JPS6354723B2 - - Google Patents

Info

Publication number
JPS6354723B2
JPS6354723B2 JP55152129A JP15212980A JPS6354723B2 JP S6354723 B2 JPS6354723 B2 JP S6354723B2 JP 55152129 A JP55152129 A JP 55152129A JP 15212980 A JP15212980 A JP 15212980A JP S6354723 B2 JPS6354723 B2 JP S6354723B2
Authority
JP
Japan
Prior art keywords
catalyst component
titanium
polymerization
polymer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55152129A
Other languages
Japanese (ja)
Other versions
JPS5776004A (en
Inventor
Kohei Kimura
Hiroyasu Ooba
Atsushi Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP15212980A priority Critical patent/JPS5776004A/en
Publication of JPS5776004A publication Critical patent/JPS5776004A/en
Publication of JPS6354723B2 publication Critical patent/JPS6354723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、チタン系成分と有機アルミニウム化
合物成分とよりなるC3以上のα―オレフイン類
重合用触媒の前者の触媒成分(以下C3以上のα
―オレフイン類重合用触媒成分と略す。)の製造
方法に関する。 すなわち、本発明はC3以上のα―オレフイン
類の重合に供した際高活性に作用し、しかも立体
規則性重合体を高収率で得ることのできる高性能
触媒成分の製造方法に係り、更に詳しくはマグネ
シウムハロゲン化物と、アルミニウムトリイソプ
ロポキシドとを共粉砕して得た組成物に、さらに
電子供与性物質を添加して共粉砕し、得られた固
体組成物を、チタンハロゲン化物と液相または気
相中で接触させ、次いで不活性有機溶剤で洗浄す
ることを特徴とするC3以上のα―オレフイン類
重合用触媒成分の製造方法に関するものである。 従来、C3以上のα―オレフイン類重合用触媒
成分としては固体のチタンハロゲン化物が周知で
あり広く用いられているが、触媒成分および触媒
成分中のチタン当りの重合体の収量(以下チタン
当りの重合活性という。)が低いため触媒残渣を
除去するための所謂脱灰工程が不可避であつた。
この脱灰工程は多量のアルコールまたはキレート
剤を使用するために、それ等の回収装置等が必要
であり、資源、エネルギーその他付随する問題が
多く当業者にとつては早急に解決を望まれる大き
な課題であつた。この煩雑な脱灰工程を省くため
に触媒成分とりわけ触媒成分中のチタン当りの重
合活性を高めるべく数多くの研究がなされ、提案
されている。 特に最近の傾向として、活性成分であるチタン
ハロゲン化物等の遷移金属化合物を多孔質の担体
物質に担持させ、その比表面積の拡大を計ること
によりC3以上のα―オレフイン類の重合に供し
た際、触媒成分中のチタン当りの重合活性を飛躍
的に高めたという提案が数多く見かけられる。更
にまた、前記担体物質そのものの改善および担持
方法の工夫による効果、併せて第三成分の添加等
についても種々提案されている。 例えば特公昭47―41676号公報においては、粉
砕し、活性化したマグネシウムまたは亜鉛のハロ
ゲン化物を四塩化チタンの液相中に懸濁させて、
チタンを担持させ、その後有機溶剤で洗浄する
か、あるいは、該ハロゲン化物を予め有機溶剤に
接触処理した後、溶剤を蒸発除去し、次いで四塩
化チタンの液相中に懸濁させて、チタンを担持さ
せ、さらに有機溶剤で洗浄した後、固液を分離
し、得られた固体組成物を触媒成分としてオレフ
イン類の重合に供する方法が開示されている。こ
の方法によれば触媒成分中のチタン当りの重合活
性においては当時の技術水準を以つて考えた場合
大きな効果をおさめているが、立体規則性重合体
の収率(以下実施例において全結晶性ポリマーの
収率として表わす。)が著しく低いという欠点が
あつた。 このような欠点を排除するものとして特開昭50
―126590号公報においては、ハロゲン化マグネシ
ウムを第三成分である電子供与性物質、具体的に
は芳香族カルボン酸エステルと機械的手段によつ
て接触させ、得られた固体組成物に、四ハロゲン
化チタンを液相または気相中で接触させて触媒成
分を得る方法が開示されている。この方法によれ
ば脱灰工程を省略しても実用上殆んど差支えない
程度にチタン当りの重合活性は上昇しているが、
立体規則性重合体の収率においてはなお満足すべ
き状態になく、工業的に実用化される域にまでは
達していない。 さらに、前記の方法を改良するものとして、特
開昭52―87489号公報では、少くとも有機基また
はハロゲンを含有するアルミニウム、スズ、およ
びゲルマニウムの金属化合物の中から選ばれる1
種とハロゲン化マグネシウムとを有機酸エステル
の存在下に粉砕接触させる方法が提案されてお
り、前者に比較してチタン当りの重合活性および
立体規則性重合体の収率においてそれなりの効果
を収めているが、触媒成分当りの重合体の収量
(以下触媒成分当りの重合活性という。)および立
体規則性重合体の収率などの重合特性値を加味し
て考察した場合、高度化しつつある斯界の要求を
満足すべき状態になく、尚改良の余地が残されて
いた。 前記のような触媒成分は、いずれも触媒成分中
のチタン当りの重合活性の向上に重点を置きすぎ
る傾向にあり、従つて立体規則性重合体の収率が
若干とはいえ犠牲になつている。また、触媒成分
当りの重合活性については余り重要視されていな
い面もあり、そのことが生成重合体にチタン分残
渣以外の悪影響を及ぼす原因となつていた。 本発明者等は、このような従来技術に残された
課題を解決すべく鋭意研究の結果茲に提案するも
のである。 即ち、本発明の特色とするところは(a)一般式
MgX2(式中Xはハロゲン元素である。)で表わさ
れるマグネシウムハロゲン化物と、(b)アルミニウ
ムトリイソプロポキシドとを共粉砕して得た組成
物に、さらに(c)電子供与性物質を添加して共粉砕
し、得られた固体組成物を(d)一般式TiX4(式中X
はハロゲン元素である。)で表わされるチタンハ
ロゲン化物と液相または気相中で接触させ、次い
で不活性有機溶剤を用いて洗浄液中にハロゲン元
素の存在が認められなくなるまで洗浄し、その後
に固液を分離して乾燥するか、更にはまた適量の
不活性有機溶剤を加えてスラリー状となし、その
ままC3以上のα―オレフイン類重合用触媒成分
として用いるところにある。 本発明によれば、マグネシウムハロゲン化物と
アルミニウムトリイソプロポキシドとを共粉砕し
て処理変性した組成物に、さらに電子供与性物質
を添加して共粉砕し、得られた固体組成物を用い
て上記チタンハロゲン化物を処理することによつ
て活性成分であるチタンの担持率を高め、触媒成
分中のチタン当りの重合活性を高めることができ
るばかりでなく、触媒成分当りの重合活性をも高
度に維持しつつ、しかも立体規則性重合体の収率
においても優れた効果を奏することができる。 従来、生成重合体に悪影響を及ぼす触媒残渣の
中で特にチタンが最も忌避されてきた。したがつ
てチタン当りの重合活性を高めることにより触媒
残渣の除去即ち、脱灰工程を省略しようとする努
力が続けられ、それなりの成果をあげてきた。そ
の思想そのものに疑義はないが触媒成分中に含ま
れる他の物質、このような担体付触媒成分の場合
を例にとれば担体物質の成分等も生成重合体や重
合装置に好ましくない影響を及ぼすことも当業者
の知るところであつた。本発明はこのような点に
も着目してなされたものであり、その結果として
重合特性値特に、触媒成分当りの重合活性および
立体規則性重合体の収率を総体的に高めるもので
ある。このようにして脱灰工程を省くことは勿
論、立体規則性重合体の収率においても極めて優
れた高性能触媒成分を製造することができるよう
になつた。 本発明において使用される一般式MgX2(式中
Xはハロゲン元素である。)で表わされるマグネ
シウムハロゲン化物とは無水のMgCl2,MgBr2
MgI2等であるが中でもMgCl2が好ましい。 本発明において使用される電子供与性物質とし
ては、その分子中に酸素、窒素、硫黄およびリン
原子から選ばれた原子を少くとも1個含有する有
機化合物から選ばれ、例えばエーテル、エステ
ル、ケトン、アミン、ホスフイン、ホスフインア
ミド等があげられる。更に具体的にはジエチルエ
ーテルなどの脂肪族エーテル類、アニソールなど
の芳香族エーテル類、酢酸エチル、メタクリル酸
メチルなどの脂肪族カルボン酸エステル類、安息
香酸エチル、トルイル酸メチル、トルイル酸エチ
ル、アニス酸エチル、フタル酸ジエチルなどの芳
香族カルボン酸エステル類、アセトンなどのケト
ン類、トリフエニルホスフインなどのホスフイン
類、ヘキサホスフインアミドなどのホスフインア
ミド類等があげられるが、これ等のうち特に好ま
しいものは芳香族カルボン酸エステル類である。 本発明において使用される一般式TiX4(式中X
はハロゲン元素である。)で表わされるチタンハ
ロゲン化物としてはTiCl4,TiBr4,TiI4等があ
げられるが、中でもTiCl4が好ましい。また、こ
のチタンハロゲン化物を前記の電子供与性物質と
の錯合体の形で用いることも妨げない。 本発明において使用される不活性有機溶剤とし
ては、飽和脂肪族および芳香族炭化水素化合物類
例えばヘキサン、ヘプタン、オクタン、シクロヘ
キサン、ベンゼン、トルエン等があげられるが、
これ等不活性有機溶剤の使用に際してはモレキユ
ラシーブス等で十分に脱水したものを用いること
が望ましい。 これ等各成分の使用割合は生成される触媒成分
の性能に悪影響を及ぼすことの無い限り任意であ
り、特に限定するものではないが、通常マグネシ
ウムハロゲン化物1モルに対し、アルミニウムト
リイソプロポキシドは0.001〜1モル、好ましく
は0.005〜0.5モルであり、電子供与性物質は0.01
〜10モル、好ましくは0.05〜1モルの範囲で用い
られる。 本発明におけるマグネシウムハロゲン化物とア
ルミニウムトリイソプロポキシドとの共粉砕及び
得られる組成物と電子供与性物質との共粉砕は通
常機械的処理によつて行なわれることが好まし
く、粉体を微粉砕するために用いられる粉砕機例
えばボールミル、振動ミル、塔式摩砕機、衝撃粉
砕機等のうちいずれを選ぶことも任意である。粉
砕時間は粉砕機の性能に応じて異なることは勿論
であるがマグネシウムハロゲン化物とアルミニウ
ムトリイソプロポキシドとの共粉砕の場合は、通
常0.5〜10時間の範囲で処理することが好ましい。
さらに、前記組成物と電子供与性物質との共粉砕
も前記と同様の機械的処理によつて行なわれ、処
理時間は通常5〜100時間の範囲である。 これ等各成分の接触温度は被処理物が粉砕可能
な範囲であれば特に限定しないが通常80℃以下が
好ましい。 このようにして得られた固体組成物に、チタン
ハロゲン化物を液相または気相中で接触させてチ
タンを担持させ、次いで不活性有機溶剤で洗浄す
ることにより本発明の触媒成分が得られる。 チタンハロゲン化物と、前記マグネシウムハロ
ゲン化物の処理生成物すなわち固体組成物との接
触は、撹拌機を具備した冷却装置付の容器を用
い、通常20〜100℃の温度範囲で行なわれる。接
触処理時間は固体組成物にチタンハロゲン化物中
のチタンが十分に担持される範囲であれば任意で
あるが、通常0.5〜10時間の範囲で行なわれる。 前記処理後、得られたスラリー状組成物を不活
性有機溶剤を用いて洗浄する。この際、洗浄液中
にハロゲン元素が検出されなくなつた時点を以つ
て洗浄終了とみなし、固液を分離して乾燥する
か、あるいは更に適量の不活性有機溶剤を加えて
スラリー状となし、そのまま本発明のC3以上の
α―オレフイン類重合用触媒成分として用いる。 本発明におけるこれ等一連の操作は、酸素およ
び水分等を可能な限り排除した条件下において行
ない、例えば窒素、アルゴン等の不活性ガス雰囲
気中で行なわれる。 以上の如くして製造された触媒成分はチーグラ
ー型触媒の遷移金属成分として、一般式AlRmX3
―m(式中Rは水素または炭素数1〜10のアルキ
ル基、Xはハロゲン元素、mは1〜3の整数であ
る。)と表わされる有機アルミニウム化合物と組
合せてC3以上のα―オレフイン類重合用触媒を
形成する。使用される有機アルミニウム化合物は
触媒成分のチタン原子当り重量比で1〜300、好
ましくは1〜100の範囲で用いられる。また、重
合に際して芳香族カルボン酸エステル類などの第
三成分を添加使用することも妨げない。 重合方法は不活性有機溶媒の存在下でも、液状
オレフイン単量体の存在下でも行なうことができ
る。重合温度は200℃以下、好ましくは100℃以下
であり、重合圧力は100Kg/cm2・G以下、好まし
くは50Kg/cm2・G以下である。 本発明方法により製造された触媒成分を用いて
単独または共重合されるC3以上のα―オレフイ
ン類はプロピレン、1―ブテン、4―メチル―ペ
ンテン―1などである。 以下本発明を実施例および比較例により具体的
に説明する。 実施例 1 〔触媒成分の調製〕 市販の無水塩化マグネシウム25gと、アルミニ
ウムトリイソプロポキシド1.0gを窒素雰囲気下
で、15mmφのステンレスボールを全容積の3/5充
填した容量1の振動ミルポツトに装入し、振動
数1430v.p.m、振巾3.5mmで1時間粉砕処理した。
粉砕終了後窒素雰囲気下で安息香酸エチル7.8g
を装入し、同様の条件で更に17時間の粉砕処理を
施した。これ等の粉砕処理はいずれも室温下で行
なつた。 窒素ガスで十分に置換され、撹拌機を具備した
冷却装置付容量200mlの丸底フラスコにTiCl450
mlと、前記粉砕処理によつて得られた固体組成物
10gを装入し、65℃で2時間の撹拌反応を行なつ
た。反応終了後室温まで冷却し、静置してデカン
テーシヨンにより上澄液を除去した。次いで脱水
n―ヘプタン100mlによる洗浄を繰返し行ない洗
浄液中に塩素が検出されなくなつた時点で洗浄終
了とし触媒成分とした。 尚、該触媒成分中の固液を分離して固体分のチ
タン含有率を測定したところ2.08重量%であつ
た。 〔重合〕 窒素ガスで完全に置換された内容積1.5の撹
拌装置付オートクレーブに脱水n―ヘプタン500
mlを装入し窒素ガス雰囲気を保ちつつトリエチル
アルミニウム20mg、次いで前記触媒成分をチタン
原子として0.90mg装入した。その後60℃に昇温し
てプロピレンガスを導入しつつ4Kg/cm2・Gの圧
力を維持して2時間のプロピレン重合を行なつ
た。重合終了後得られた固体ポリマーを過し、
80℃に加温して減圧乾燥した。一方液を濃縮し
て重合溶媒可溶性ポリマーを得た。 重合溶媒に溶存するポリマーの量を(A)とし、固
体ポリマーの量を(B)とする。また得られた固体ポ
リマーを沸騰n―ヘプタンで6時間の抽出を行な
いn―ヘプタンに不溶解のポリマーを得、この量
を(C)とする。触媒成分当りの重合活性を式、 〔(A)+(B)〕(g)/触媒成分量(g) で表わし、結晶性ポリマーの収率を式、 (C)/(B)×100(%)で表わす。 また、全結晶性ポリマーの収率(D)は式、 (D)=(C)/(A)+(B)×100(%) より求められる。得られた結果は第1表に示す通
りである。 実施例 2 アルミニウムトリイソプロポキシドの量を2.0
gに変えたほかは実施例1と同様にして触媒成分
の調製を行なつた。尚、この際の固体分のチタン
含有率は1.97重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.39mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 実施例 3 安息香酸エチル添加後の粉砕時間を40時間とし
たほかは実施例1と同様にして触媒成分の調製を
行なつた。尚、この際の固体分のチタン含有率は
2.09重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.35mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 実施例 4 無水塩化マグネシウムとアルミニウムトリイソ
プロポキシドとの粉砕処理時間を5時間としたほ
かは実施例2と同様にして触媒成分の調製を行な
つた。尚、この際の固体分のチタン含有率は1.88
重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.05mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 1 アルミニウムトリイソプロポキシドを加えなか
つたほかは実施例1と同様にして触媒成分の調製
を行なつた。尚、この際の固体分のチタン含有率
は1.40重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として0.83mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 2 MgCl2とアルミニウムトリイソプロポキシドお
よび安息香酸エチルを実施例1と同じ量比で同時
添加して18時間共粉砕したほかは実施例1と同様
にして触媒成分の調製を行なつた。尚、この際の
固体分のチタン含有率は1.72重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.26mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 3 MgCl2と安息香酸エチルとを予め1時間粉砕処
理し、次いでアルミニウムトリイソプロポキシド
を加えて17時間の粉砕処理を行なつたほかは各成
分の量比等実施例1と同様にして触媒成分の珍調
を行なつた。尚、この際の固体分のチタン含有率
は1.66重量%であつた。 重合に際しては得られた触媒成分をチタン原子
として1.12mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。 比較例 4 アルミニウムトリイソプロポキシドに代えてア
ルミニウムエトキシドを用いたほかは実施例1と
同様にして触媒成分の調製を行なつた。尚、この
際の固体分のチタン含有率は1.69重量%であつ
た。 重合に際しては得られた触媒成分をチタン原子
として1.42mg装入し、実施例1と同様にして実験
を行なつた。得られた結果は第1表に示す通りで
ある。
The present invention relates to the former catalyst component (hereinafter referred to as C3 or more
- Abbreviated as olefin polymerization catalyst component. ). That is, the present invention relates to a method for producing a high-performance catalyst component that exhibits high activity when subjected to the polymerization of C 3 or higher α-olefins and can yield a stereoregular polymer in high yield. More specifically, an electron-donating substance is further added to a composition obtained by co-pulverizing magnesium halide and aluminum triisopropoxide, and the resulting solid composition is co-pulverized with titanium halide. The present invention relates to a method for producing a catalyst component for polymerizing C3 or higher α-olefins, which comprises contacting in a liquid phase or gas phase and then washing with an inert organic solvent. Conventionally, solid titanium halides have been well known and widely used as catalyst components for the polymerization of α-olefins with C3 or higher. Because of the low polymerization activity (polymerization activity of
Since this deashing process uses a large amount of alcohol or chelating agent, it requires recovery equipment, etc., and there are many resource, energy, and other related problems, making it a major problem that those skilled in the art would like to solve as soon as possible. It was a challenge. In order to eliminate this complicated deashing process, many studies have been made and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially in the catalyst component. In particular, a recent trend is to support transition metal compounds such as titanium halides, which are active ingredients, on a porous carrier material, and to increase the specific surface area of the active ingredient to polymerize α-olefins with C3 or higher. In recent years, many proposals have been made to dramatically increase the polymerization activity per titanium in the catalyst component. Furthermore, various proposals have been made regarding the effects of improving the carrier material itself, devising a supporting method, and adding a third component. For example, in Japanese Patent Publication No. 47-41676, a crushed and activated magnesium or zinc halide is suspended in a liquid phase of titanium tetrachloride,
Titanium is supported on titanium and then washed with an organic solvent, or the halide is contacted with an organic solvent in advance, the solvent is removed by evaporation, and then the titanium is suspended in a liquid phase of titanium tetrachloride. A method is disclosed in which the solid composition is supported, washed with an organic solvent, separated into solid and liquid, and the resulting solid composition is used as a catalyst component in the polymerization of olefins. This method has a great effect on the polymerization activity per titanium in the catalyst component, considering the state of the art at the time, but the yield of stereoregular polymer (total crystallinity The disadvantage was that the yield (expressed as a polymer yield) was extremely low. In order to eliminate such drawbacks, the
-126590, magnesium halide is brought into contact with a third component, an electron-donating substance, specifically an aromatic carboxylic acid ester, by mechanical means, and the resulting solid composition is injected with tetrahalogen. A method for obtaining a catalyst component by contacting titanium oxide in a liquid or gas phase is disclosed. According to this method, the polymerization activity per titanium is increased to such an extent that there is almost no practical difference even if the deashing step is omitted.
The yield of stereoregular polymers is still unsatisfactory and has not yet reached the level where it can be put to practical use industrially. Furthermore, as an improvement on the above method, Japanese Patent Application Laid-Open No. 52-87489 discloses a metal compound selected from aluminum, tin, and germanium containing at least an organic group or a halogen.
A method has been proposed in which seeds and magnesium halide are brought into contact with each other by pulverization in the presence of an organic acid ester, and compared to the former method, it has achieved certain effects in terms of polymerization activity per titanium and the yield of stereoregular polymers. However, when considering polymerization characteristics such as the yield of polymer per catalyst component (hereinafter referred to as polymerization activity per catalyst component) and the yield of stereoregular polymer, it becomes clear that this industry is becoming more sophisticated. It was not in a state that would satisfy the requirements, and there was still room for improvement. All of the above-mentioned catalyst components tend to place too much emphasis on improving the polymerization activity per titanium in the catalyst component, and therefore the yield of stereoregular polymers is sacrificed, albeit slightly. . In addition, the polymerization activity per catalyst component has not been given much importance, and this has been a cause of adverse effects other than titanium residue on the produced polymer. The present inventors have made a proposal based on their extensive research in order to solve the problems remaining in the prior art. That is, the feature of the present invention is that (a) the general formula
A composition obtained by co-pulverizing a magnesium halide represented by MgX 2 (wherein X is a halogen element) and (b) aluminum triisopropoxide is further added with (c) an electron-donating substance. The solid composition obtained by (d) general formula TiX 4 (in the formula
is a halogen element. ) in the liquid or gas phase, and then washed with an inert organic solvent until the presence of halogen elements is no longer recognized in the washing solution, after which the solid and liquid are separated and dried. Alternatively, it can be made into a slurry by adding an appropriate amount of an inert organic solvent and used as it is as a catalyst component for polymerizing α-olefins having C3 or more. According to the present invention, an electron-donating substance is further added to a composition that has been processed and modified by co-pulverizing magnesium halide and aluminum triisopropoxide, and the resulting solid composition is used. By treating the titanium halide mentioned above, it is possible not only to increase the supporting ratio of titanium, which is an active component, and to increase the polymerization activity per titanium in the catalyst component, but also to highly increase the polymerization activity per catalyst component. It is possible to achieve an excellent effect on the yield of the stereoregular polymer while maintaining the same. Conventionally, titanium has been the most avoided among catalyst residues that have an adverse effect on the produced polymer. Therefore, efforts have been made to eliminate the catalyst residue removal step, that is, the deashing step, by increasing the polymerization activity per titanium, and have achieved some success. There is no doubt about the idea itself, but other substances contained in the catalyst component, such as the components of the carrier material in the case of a catalyst component with a carrier, may also have an undesirable effect on the produced polymer and the polymerization equipment. This was also known to those skilled in the art. The present invention has been made with this point in mind, and as a result, the polymerization properties, particularly the polymerization activity per catalyst component and the yield of stereoregular polymer, are generally improved. In this way, it has become possible to produce a high-performance catalyst component that not only eliminates the deashing step but also has an extremely excellent yield of stereoregular polymer. The magnesium halide represented by the general formula MgX 2 (wherein X is a halogen element) used in the present invention is anhydrous MgCl 2 , MgBr 2 ,
Among them, MgCl 2 is preferable, such as MgI 2 . The electron-donating substance used in the present invention is selected from organic compounds containing at least one atom selected from oxygen, nitrogen, sulfur, and phosphorus atoms in the molecule, such as ether, ester, ketone, Examples include amines, phosphines, phosphinamides, and the like. More specifically, aliphatic ethers such as diethyl ether, aromatic ethers such as anisole, aliphatic carboxylic acid esters such as ethyl acetate and methyl methacrylate, ethyl benzoate, methyl toluate, ethyl toluate, and anis. Examples include aromatic carboxylic acid esters such as ethyl acid and diethyl phthalate, ketones such as acetone, phosphines such as triphenylphosphine, and phosphinamides such as hexaphosphineamide. Particularly preferred are aromatic carboxylic acid esters. The general formula TiX 4 used in the present invention (in the formula
is a halogen element. Examples of the titanium halide represented by ) include TiCl 4 , TiBr 4 , TiI 4 and the like, with TiCl 4 being particularly preferred. Furthermore, it is not prohibited to use this titanium halide in the form of a complex with the above-mentioned electron-donating substance. Inert organic solvents used in the present invention include saturated aliphatic and aromatic hydrocarbon compounds such as hexane, heptane, octane, cyclohexane, benzene, toluene, etc.
When using these inert organic solvents, it is desirable to use one that has been sufficiently dehydrated using molecular sieves or the like. The ratio of each component to be used is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and is not particularly limited, but usually aluminum triisopropoxide is used per mole of magnesium halide. The amount is 0.001 to 1 mol, preferably 0.005 to 0.5 mol, and the electron donating substance is 0.01 mol.
-10 mol, preferably 0.05-1 mol. Co-pulverization of magnesium halide and aluminum triisopropoxide and co-pulverization of the resulting composition and electron-donating substance in the present invention are usually preferably carried out by mechanical treatment, and the powder is finely pulverized. Any of the mills used for this purpose, such as ball mills, vibration mills, tower mills, impact mills, etc., can be selected arbitrarily. It goes without saying that the pulverization time will vary depending on the performance of the pulverizer, but in the case of co-pulverization of magnesium halide and aluminum triisopropoxide, it is usually preferable to carry out the treatment within a range of 0.5 to 10 hours.
Furthermore, co-pulverization of the composition and the electron-donating substance is also performed by the same mechanical treatment as described above, and the treatment time is usually in the range of 5 to 100 hours. The contact temperature of each of these components is not particularly limited as long as the object to be treated can be pulverized, but it is usually preferably 80° C. or lower. The catalyst component of the present invention is obtained by contacting the thus obtained solid composition with a titanium halide in a liquid or gas phase to support titanium, and then washing with an inert organic solvent. The contact between the titanium halide and the treated product of the magnesium halide, that is, the solid composition, is usually carried out at a temperature in the range of 20 to 100°C using a container equipped with a cooling device and equipped with a stirrer. The contact treatment time is arbitrary as long as the titanium in the titanium halide is sufficiently supported on the solid composition, but it is usually carried out in a range of 0.5 to 10 hours. After the treatment, the resulting slurry composition is washed with an inert organic solvent. At this time, the cleaning is considered complete when no halogen element is detected in the cleaning solution, and the solid and liquid are separated and dried, or an appropriate amount of an inert organic solvent is added to form a slurry, and the cleaning is completed as it is. It is used as a catalyst component for the polymerization of C3 or higher α-olefins in the present invention. These series of operations in the present invention are performed under conditions in which oxygen, moisture, etc. are excluded as much as possible, for example, in an atmosphere of an inert gas such as nitrogen or argon. The catalyst component produced as described above has the general formula AlRmX 3 as a transition metal component of a Ziegler type catalyst.
-m (wherein R is hydrogen or an alkyl group having 1 to 10 carbon atoms, X is a halogen element, and m is an integer of 1 to 3 ) in combination with an organoaluminum compound represented by form a catalyst for similar polymerization. The organoaluminum compound used is used in a weight ratio of 1 to 300, preferably 1 to 100, per titanium atom of the catalyst component. Furthermore, there is no hindrance to the addition and use of a third component such as aromatic carboxylic acid esters during the polymerization. The polymerization process can be carried out either in the presence of an inert organic solvent or in the presence of a liquid olefin monomer. The polymerization temperature is 200°C or less, preferably 100°C or less, and the polymerization pressure is 100Kg/cm 2 ·G or less, preferably 50Kg/cm 2 ·G or less. C 3 or higher α-olefins which are monopolymerized or copolymerized using the catalyst component produced by the method of the present invention include propylene, 1-butene, 4-methyl-pentene-1, and the like. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 [Preparation of catalyst components] 25 g of commercially available anhydrous magnesium chloride and 1.0 g of aluminum triisopropoxide were placed in a vibrating mill pot with a capacity of 1 filled with 3/5 of the total volume of 15 mmφ stainless steel balls under a nitrogen atmosphere. The powder was ground for 1 hour at a vibration frequency of 1430 v.pm and a shaking width of 3.5 mm.
After grinding, add 7.8g of ethyl benzoate under nitrogen atmosphere.
was charged and further subjected to pulverization treatment for 17 hours under the same conditions. All of these pulverization treatments were performed at room temperature. TiCl 4 50 in a 200 ml round bottom flask with a cooling device, well purged with nitrogen gas and equipped with a stirrer.
ml and the solid composition obtained by the pulverization process.
10 g was charged, and a stirring reaction was carried out at 65° C. for 2 hours. After the reaction was completed, the mixture was cooled to room temperature, left to stand, and the supernatant liquid was removed by decantation. Next, washing with 100 ml of dehydrated n-heptane was carried out repeatedly, and when chlorine was no longer detected in the washing liquid, the washing was completed and used as a catalyst component. Furthermore, when the solid and liquid in the catalyst component were separated and the titanium content of the solid was measured, it was found to be 2.08% by weight. [Polymerization] Dehydrated n-heptane 500ml in an autoclave with an internal volume of 1.5 and equipped with a stirring device that was completely purged with nitrogen gas.
ml, and while maintaining a nitrogen gas atmosphere, 20 mg of triethylaluminum was charged, followed by 0.90 mg of the catalyst component as titanium atoms. Thereafter, the temperature was raised to 60°C, and propylene polymerization was carried out for 2 hours while maintaining a pressure of 4 kg/cm 2 ·G while introducing propylene gas. After the completion of polymerization, the obtained solid polymer is filtered,
It was heated to 80°C and dried under reduced pressure. On the other hand, the liquid was concentrated to obtain a polymer soluble in the polymerization solvent. Let the amount of polymer dissolved in the polymerization solvent be (A), and the amount of solid polymer be (B). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount was designated as (C). The polymerization activity per catalyst component is expressed by the formula, [(A)+(B)](g)/amount of catalyst component (g), and the yield of crystalline polymer is expressed by the formula, (C)/(B)×100( %). Further, the yield (D) of the total crystalline polymer is determined by the formula: (D)=(C)/(A)+(B)×100(%). The results obtained are shown in Table 1. Example 2 The amount of aluminum triisopropoxide was 2.0
A catalyst component was prepared in the same manner as in Example 1, except that g was changed. Incidentally, the titanium content of the solid component at this time was 1.97% by weight. During the polymerization, 1.39 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Example 3 A catalyst component was prepared in the same manner as in Example 1, except that the pulverization time after addition of ethyl benzoate was changed to 40 hours. In addition, the titanium content of the solid component at this time is
It was 2.09% by weight. During the polymerization, 1.35 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Example 4 A catalyst component was prepared in the same manner as in Example 2, except that the pulverization time of anhydrous magnesium chloride and aluminum triisopropoxide was changed to 5 hours. In addition, the titanium content of the solid component at this time was 1.88
It was in weight%. During the polymerization, 1.05 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 1 A catalyst component was prepared in the same manner as in Example 1 except that aluminum triisopropoxide was not added. Incidentally, the titanium content of the solid component at this time was 1.40% by weight. During the polymerization, 0.83 mg of the obtained catalyst component as titanium atoms was charged, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 2 A catalyst component was prepared in the same manner as in Example 1, except that MgCl 2 , aluminum triisopropoxide, and ethyl benzoate were simultaneously added in the same quantitative ratio as in Example 1 and co-pulverized for 18 hours. . Incidentally, the titanium content of the solid component at this time was 1.72% by weight. During the polymerization, 1.26 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 3 The ratio of each component was the same as in Example 1, except that MgCl 2 and ethyl benzoate were pulverized for 1 hour in advance, and then aluminum triisopropoxide was added and pulverized for 17 hours. The catalyst components were uniquely tuned. Incidentally, the titanium content of the solid component at this time was 1.66% by weight. During the polymerization, 1.12 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1. Comparative Example 4 A catalyst component was prepared in the same manner as in Example 1 except that aluminum ethoxide was used in place of aluminum triisopropoxide. Incidentally, the titanium content of the solid component at this time was 1.69% by weight. During the polymerization, 1.42 mg of the obtained catalyst component was charged as titanium atoms, and an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

【表】 第1表からも明らかなように、担体物質である
ハロゲン化マグネシウムを、アルミニウムトリイ
ソプロポキシドを用いて共粉砕することによつて
処理変性し、更に電子供与性物質を加えて粉砕し
た後四ハロゲン化チタンに接触させ、次いで不活
性有機溶剤で洗浄するという本発明方法によつて
得られた触媒成分を用いてα―オレフイン類の重
合を行なつた場合、重合特性値とりわけ触媒成分
当りの重合活性および立体規則性重合体の収率が
極めてバランス良く向上している。これはこのよ
うな担体付触媒成分を開発する上で従来とかくチ
タン当りの重合活性の向上を計ることにより、所
謂脱灰工程を省くという目的を達成すべくなされ
てきた努力をそれなりに評価しつつも、重合特性
値特に触媒成分当りの重合活性並びに立体規則性
重合体の収率を総合的に向上させようとする見地
から触媒成分の改善に着手した本発明者等の研究
の成果である。 前述の如く、所謂触媒残渣として生成重合体に
悪影響を及ぼす物質は、単にチタン分にとどまら
ず触媒成分を形成する他の物質、具体的に塩化マ
グネシウム担体付触媒成分を例にとれば、担体物
質成分の塩素やマグネシウム等も生成重合体に少
なからざる悪影響を及ぼす点を重視し、触媒成分
当りの重合活性の向上を計り、併せて立体規則性
重合体の収率をも向上させたものである。 本発明の技術的特色を要約すれば、担体として
のハロゲン化マグネシウムとアルミニウムトリイ
ソプロポキシドとを機械的手段によつて共粉砕し
て処理変性し、さらに得られた組成物と電子供与
性物質とを前記同様の機械的手段によつて共粉砕
し、それに活性成分であるチタンハロゲン化物を
接触させるという新規な方法により、担体へのチ
タンの担持率を高め、結果として前記のような効
果を収めたもので、工業的に実用度の高いα―オ
レフイン類重合用触媒成分を提供するものとして
期待される。
[Table] As is clear from Table 1, magnesium halide, which is a carrier material, is modified by co-pulverization with aluminum triisopropoxide, and further pulverized with the addition of an electron-donating substance. When α-olefins are polymerized using the catalyst component obtained by the method of the present invention, in which the catalyst component is brought into contact with titanium tetrahalide and then washed with an inert organic solvent, the polymerization characteristics, especially the catalyst The polymerization activity per component and the yield of stereoregular polymer are improved in an extremely well-balanced manner. This is in recognition of the efforts that have been made to achieve the goal of eliminating the so-called deashing step by improving the polymerization activity per titanium unit in developing such supported catalyst components. This is also the result of research by the present inventors, who began to improve catalyst components from the viewpoint of comprehensively improving polymerization properties, particularly polymerization activity per catalyst component, and yield of stereoregular polymer. As mentioned above, the substances that adversely affect the produced polymer as so-called catalyst residues are not just titanium, but also other substances that form the catalyst component, specifically, if we take a catalyst component with a magnesium chloride support as an example, it is the carrier material. We focused on the fact that components such as chlorine and magnesium have a considerable negative effect on the polymer produced, and aimed to improve the polymerization activity per catalyst component, as well as improve the yield of stereoregular polymer. . To summarize the technical features of the present invention, magnesium halide and aluminum triisopropoxide as a carrier are co-pulverized and modified by mechanical means, and the resulting composition and an electron-donating substance are A novel method of co-pulverizing and contacting titanium halide, which is an active ingredient, by the same mechanical means as described above increases the loading rate of titanium on the carrier, resulting in the above-mentioned effects. It is expected that this product will provide a highly practical catalyst component for the polymerization of α-olefins.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するためのフローチヤ
ート図である。
FIG. 1 is a flow chart for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)一般式MgX2(式中Xはハロゲン元素であ
る。)で表わされるマグネシウムハロゲン化物と、
(b)アルミニウムトリイソプロポキシドとを共粉砕
して得た組成物に、さらに(c)電子供与性物質を添
加して共粉砕し、得られた固体組成物を(d)一般式
TiX4(式中Xはハロゲン元素である。)で表わさ
れるチタンハロゲン化物と液相または気相中で接
触させ、次いで不活性有機溶剤で洗浄することを
特徴とするC3以上のα―オレフイン類重合用触
媒成分の製造方法。
1 (a) a magnesium halide represented by the general formula MgX 2 (wherein X is a halogen element);
(b) A composition obtained by co-pulverizing aluminum triisopropoxide, further adding (c) an electron-donating substance and co-pulverizing the resulting solid composition with the general formula (d)
C 3 or higher α-olefin, which is produced by contacting with a titanium halide represented by TiX 4 (wherein X is a halogen element) in a liquid phase or gas phase, and then washing with an inert organic solvent. A method for producing a catalyst component for type polymerization.
JP15212980A 1980-10-31 1980-10-31 Preparation of catalytic component for polymerizing alpha-olefin Granted JPS5776004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15212980A JPS5776004A (en) 1980-10-31 1980-10-31 Preparation of catalytic component for polymerizing alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15212980A JPS5776004A (en) 1980-10-31 1980-10-31 Preparation of catalytic component for polymerizing alpha-olefin

Publications (2)

Publication Number Publication Date
JPS5776004A JPS5776004A (en) 1982-05-12
JPS6354723B2 true JPS6354723B2 (en) 1988-10-31

Family

ID=15533686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15212980A Granted JPS5776004A (en) 1980-10-31 1980-10-31 Preparation of catalytic component for polymerizing alpha-olefin

Country Status (1)

Country Link
JP (1) JPS5776004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305314A (en) * 2012-03-12 2013-09-18 西安艾姆高分子材料有限公司 High molecular weight lubricating oil for weapons or oil for precise instruments and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123108A (en) * 1988-11-02 1990-05-10 Showa Denko Kk Production of ethylene-based polymer
US11390021B2 (en) 2020-06-01 2022-07-19 Matsuura Machinery Corp. Method for producing three-dimensional shaped product, and three-dimensional shaped product obtained by the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990386A (en) * 1972-12-28 1974-08-29
JPS5090683A (en) * 1973-12-17 1975-07-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990386A (en) * 1972-12-28 1974-08-29
JPS5090683A (en) * 1973-12-17 1975-07-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305314A (en) * 2012-03-12 2013-09-18 西安艾姆高分子材料有限公司 High molecular weight lubricating oil for weapons or oil for precise instruments and preparation method thereof

Also Published As

Publication number Publication date
JPS5776004A (en) 1982-05-12

Similar Documents

Publication Publication Date Title
JPS6354723B2 (en)
US4332697A (en) Process for the preparation of catalyst component for the polymerization of α-olefins
JPS648004B2 (en)
JPS6346083B2 (en)
JPS5821921B2 (en) Polymerization method of α↓-olefins
JP2514028B2 (en) Solid catalyst component for olefin polymerization
JPS648641B2 (en)
JP2525157B2 (en) Solid catalyst component for olefin polymerization
JPS6412291B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPS58204004A (en) Production of catalytic component for olefin polymerization
JPS6146481B2 (en)
JP2513997B2 (en) Method for producing catalyst component for olefin polymerization
JPS6215562B2 (en)
JP2513998B2 (en) Catalyst for olefin polymerization
JPH0415809B2 (en)
JPS648003B2 (en)
JPH0694487B2 (en) Catalyst for olefin polymerization
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPS5898309A (en) Production of catalytic component for olefin polymerization
JPH0532405B2 (en)
JPH0565522B2 (en)
JPH0548241B2 (en)
JPS6338365B2 (en)