JP2514028B2 - Solid catalyst component for olefin polymerization - Google Patents

Solid catalyst component for olefin polymerization

Info

Publication number
JP2514028B2
JP2514028B2 JP6805387A JP6805387A JP2514028B2 JP 2514028 B2 JP2514028 B2 JP 2514028B2 JP 6805387 A JP6805387 A JP 6805387A JP 6805387 A JP6805387 A JP 6805387A JP 2514028 B2 JP2514028 B2 JP 2514028B2
Authority
JP
Japan
Prior art keywords
polymerization
catalyst component
solid catalyst
reaction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6805387A
Other languages
Japanese (ja)
Other versions
JPS63235306A (en
Inventor
稔 寺野
弘和 曽我
益男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP6805387A priority Critical patent/JP2514028B2/en
Publication of JPS63235306A publication Critical patent/JPS63235306A/en
Application granted granted Critical
Publication of JP2514028B2 publication Critical patent/JP2514028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オレフイン類の重合に供した際に、高活性
に作用し、しかも立体規則性重合体を高収率で得ること
のできる高性能固体触媒成分に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a high activity when subjected to the polymerization of olephins, and is capable of obtaining a stereoregular polymer in a high yield. It relates to a performance solid catalyst component.

〔従来技術〕[Prior art]

近時、プロピレンをはじめとするオレフイン類重合用
触媒として従来周知の三塩化チタン触媒成分に代り、新
しい型の触媒として活性成分であるチタンを塩化マグネ
シウムに電子供与体と共に担持したものが数多く開発さ
れ提案されている。
Recently, as a catalyst for the polymerization of olefins such as propylene, in place of the conventionally known catalyst component of titanium trichloride, many new types of catalysts in which titanium, which is an active component, is supported on magnesium chloride together with an electron donor have been developed. Proposed.

これらの中で最も初期に開発されたものとしては電子
供与体としての有機モノカルボン酸エステルと四塩化チ
タンとの錯体を塩化マグネシウムと共粉砕したものがあ
り、あるいは電子供与体としての有機モノカルボン酸エ
ステルと塩化マグネシウムとの共粉砕生成物を四塩化チ
タンで処理したものがある。
The earliest of these was developed by co-milling a complex of an organic monocarboxylic acid ester as an electron donor and titanium tetrachloride with magnesium chloride, or an organic monocarboxylic acid as an electron donor. There is a product obtained by treating a co-ground product of an acid ester and magnesium chloride with titanium tetrachloride.

しかし、これらは工業的規模で用いるためには満足す
べき特性を有するものとは言えず種々の特性を改善する
ものとして例えば塩化マグネシウムの代りにジエトキシ
マグネシウムを用いるもの、電子供与体として特殊な化
合物を用いるものあるいはまた前記各物質の組合せ方法
や接触手段等に改変を行つたものも種々提案されてい
る。
However, they cannot be said to have satisfactory properties for use on an industrial scale, and those which improve various properties, for example, diethoxymagnesium instead of magnesium chloride, and special electron donors are used. Various proposals have been made for those using a compound, or those obtained by modifying the combination method of the above-mentioned substances, the contact means and the like.

例えば特開昭54−94590号公報では、マグネシウムジ
ハロゲン化物を出発原料として触媒成分を調製し、有機
アルミニウム化合物、有機カルボン酸エステルおよびM
−O−R基を有する化合物などを組合せてオレフイン類
の重合に用いる方法が開示されており、また特開昭57−
63310号公報においては電子供与体としての各種エステ
ル類と活性形の塩化マグネシウムとチタン化合物とを組
合せて触媒成分を調製し、さらにSi−O結合またはSi−
N結合を有する化合物と有機アルミニウム化合物を用い
てプロピレンの重合を行なう方法が開示されている。
For example, in JP-A-54-94590, a catalyst component is prepared by using magnesium dihalide as a starting material, and an organoaluminum compound, an organic carboxylic acid ester and M
A method of combining a compound having a —O—R group and the like for use in the polymerization of olefins is disclosed, and JP-A-57-
In 63310, various catalysts as electron donors, magnesium chloride in active form, and a titanium compound are combined to prepare a catalyst component, and further Si—O bond or Si—
A method for polymerizing propylene using a compound having an N bond and an organoaluminum compound is disclosed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来技術において、担体物質としてその主流を占めて
いる塩化マグネシウムに含有される塩素は、チタンハロ
ゲン化物中のハロゲン元素と同様に、生成重合体に対
し、悪影響を及ぼすという欠点を有しているため、それ
に対し、塩素の影響を実質上、無視し得る程度の高活性
が要求され、あるいはまた塩化マグネシウムそのものの
濃度を低くおさえるなどの対策がとられている。
In the prior art, chlorine contained in magnesium chloride, which occupies the main stream as a carrier material, has a drawback that it adversely affects the produced polymer, like the halogen element in titanium halides. On the other hand, it is required that the activity of chlorine be substantially negligible, or that the concentration of magnesium chloride itself be kept low.

また、前記塩化マグネシウムを担体とする触媒成分を
有機アルミニウム化合物と組合せて用いてオレフイン類
の重合、特にプロピレン、1−ブテン等の立体規則性重
合を工業的に行なう場合、重合反応を行なう際に電子供
与体として有機モノカルボン酸エステルを用いることが
必須とされている。しかしこの場合有機モノカルボン酸
エステルを極めて多量に用いることが必要であり、その
結果、生成重合体に、特有のエステル臭を付与するとい
う問題点が存在した。
Further, when a catalyst component having the above magnesium chloride as a carrier is used in combination with an organoaluminum compound to polymerize olefins, particularly when stereoregular polymerization of propylene, 1-butene, etc. is carried out industrially, when carrying out the polymerization reaction. It is essential to use an organic monocarboxylic acid ester as an electron donor. However, in this case, it is necessary to use an extremely large amount of organic monocarboxylic acid ester, and as a result, there has been a problem that a peculiar ester odor is imparted to the produced polymer.

さらに、前記塩化マグネシウムを担体とする触媒成分
を用いた触媒など、いわゆる高活性担持型触媒において
は、重合初期の活性は高いものの経時的失活が大きくプ
ロセス操作上問題となると共に、ブロツク共重合等の重
合時間をより長くする場合、実質上それを使用すること
は不可能であつた。
Furthermore, in so-called highly active supported catalysts such as catalysts using a catalyst component having magnesium chloride as a carrier, the activity at the initial stage of polymerization is high, but deactivation with time is large and it becomes a problem in process operation, and block copolymerization It was virtually impossible to use it if the polymerization time was longer.

この点を改良するものとして前記特開昭54−94590号
のものが提案されているが、同公報の記載からも明らか
なようにこの場合、触媒調製時ならびに重合時にも有機
カルボン酸エステルを用いることが必要とされている。
一般に、触媒中に含まれる有機カルボン酸エステルは、
チタンハロゲン化物による処理あるいは有機溶媒による
洗浄などにより、生成重合体の臭いの問題を無視し得る
程度の量となつている。しかし、重合時に用いる有機カ
ルボン酸エステルは前述のように触媒中に含まれる量に
比して極めて多量であり、なおかつ液体あるいは気体の
モノマー中で重合を行なつた場合、その殆んど全てが生
成重合体中に含まれてしまうのが現状であり、従つて、
生成重合体の臭いの問題は重合時に有機カルボン酸エス
テルを用いる限り解決し得ないものといえる。また同公
報に開示されている方法は、その実施例からも判るよう
に、非常に煩雑な操作を必要とすると共に得られた触媒
は性能的にも活性の持続性においても実用上充分なもの
とはいえないのが実状である。
JP-A-54-94590 has been proposed to improve this point, but as is clear from the description of the publication, in this case, an organic carboxylic acid ester is used both during catalyst preparation and during polymerization. Is needed.
Generally, the organic carboxylic acid ester contained in the catalyst is
By treatment with titanium halide or washing with an organic solvent, the amount of odor of the produced polymer is negligible. However, the organic carboxylic acid ester used during the polymerization is extremely large amount as compared with the amount contained in the catalyst as described above, and when the polymerization is carried out in a liquid or gaseous monomer, almost all of it is At present, it is contained in the produced polymer, and accordingly,
It can be said that the problem of the odor of the produced polymer cannot be solved as long as the organic carboxylic acid ester is used during the polymerization. Further, as can be seen from the examples, the method disclosed in the above publication requires extremely complicated operations and the obtained catalyst is practically sufficient in terms of performance and sustainability of activity. That is not the case.

本発明者らはかかる従来技術に残された課題を解決す
べく、鋭意研究した結果、本発明により、新規なオレフ
イン類重合用固体触媒成分を提供することに成功した。
The present inventors have conducted intensive studies to solve the problems remaining in the conventional techniques, and as a result, have succeeded in providing a novel solid catalyst component for polymerization of olefins according to the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明により、金属マグネシウム粉末と2倍モル以上
のアルキルモノハロゲン化物とをジアルコキシマグネシ
ウムの存在下で反応させて得られる物質(a)と、フタ
ル酸のジエステル(b)とを共粉砕させて得られる生成
物を、四塩化チタン(c)と接続させることを特徴とす
るオレフイン類重合用固体触媒成分が提供される。
According to the present invention, a substance (a) obtained by reacting a magnesium metal powder with a 2-fold or more molar amount of an alkyl monohalide in the presence of dialkoxymagnesium and a diester of phthalic acid (b) are co-ground. A solid catalyst component for polymerizing olefins, which comprises connecting the obtained product with titanium tetrachloride (c).

本発明における前記(a)の金属マグネシウム粉末と
アルキルモノハロゲン化物との反応によつて得られる物
質(以下単に(a)物質という)を得るには、市販の金
属マグネシウム粉末と、アルキルモノハロゲン化物とを
ジアルコキシマグネシウムの存在下で反応させるが、こ
の際、アルキルモノハロゲン化物は金属マグネシウム粉
末1モルに対して2モル以上用いることが必要であり、
ジアルコキシマグネシウムは金属マグネシウム粉末1gに
対し0.01〜1gの範囲で用いられる。また、反応温度及び
反応時間は、上記の反応が充分に進む限り任意であり、
特に限定されるものではないが、通常20℃以上で10分間
以上、好ましくは40℃以上で30分間以上行なわれる。こ
の反応によつて得られた(a)物質のIRスペクトルを測
定するとアルキル基の吸収が見られる。
In order to obtain a substance obtained by the reaction of the above-mentioned (a) metallic magnesium powder with an alkyl monohalide in the present invention (hereinafter simply referred to as (a) substance), a commercially available metallic magnesium powder and an alkyl monohalide are used. And are reacted in the presence of dialkoxymagnesium. At this time, the alkyl monohalide must be used in an amount of 2 mol or more per 1 mol of the magnesium metal powder,
Dialkoxy magnesium is used in the range of 0.01 to 1 g per 1 g of metal magnesium powder. Further, the reaction temperature and the reaction time are arbitrary as long as the above reaction proceeds sufficiently,
Although not particularly limited, it is usually carried out at 20 ° C. or higher for 10 minutes or longer, preferably 40 ° C. or higher for 30 minutes or longer. When the IR spectrum of the substance (a) obtained by this reaction is measured, absorption of an alkyl group is observed.

上記(a)物質の製造に用いられるアルキルモノハロ
ゲン化物としては、常温で液体の脂肪族炭化水素の塩化
物が好ましく、その例としては、例えばn−プロピルク
ロライド、イソプロピルクロライド、n−ブチルクロラ
イド、イソブチルクロライド、ペンチルクロライド、ヘ
キシルクロライドおよびオクチルクロライド等があげら
れる。
The alkyl monohalide used in the production of the substance (a) is preferably an aliphatic hydrocarbon chloride that is liquid at room temperature, and examples thereof include n-propyl chloride, isopropyl chloride, n-butyl chloride, and the like. Examples thereof include isobutyl chloride, pentyl chloride, hexyl chloride and octyl chloride.

上記(a)物質の製造に用いられるジアルコキシマグ
ネシウムとしては炭素数1〜5のアルキル基を持つもの
が好ましく、例えばジエトキシマグネシウム、ジプロポ
キシマグネシウム、ジブトキシマグネシウム等があげら
れる。
The dialkoxymagnesium used in the production of the substance (a) is preferably one having an alkyl group having 1 to 5 carbon atoms, and examples thereof include diethoxymagnesium, dipropoxymagnesium, and dibutoxymagnesium.

本発明における前記(b)のフタル酸のジエステルと
してはジメチルフタレート、ジエチルフタレート、ジイ
ソプロピルフタレート、ジプロピルフタレート、ジブチ
ルフタレート、ジイソブチルフタレート、ジアミルフタ
レート、ジイソアミルフタレート、エチルブチルフタレ
ート、エチルイソブチルフタレートおよびエチルプロピ
ルフタレート等を例としてあげることができる。
Examples of the (b) phthalic acid diester in the present invention include dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, dipropyl phthalate, dibutyl phthalate, diisobutyl phthalate, diamyl phthalate, diisoamyl phthalate, ethyl butyl phthalate, ethyl isobutyl phthalate and ethyl. Propyl phthalate etc. can be mentioned as an example.

本発明における前記の固体触媒成分を得る際、該固体
触媒成分を構成する各原料物質の使用割合は、生成する
固体触媒成分の性能に悪影響を及ぼすことのない限り任
意であり特に限定されるものではないが、通常(a)物
質1gに対し、前記(b)のフタル酸のジエステル(以下
単に(b)物質という場合がある。)は0.01〜1gの範囲
であり、前記(c)の四塩化チタンは、0.1g以上好まし
くは1g以上の範囲である。
When obtaining the solid catalyst component in the present invention, the use ratio of each raw material constituting the solid catalyst component is arbitrary and is not particularly limited as long as it does not adversely affect the performance of the produced solid catalyst component. However, the amount of the diester of phthalic acid (b) described above (hereinafter may be simply referred to as (b) substance) is in the range of 0.01 to 1 g, relative to 1 g of the substance (a), and it is usually 4 g of the above (c). Titanium chloride is in the range of 0.1 g or more, preferably 1 g or more.

前記の(a)物質と(b)物質との共粉砕は、ボール
ミルまたは振動ミルおよび類似の粉砕機を用いて通常10
分間以上、好ましくは30分間以上にわたつて行なわれ
る。
The co-milling of the substance (a) and the substance (b) is usually performed by using a ball mill or a vibration mill and a similar mill.
It is carried out for not less than 1 minute and preferably not less than 30 minutes.

前記の粉砕によつて得られた組成物と四塩化チタンと
の接触は通常−10℃から四塩化チタンの沸点までの温度
範囲で、10分間〜100時間行なわれるのが好ましい。
The contact between the composition obtained by the above-mentioned pulverization and titanium tetrachloride is usually carried out in the temperature range from -10 ° C to the boiling point of titanium tetrachloride for 10 minutes to 100 hours.

上記の接触の後得られた組成物に、繰返し四塩化チタ
ンを接触させることができ、また、得られた組成物をn
−ヘプタン等の有機溶媒を用いて洗浄することもでき
る。これらは、いずれも本発明の実施における一態様に
包含される。
The composition obtained after the above contact can be repeatedly contacted with titanium tetrachloride, and the obtained composition can be n
It is also possible to wash with an organic solvent such as heptane. These are all included in one aspect in the practice of the present invention.

本発明における上記の固体触媒成分の調製に関する一
連の操作は酸素および水分等の不存在下に行なわれるこ
とが好ましい。
It is preferable that the series of operations relating to the preparation of the above solid catalyst component in the present invention is carried out in the absence of oxygen and water.

以上の如くして調製された前記の固体触媒成分は、有
機アルミニウム化合物と組合されオレフイン類重合用触
媒を構成するがこの際、ピペリジン誘導体あるいはSi−
O結合を有するケイ素化合物など芳香族カルボン酸エス
テル以外の電子供与性化合物を共存させることが好まし
い。
The solid catalyst component prepared as described above is combined with an organoaluminum compound to form a catalyst for polymerizing olefins. At this time, a piperidine derivative or Si-
It is preferable to coexist with an electron donating compound other than the aromatic carboxylic acid ester such as a silicon compound having an O bond.

本発明において使用される有機アルミニウム化合物と
してはトリアルキルアルミニウムが好ましく固体触媒成
分中のチタンg原子当り1〜1000モルで用いられ、ま
た、該電子供与性化合物は有機アルミニウム化合物に対
するモル比において1以下、好ましくは0.005〜1.0の範
囲で用いられる。
As the organoaluminum compound used in the present invention, trialkylaluminum is preferably used in an amount of 1 to 1000 mol per g of titanium in the solid catalyst component, and the electron donating compound is 1 or less in molar ratio to the organoaluminum compound. , Preferably in the range of 0.005 to 1.0.

本発明に係るオレフイン類重合用固体触媒成分を用い
ての重合反応は有機溶媒の存在下でもあるいは不存在下
でも行なうことができ、また、使用するオレフイン単量
体は気体および液体のいずれの状態でも用いることがで
きる。重合温度は200℃以下好ましくは100℃以下であ
り、重合圧力は100kg/cm2・G以下好ましくは50kg/cm2
・G以下である。
The polymerization reaction using the solid catalyst component for olefin polymerization according to the present invention can be carried out in the presence or absence of an organic solvent, and the olefin monomer used is in a gas or liquid state. However, it can be used. The polymerization temperature is 200 ° C or lower, preferably 100 ° C or lower, and the polymerization pressure is 100 kg / cm 2 · G or lower, preferably 50 kg / cm 2
・ G or less.

本発明に係るオレフイン類重合用固体触媒成分を用い
て単独重合または共重合されるオレフイン類はエチレ
ン、プロピレン、1−ブテン等である。
The olefins homopolymerized or copolymerized using the solid catalyst component for olefin polymerization according to the present invention are ethylene, propylene, 1-butene and the like.

〔発明の効果〕〔The invention's effect〕

本発明に係るオレフイン類重合用固体触媒成分を用い
て、オレフイン類の重合を行なつた場合、生成重合体は
極めて高い立体規則性を有する。さらに、触媒活性が従
来予期し得ない程の高い値を示すため生成重合体中に存
在する触媒残渣量を極めて低くおさえることができ、し
かも残留塩素が極めて微量であるために生成物について
は脱灰工程を全く必要としない程度にまで塩素の影響を
低減することができる。
When olefins are polymerized using the solid catalyst component for olefin polymerization according to the present invention, the polymer produced has extremely high stereoregularity. Furthermore, since the catalyst activity shows an unexpectedly high value, the amount of catalyst residue present in the produced polymer can be suppressed to an extremely low level. The effect of chlorine can be reduced to the extent that no ash step is required.

生成重合体中に残存する塩素は造粒、成形などの工程
に用いる機器の腐食の原因となると共に生成重合体その
ものの劣化、黄変等の原因ともなるものであるので、こ
の課題を解決し得ることは当該技術分野に対し大きな利
益をもたらすものである。
Since chlorine remaining in the produced polymer causes corrosion of equipment used in steps such as granulation and molding, it also causes deterioration of the produced polymer itself, yellowing, etc. Obtaining is of great benefit to the art.

また、本発明によれば重合時に有機カルボン酸エステ
ルを添加しないことにより生成重合体に対するエステル
臭の付着という大きな問題をも解決することができる。
Further, according to the present invention, by not adding the organic carboxylic acid ester at the time of the polymerization, it is possible to solve the big problem that the ester odor adheres to the produced polymer.

さらに、従来、触媒の単位時間当りの活性が、重合の
経過に伴なつて大幅に低下するという、いわゆる高活性
担持型触媒における共通の欠点が存在したが、本発明に
係る固体触媒成分においては、重合時間の経過に伴なう
活性の低下が、従来公知の触媒に比較し、極めて小さい
ため、共重合等重合時間をより長くする場合にも有用で
あり、かつ、より高い重合圧力を採用した場合における
活性の増加が大きいため、最近注目されているバルク重
合および気相重合にも幅広く用いることができる。
Furthermore, conventionally, the activity per unit time of the catalyst was significantly reduced with the progress of polymerization, which was a common defect in so-called highly active supported catalysts, but in the solid catalyst component according to the present invention, Since the decrease in activity with the lapse of polymerization time is extremely small compared to the conventionally known catalysts, it is useful even when the polymerization time such as copolymerization is made longer, and a higher polymerization pressure is adopted. Because of the large increase in activity in such cases, it can be widely used in bulk polymerization and gas phase polymerization, which have recently received attention.

さらに付言すると、工業的なオレフイン重合体の製造
においては重合時に水素を共存させることがMI制御など
の点から一般的とされているが、従来の塩化マグネシウ
ムを担体とし、有機カルボン酸エステルを用いた触媒は
水素共存下では活性および立体規則性が大幅に低下する
という欠点を有していた。しかし、本発明に係る固体触
媒成分を用いて水素共存下にオレフインの重合を行なつ
た場合、生成重合体のMIが極めて高い場合においても、
活性および立体規則性は低下しない。かかる効果は、当
業者にとつて強く望まれていたものであつた。また、工
業的なポリオレフインの製造においては重合装置の能
力、後処理工程の能力などの点で生成重合体の嵩比重が
非常に大きな問題となるが、本発明に係る固体触媒成分
は、この点においても、極めて優れた特性を有してい
る。
In addition, in the industrial production of olefin polymers, coexistence of hydrogen at the time of polymerization is generally considered from the viewpoint of MI control and the like, but conventional magnesium chloride is used as a carrier and organic carboxylic acid ester is used. The catalyst had a drawback that its activity and stereoregularity were significantly reduced in the presence of hydrogen. However, when the polymerization of olefin is carried out in the presence of hydrogen using the solid catalyst component according to the present invention, even when the MI of the produced polymer is extremely high,
The activity and stereoregularity are not reduced. Such an effect has been strongly desired by those skilled in the art. Further, in the industrial production of polyolefin, the bulk specific gravity of the produced polymer becomes a very big problem in terms of the ability of the polymerization apparatus, the ability of the post-treatment step, etc., but the solid catalyst component according to the present invention has this point. Also has extremely excellent characteristics.

〔実施例、比較例〕[Examples and comparative examples]

以下に、本発明を実施例および比較例によりさらに具
体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例 1. (1) (a)物質の調製 撹拌機を具備した容量2.0の丸底フラスコを用い、
これを窒素ガスで充分に置換した後、金属マグネシウム
粉末30g、ジエトキシマグネシウム9.0gおよびn−ブチ
ルクロライド1.2を装入し、n−ブチルクロライドの
沸点下で5時間反応させた。反応終了後、上澄液を除去
し、生成物を500mlのn−ブチルクロライドで3回洗浄
した後、減圧乾燥して粉末状の物質を得た。
Example 1. (1) (a) Preparation of substance Using a round bottom flask with a capacity of 2.0 equipped with a stirrer,
After sufficiently substituting this with nitrogen gas, 30 g of metallic magnesium powder, 9.0 g of diethoxymagnesium and 1.2 of n-butyl chloride were charged and reacted at the boiling point of n-butyl chloride for 5 hours. After completion of the reaction, the supernatant was removed, the product was washed with 500 ml of n-butyl chloride three times, and then dried under reduced pressure to obtain a powdery substance.

(2) 固体触媒成分の調製 上記(1)で得られた物質20gおよびジブチルフタレ
ート5.0mlを窒素ガス雰囲気下で、25mmφのステンレス
ボールを全容積の4/5充填した容量1.0の振動ミルポツ
トに装入し、振動数1430v.p.m、振幅3.5mmで17時間の粉
砕処理を行なつた。
(2) Preparation of solid catalyst component 20 g of the substance obtained in (1) above and 5.0 ml of dibutyl phthalate were placed under a nitrogen gas atmosphere in a vibrating mill pot with a volume of 1.0 filled with stainless steel balls of 25 mmφ 4/5 of the total volume. Then, it was crushed for 17 hours at a frequency of 1430 v.pm and an amplitude of 3.5 mm.

撹拌機を具備した容量500mlの丸底フラスコを用い、
窒素ガスで充分に置換した後、それに前記粉砕処理によ
つて得られた固体組成物5gをとり、それに、TiCl4200ml
を加え、120℃に昇温して2時間反応させた。反応終了
後上澄液を除去し、生成物に、新たにTiCl4200mlを加え
て120℃で2時間反応させた。反応終了後、40℃まで冷
却し、生成物をn−ヘプタン200mlで10回洗浄し、固体
触媒成分を得た。
Using a round bottom flask with a capacity of 500 ml equipped with a stirrer,
After thoroughly substituting with nitrogen gas, 5 g of the solid composition obtained by the above-mentioned pulverization treatment was taken, and TiCl 4 200 ml
Was added, and the temperature was raised to 120 ° C. to react for 2 hours. After completion of the reaction, the supernatant was removed, 200 ml of TiCl 4 was newly added to the product, and the reaction was carried out at 120 ° C for 2 hours. After completion of the reaction, the mixture was cooled to 40 ° C., and the product was washed 10 times with 200 ml of n-heptane to obtain a solid catalyst component.

なお、この際、該固体触媒成分中のチタン含有率を測
定したところ1.69重量%であつた。
At this time, the titanium content in the solid catalyst component was measured and found to be 1.69% by weight.

(3) 重合 内容積2.0の撹拌装置付オートクレーブを用い、こ
れを窒素ガスで完全に置換した後、トリエチルアルミニ
ウム193mg、2,2,6,6−テトラメチルピペリジン24mgおよ
び前記固体触媒成分6.0mgを装入した。その後、水素ガ
ス1.8、液化プロピレン1.4を装入し、70℃で1時間
重合反応を行なつた。重合反応終了後、生成した重合体
を80℃で減圧乾燥し、得られたものの量を(A)とす
る。またこのものを沸騰n−ヘプタンで6時間抽出して
n−ヘプタンに不溶解の重合体を得、このものの量を
(B)とする。
(3) Polymerization Using an autoclave equipped with a stirrer and having an inner volume of 2.0, this was completely replaced with nitrogen gas, and then 193 mg of triethylaluminum, 24 mg of 2,2,6,6-tetramethylpiperidine and 6.0 mg of the solid catalyst component were added. Charged. Then, hydrogen gas 1.8 and liquefied propylene 1.4 were charged and the polymerization reaction was carried out at 70 ° C. for 1 hour. After the completion of the polymerization reaction, the produced polymer is dried under reduced pressure at 80 ° C., and the amount of the obtained product is designated as (A). Further, this product was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and the amount of this product is designated as (B).

使用した固体触媒成分当りの重合活性(C)を以下の
式で表わす。
The polymerization activity (C) per the solid catalyst component used is represented by the following formula.

また全結晶性重合体の収率(D)を下記の式で表わ
す。
The yield (D) of all crystalline polymer is represented by the following formula.

さらに生成重合体中の残留塩素量を(E)、生成重合
体のMIを(F)、嵩比重を(G)で表わし、得られた結
果を第1表に示す。
Further, the residual chlorine content in the produced polymer is represented by (E), the MI of the produced polymer is represented by (F), and the bulk specific gravity is represented by (G). The obtained results are shown in Table 1.

実施例 2. 重合時間を30分間とした以外は実施例1と同様にして
実験を行なつた。得られた結果は、第1表に示す通りで
ある。
Example 2. An experiment was conducted in the same manner as in Example 1 except that the polymerization time was 30 minutes. The obtained results are as shown in Table 1.

実施例 3. 重合反応を以下の方法で行なつた以外は実施例1と同
様にして実験を行なつた。
Example 3 An experiment was conducted in the same manner as in Example 1 except that the polymerization reaction was performed by the following method.

窒素ガスで完全に置換された内容積2.0の撹拌装置
付オートクレーブに、n−ヘプタン700mlを装入し、窒
素ガス雰囲気を保ちつつトリエチルアルミニウム301m
g、2,2,6,6−テトラメチルピペリジン37mg、次いで実施
例1の方法で調製した固体触媒成分を14.0mg装入した。
その後水素ガス150mlを装入し70℃に昇温してプロピレ
ンガスを導入しつつ、6kg/cm2・Gの圧力を維持して1
時間、重合反応を行なつた。重合反応終了後、得られた
固体重合体を別し、80℃に加温して減圧乾燥した。一
方、液を凝縮して重合溶媒に溶存する重合体の量を
(H)とし、固体重合体の量を(I)とする。また、得
られた固体重合体を沸騰n−ヘプタンで6時間抽出し、
n−ヘプタンに不溶解の重合体を得、この量を(J)と
する。
700 ml of n-heptane was charged into an autoclave with an internal volume of 2.0, which was completely replaced with nitrogen gas, and 301 m of triethylaluminum was added while maintaining a nitrogen gas atmosphere.
g, 2,2,6,6-tetramethylpiperidine 37 mg, and then 14.0 mg of the solid catalyst component prepared by the method of Example 1 were charged.
After that, 150 ml of hydrogen gas was charged, the temperature was raised to 70 ° C, and propylene gas was introduced, while maintaining a pressure of 6 kg / cm 2 · G.
The polymerization reaction was performed for a time. After the completion of the polymerization reaction, the obtained solid polymer was separated, heated to 80 ° C., and dried under reduced pressure. On the other hand, the amount of the polymer dissolved in the polymerization solvent by condensing the liquid is defined as (H), and the amount of the solid polymer is defined as (I). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours,
A polymer insoluble in n-heptane was obtained, and this amount is designated as (J).

固体触媒成分当りの重合活性(K)を下記式で表わ
す。
The polymerization activity (K) per solid catalyst component is represented by the following formula.

また結晶性重合体の収率(L)を、下記の式で表わ
し、 全結晶性重合体の収率(M)を、下記の式で求める。
Further, the yield (L) of the crystalline polymer is represented by the following formula, The yield (M) of the whole crystalline polymer is determined by the following equation.

さらに生成重合体中の残留塩素を(N)、生成重合体
のMIを(O)、嵩比重を(P)で表わす。得られた結果
は第2表に示す通りである。
Further, residual chlorine in the produced polymer is represented by (N), MI of the produced polymer is represented by (O), and bulk specific gravity is represented by (P). The results obtained are shown in Table 2.

実施例 4. 重合時間を2時間にした以外は、実施例3と同様にし
て実験を行なつた。得られた結果は第2表に示す通りで
ある。
Example 4. An experiment was conducted in the same manner as in Example 3 except that the polymerization time was 2 hours. The results obtained are shown in Table 2.

実施例 5. ジブチルフタレートの代りに同量のジプロピルフタレ
ートを用いた以外は実施例1と同様にして実験を行なつ
た。なお、この際の固体触媒成分中のチタン含有率は1.
81重量%であつた。重合に際しては実施例1と同様にし
て実験を行なつた。得られた結果は第1表に示す通りで
ある。
Example 5. An experiment was conducted in the same manner as in Example 1 except that the same amount of dipropyl phthalate was used instead of dibutyl phthalate. The titanium content in the solid catalyst component at this time was 1.
It was 81% by weight. An experiment was conducted in the same manner as in Example 1 during the polymerization. The results obtained are as shown in Table 1.

実施例 6. ジブチルフタレート5mlの代りにジブチルフタレート7
ml用いた以外は実施例1と同様にして固体触媒成分の調
製を行なつた。なお、この際の固体触媒成分中のチタン
含有率は2.16重量%であつた。重合に際しては実施例1
と同様にして実験を行なつた。得られた結果は第1表に
示す通りである。
Example 6. Dibutyl phthalate 7 instead of 5 ml dibutyl phthalate
A solid catalyst component was prepared in the same manner as in Example 1 except that ml was used. The titanium content in the solid catalyst component at this time was 2.16% by weight. Example 1 for polymerization
The experiment was performed in the same manner as described above. The results obtained are as shown in Table 1.

実施例 7. ジブチルフタレートの代りにジイソブチルフタレート
を用いた以外は実施例1と同様にして実験を行なつた。
なお、この際の固体触媒成分中のチタン含有率は1.70重
量%であつた。重合に際しては実施例1と同様にして実
験を行なつた。得られた結果は第1表に示す通りであ
る。
Example 7. An experiment was conducted in the same manner as in Example 1 except that diisobutyl phthalate was used instead of dibutyl phthalate.
The titanium content in the solid catalyst component was 1.70% by weight. An experiment was conducted in the same manner as in Example 1 during the polymerization. The results obtained are as shown in Table 1.

比較例 1. 市販のMgCl220g、ジブチルフタレート5.0mlを実施例
1と同様の条件で粉砕する。その後、該粉砕組成物5gを
窒素ガス雰囲気下で内容積500mlのガラス製容器に装入
し、TiCl4200mlを加えて120℃で2時間撹拌反応を行な
つた。反応終了後上澄液を除去し、新たにTiCl4200mlを
加えて120℃で2時間反応させた。
Comparative Example 1. 20 g of commercially available MgCl 2 and 5.0 ml of dibutyl phthalate are pulverized under the same conditions as in Example 1. Then, 5 g of the pulverized composition was charged into a glass container having an internal volume of 500 ml under a nitrogen gas atmosphere, 200 ml of TiCl 4 was added, and a stirring reaction was carried out at 120 ° C. for 2 hours. After completion of the reaction, the supernatant was removed, 200 ml of TiCl 4 was newly added, and the reaction was carried out at 120 ° C for 2 hours.

反応終了後40℃まで冷却しn−ヘプタン200mlで10回
洗浄して固体触媒成分とした。なお、この際該固体触媒
成分中のチタン含有率を測定したところ1.64重量%であ
つた。
After completion of the reaction, it was cooled to 40 ° C. and washed 10 times with 200 ml of n-heptane to obtain a solid catalyst component. At this time, the titanium content in the solid catalyst component was measured and found to be 1.64% by weight.

重合に際しては上記固体触媒成分を6.0mg使用した以
外は実施例1と同様にして実験を行なつた。得られた結
果は第1表に示す通りである。
An experiment was conducted in the same manner as in Example 1 except that 6.0 mg of the above solid catalyst component was used for the polymerization. The results obtained are as shown in Table 1.

比較例 2. 重合時間を30分間とした以外は比較例1と同様にして
実験を行なつた。得られた結果は第1表に示す通りであ
る。
Comparative Example 2. An experiment was conducted in the same manner as Comparative Example 1 except that the polymerization time was 30 minutes. The results obtained are as shown in Table 1.

比較例 3. 重合反応を実施例3と同様の方法で行なつた以外は比
較例1と同様にして実験を行なつた。得られた結果は第
2表に示す通りである。
Comparative Example 3. An experiment was performed in the same manner as in Comparative Example 1 except that the polymerization reaction was performed in the same manner as in Example 3. The results obtained are shown in Table 2.

実施例1、2と比較例1、2とを対比すると明らかな
ように、本発明に係る触媒は、重合時間の経過に伴う活
性の低下が極めて小さい。
As is clear from comparison between Examples 1 and 2 and Comparative Examples 1 and 2, the catalyst according to the present invention has an extremely small decrease in activity with the passage of polymerization time.

実施例1、3と比較例1、3とを対比すると明らかな
ように、本発明に係る触媒は、より高い重合圧力を採用
した場合における活性の増加が大きい。
As is clear from comparison between Examples 1 and 3 and Comparative Examples 1 and 3, the catalyst according to the present invention shows a large increase in activity when a higher polymerization pressure is adopted.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の理解を助けるための模式的図面であ
る。
FIG. 1 is a schematic drawing for helping understanding of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属マグネシウム粉末と2倍モル以上のア
ルキルモノハロゲン化物とをジアルコキシマグネシウム
の存在下で反応させて得られる物質(a)と、フタル酸
のジエステル(b)とを共粉砕させて得られる生成物
を、四塩化チタン(c)と接触させることを特徴とする
オレフイン類重合用固体触媒成分。
1. A substance (a) obtained by reacting a magnesium metal powder with a 2-fold or more molar amount of an alkyl monohalide in the presence of dialkoxymagnesium and a phthalic acid diester (b) are co-ground. A solid catalyst component for polymerization of olefins, characterized in that the product thus obtained is contacted with titanium tetrachloride (c).
JP6805387A 1987-03-24 1987-03-24 Solid catalyst component for olefin polymerization Expired - Fee Related JP2514028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6805387A JP2514028B2 (en) 1987-03-24 1987-03-24 Solid catalyst component for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6805387A JP2514028B2 (en) 1987-03-24 1987-03-24 Solid catalyst component for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS63235306A JPS63235306A (en) 1988-09-30
JP2514028B2 true JP2514028B2 (en) 1996-07-10

Family

ID=13362652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6805387A Expired - Fee Related JP2514028B2 (en) 1987-03-24 1987-03-24 Solid catalyst component for olefin polymerization

Country Status (1)

Country Link
JP (1) JP2514028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251403A (en) * 1987-04-07 1988-10-18 Toho Titanium Co Ltd Solid catalyst ingredient for polymerization of olefin

Also Published As

Publication number Publication date
JPS63235306A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
JPH0425286B2 (en)
JP2514028B2 (en) Solid catalyst component for olefin polymerization
JP2541808B2 (en) Solid catalyst component for olefin polymerization
JP2513998B2 (en) Catalyst for olefin polymerization
JP2525157B2 (en) Solid catalyst component for olefin polymerization
JP2541807B2 (en) Solid catalyst component for olefin polymerization
JPH0830092B2 (en) Solid catalyst component for olefin polymerization
JPH0694487B2 (en) Catalyst for olefin polymerization
JPH0694488B2 (en) Catalyst for olefin polymerization
JPH0689062B2 (en) Catalyst for olefin polymerization
JPH0710889B2 (en) Catalyst for olefin polymerization
JPH075660B2 (en) Catalyst for olefin polymerization
JPH0672168B2 (en) Catalyst for olefin polymerization
JPH078886B2 (en) Catalyst for olefin polymerization
JPH085935B2 (en) Solid catalyst component for olefin polymerization
JPH0672167B2 (en) Catalyst for olefin polymerization
JPH0710888B2 (en) Catalyst for olefin polymerization
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JP2587247B2 (en) Olefin polymerization catalyst
JPS63241005A (en) Solid catalyst ingredient for polymerization of olefin
JPS6330504A (en) Catalyst for polymerization of olefin
JPS62508A (en) Catalyst component for polymerization of olefin
JPS63251403A (en) Solid catalyst ingredient for polymerization of olefin
JPS6341510A (en) Catalyst for polymerizing olefins
JPH02170804A (en) Catalyst for olefin polymerization

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees