexist.

前記処理後得られた生成物にくり返しチタンノ・ロゲン
化物等を接触させることも可能であり、またn−へブタ
ン等の有機溶媒を用いて洗浄することも可能である。
It is also possible to repeatedly contact the product obtained after the above-mentioned treatment with a titanium chloride, etc., and it is also possible to wash it using an organic solvent such as n-hebutane.

本発明におけるこれ等一連の操作は酸素および水分等の
不存在下に行なわれることが好ましい。
These series of operations in the present invention are preferably carried out in the absence of oxygen, moisture, and the like.

以上の如くして製造された触媒成分は有機アルミニウム
化合物と組合せてオレフィン類重合用触媒を形成する。
The catalyst component produced as described above is combined with an organoaluminum compound to form a catalyst for polymerizing olefins.

使用される有機アルミニウム化合物は触媒成分中のチタ
ン原子のモル当りモル比で1〜1.00帆好ましくは1
〜300の範囲で用いられる。また重合に際して電子供
与性物質などの第三成分を添加使用することも妨げない
The organoaluminum compound used has a molar ratio of 1 to 1.00 per mole of titanium atoms in the catalyst component, preferably 1
It is used in the range of ~300. Further, it is not prohibited to add and use a third component such as an electron-donating substance during the polymerization.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、またオレフィン単量体は気体および液体の
いずれの状態でも用いることができる。重合温度は20
0℃以下好ましくは100℃以下であシ、重合圧力はl
 00 kgA4. G以下、好ましくは50kg1c
tl・0以下である。
Polymerization can be carried out in the presence or absence of an organic solvent, and the olefin monomer can be used in either gas or liquid state. The polymerization temperature is 20
The temperature is 0°C or lower, preferably 100°C or lower, and the polymerization pressure is 1
00 kgA4. G or less, preferably 50kg1c
tl・0 or less.

本発明方法により製造された触媒成分を用いて単独重合
または共重合されるオレフィン類はエチレン、フロピレ
ン、1−ブテン、4−メチル−1−ベンテン等である。
Olefins that can be homopolymerized or copolymerized using the catalyst component produced by the method of the present invention include ethylene, furopylene, 1-butene, 4-methyl-1-bentene, and the like.

以下本発明を実施例および比較例により具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1゜ 〔触媒成分の調製〕 窒素ガスで充分に置換され、攪拌機を具備した容量20
0−の丸底フラスコに酸化アルミニウム5.02および
TiCt450−を装入し、100℃で1時間の攪拌反
応を行なった。反応終了後n−へブタン10〇−による
洗浄を5回行ない、その後減圧下で乾燥して固体組成物
を得た。
Example 1゜[Preparation of catalyst components] A 20-volume tank sufficiently purged with nitrogen gas and equipped with a stirrer
5.02 ml of aluminum oxide and 450 ml of TiCt were placed in a 0-round bottom flask, and a stirring reaction was carried out at 100° C. for 1 hour. After the reaction was completed, the mixture was washed five times with 100 ml of n-hebutane, and then dried under reduced pressure to obtain a solid composition.

次いで窒素ガスで充分に置換され、攪拌機を具備した容
量200 mlの丸底フラスコに該固体組成物12、ジ
ェトキシマグネシウム52、安息香酸エチル257およ
び塩化メチレン50m/を装入して懸濁状態とし、還流
下で2時間攪拌した。次いでこの懸濁液を攪拌機を具備
した容量500−の丸底フラスコ中の0℃のTiCt4
200−中に圧送後90℃に昇温して2時間攪拌しなが
ら反応させた。反応終了後40℃のn−へブタン200
−で10回洗浄し、新たにTiCl2200−を加えて
90℃で2時間攪拌しながら反応させた。
Next, the solid composition 12, jetoxymagnesium 52, ethyl benzoate 257 and methylene chloride 50 m/m were charged into a 200 ml round bottom flask which was sufficiently purged with nitrogen gas and equipped with a stirrer to form a suspension. , and stirred under reflux for 2 hours. This suspension was then transferred to TiCt4 at 0°C in a 500-capacity round bottom flask equipped with a stirrer.
After pressure-feeding the mixture into 200-degree C., the mixture was heated to 90.degree. C. and reacted for 2 hours with stirring. After the reaction is complete, add 200 ml of n-hebutane at 40°C.
- was washed 10 times with TiCl2200-, and the mixture was reacted with stirring at 90°C for 2 hours.

反応終了後40’Cまで冷却し、次いでn−へブタン2
007!による洗浄を繰シ返し行ない、洗浄液中に塩素
が検出されなくなった時点で洗浄終了として触媒成分と
した。なお、この際該触媒成分中の固液を分離して固体
外のチタン含有率を測定したところ3.38重量%であ
った。
After the reaction was completed, it was cooled to 40'C, and then n-hebutane 2
007! The cleaning was repeated repeatedly, and when chlorine was no longer detected in the cleaning solution, the cleaning was completed and the catalyst component was used. At this time, when the solid and liquid in the catalyst component was separated and the titanium content outside the solid was measured, it was 3.38% by weight.

〔重 合〕[Overlapping]

窒素ガスで完全に置換された内容積2.OLの攪拌装置
付オートクレーブに、n−へブタン700−を装入し、
窒素ガス雰囲気を保ちつつトリエチルアルミニウム30
1〜.p−)ルイル酸エチル137〜、次いで前記触媒
成分をチタン原子として05■装入した。その後水素ガ
ス300 mlを装入し60℃に昇温してプロピレンガ
スを導入しつつ5 kg/c、tl・Gの圧力を維持し
て2時間の重合を行なった。重合終了後得られた固体重
合体を戸別し、80℃に加温して減圧乾燥した。一方P
液を濃縮して重合溶媒に溶存する重合体の量を(ト)と
し、固体重合体の量を(B)とする。また得られた固体
重合体を沸騰n−へブタンで6時間抽出しn−ヘプタン
に不溶解の重合体を得、この量をC)とする。
Internal volume completely replaced with nitrogen gas2. Charge n-hebutane 700- to an OL autoclave with a stirring device,
Triethyl aluminum 30 while maintaining nitrogen gas atmosphere
1~. p-) Ethyl ruylate 137 ~, then the above catalyst component was charged as titanium atoms. Thereafter, 300 ml of hydrogen gas was charged, the temperature was raised to 60°C, and while propylene gas was introduced, polymerization was carried out for 2 hours while maintaining a pressure of 5 kg/c, tl.G. After the polymerization was completed, the obtained solid polymer was separated, heated to 80° C., and dried under reduced pressure. On the other hand, P
The amount of polymer dissolved in the polymerization solvent after concentrating the liquid is (g), and the amount of solid polymer is (B). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount was designated as C).

触媒成分当りの重合活性(2)を式 また結晶性重合体の収率■を式 で表わし、全結晶性重合体の収率(ト)を式%式%() (ロ)十の) よりめた。また生成重合体中の残留塩素を(G)、生成
重合体のMIを旺で表わす。得られた結果は、第1表に
示す通りである。
Express the polymerization activity (2) per catalyst component by the formula and the crystalline polymer yield (■) by the formula, and calculate the total crystalline polymer yield (g) from the formula % formula % () (b) 10) I met. Further, residual chlorine in the produced polymer is expressed as (G), and MI of the produced polymer is expressed as O. The results obtained are shown in Table 1.

実施例2゜ 酸化アルミニウムの代りに酸化ケイ素を使用1〜た以外
は実施例1と同様にして実験を行なった。
Example 2 An experiment was carried out in the same manner as in Example 1, except that silicon oxide was used instead of aluminum oxide.

なお、この際の固体分中のチタン含有率は3.92重量
%であった。重合に際しては実施例1と同様にして実験
を行なった。得られた結果は第1表に示す通りである。
Note that the titanium content in the solid content at this time was 3.92% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

実施例3゜ 酸化アルミニウムの代りに水酸化マグネシウムを用いた
以外は実施例1と同様にして実験を行なった。なお、こ
の際の固体分中のチタン含有率は3.68重量%であっ
た。重合に際しては実施例1と同様にして実験を行なっ
た。得られた結果は第1表に示す通シである。
Example 3 An experiment was conducted in the same manner as in Example 1 except that magnesium hydroxide was used instead of aluminum oxide. Note that the titanium content in the solid content at this time was 3.68% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are as shown in Table 1.

比較例】。Comparative example]

11− 〔触媒成分の調製〕 MgCl2100 S’、安息香酸エチル31.52を
窒素ガス雰囲気下で18時間粉砕する。その後膣粉砕組
成物1002を分取し、窒素ガス雰囲気下で内容積20
00−のガラス製容器に装入し、TiC14500ml
を加えて65℃で2時間の攪拌反応を行なった。反応終
了後40℃まで冷却し、静置してデカンテーションによ
り上澄液を除去した。次いでn−ヘプタン1000−に
よる洗浄を繰り返し行ない、洗浄液中に塩素が検出され
なくなった時点を以って洗浄終了として触媒成分とした
11- [Preparation of catalyst components] MgCl2100S' and ethyl benzoate 31.52 mL were ground for 18 hours under a nitrogen gas atmosphere. Thereafter, the vaginal pulverization composition 1002 was collected, and the internal volume was 20% under a nitrogen gas atmosphere.
Pour into a 00-glass container and add 14500ml of TiC.
was added, and a stirring reaction was carried out at 65° C. for 2 hours. After the reaction was completed, the mixture was cooled to 40°C, left to stand, and the supernatant liquid was removed by decantation. Next, washing with n-heptane 1000 was repeated, and when chlorine was no longer detected in the washing solution, the washing was completed and the catalyst component was used.

なお、この際該触媒成分中の固液を分離して固体分のチ
タン含有率を測定したところ1.28重量%であった。
At this time, the solid and liquid in the catalyst component was separated and the titanium content of the solid component was measured and found to be 1.28% by weight.

〔重 合〕[Overlapping]

重合に際しては前記触媒成分をチタン原子として1.0
■使用した以外は実施例1と同様にして行なった。得ら
れた結果は第1表に示す通シである。
During polymerization, the catalyst component has a titanium atom of 1.0
(2) The procedure was carried out in the same manner as in Example 1, except that the following was used. The results obtained are as shown in Table 1.

12− 第 1 表 特許出願人 東邦チタニウム株式会社12- Table 1 Patent applicant: Toho Titanium Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1) (a)ジアルコキシマグネシウム、(b)電子
供与性物質、(c)一般式’l’iX4 (式中Xは)
・ロゲン元素である。)で表わされるチタン・・ロゲン
化物および(d)周期律表第■〜■族の元素の酸化物ま
だは水酸化物を該チタン・・ロゲン化物と反応させて得
られる組成物と接触させることを特徴とするオレフィン
類重合用触媒成分の製造方法。
(1) (a) dialkoxymagnesium, (b) electron donating substance, (c) general formula 'l'iX4 (wherein X is)
・It is a rogen element. ) and (d) an oxide or hydroxide of an element of Groups ■ to ■ of the Periodic Table are brought into contact with a composition obtained by reacting the titanium logenide with the titanium logenide. A method for producing a catalyst component for polymerizing olefins, characterized by:
JP17627383A 1983-09-26 1983-09-26 Production of catalyst components for olefin polymerization Granted JPS6067510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17627383A JPS6067510A (en) 1983-09-26 1983-09-26 Production of catalyst components for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17627383A JPS6067510A (en) 1983-09-26 1983-09-26 Production of catalyst components for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS6067510A true JPS6067510A (en) 1985-04-17
JPH0532405B2 JPH0532405B2 (en) 1993-05-17

Family

ID=16010688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17627383A Granted JPS6067510A (en) 1983-09-26 1983-09-26 Production of catalyst components for olefin polymerization

Country Status (1)

Country Link
JP (1) JPS6067510A (en)

Also Published As

Publication number Publication date
JPH0532405B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
JPS5991107A (en) Production of catalyst component for olefin polymerization
JPH0417206B2 (en)
JPS6044507A (en) Catalytic components and catalyst thereof for olefin polymerization
JPS61126109A (en) Catalyst component and catalyst for polymerization of olefin
JPS6067510A (en) Production of catalyst components for olefin polymerization
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPH0415809B2 (en)
JPS62177003A (en) Catalytic component for olefin polymerization and catalyst therefrom
JPH059445B2 (en)
JP2587247B2 (en) Olefin polymerization catalyst
JPH0446284B2 (en)
JP2617901B2 (en) Method for producing solid catalyst component for olefin polymerization
JPS5912904A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS6038407A (en) Production of catalyst component for alpha-olefin polymerization
JPH0442409B2 (en)
JPH0565522B2 (en)
JPS6018504A (en) Preparation of catalyst component for polymerization of olefin
JPH01245002A (en) Catalyst for polymerizing olefins
JPS59221308A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS59213709A (en) Preparation of catalytic component for alpha-olefin polymerization
JPS61108612A (en) Catalyst component for olefin polymerization and catalyst
JPS58109508A (en) Production of catalytic component for olefin polymerization
JPH0532406B2 (en)
JPS62179511A (en) Catalyst for olefin polymerization
JPH07653B2 (en) Olefin polymerization catalyst