JPS647682B2 - - Google Patents

Info

Publication number
JPS647682B2
JPS647682B2 JP56159935A JP15993581A JPS647682B2 JP S647682 B2 JPS647682 B2 JP S647682B2 JP 56159935 A JP56159935 A JP 56159935A JP 15993581 A JP15993581 A JP 15993581A JP S647682 B2 JPS647682 B2 JP S647682B2
Authority
JP
Japan
Prior art keywords
emitter
electrode
conductor
transistor
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159935A
Other languages
Japanese (ja)
Other versions
JPS5861652A (en
Inventor
Keiichi Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56159935A priority Critical patent/JPS5861652A/en
Publication of JPS5861652A publication Critical patent/JPS5861652A/en
Publication of JPS647682B2 publication Critical patent/JPS647682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

【発明の詳細な説明】 本発明は半導体装置、特に内部に整合回路を有
する高周波半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a high frequency semiconductor device having an internal matching circuit.

従来、高周波高出力トランジスタは、接地イン
ダクタンスを最小にし最大の利得または出力を得
るために、絶縁性基板から成るトランジスタ容器
内に、例えばエミツタ接地で使用するトランジス
タであれば、同一直線上に互いに180゜方向の異る
エミツタ端子電極を2本設けて、それぞれにトラ
ンジスタチツプのエミツタボンデングパツトを介
してボンデング細線を接続したり、トランジスタ
チツプのエミツタ電極からトランジスタ容器のエ
ミツタ端子電極までの接地インダクタンスを更に
減らすために、上述のトランジスタ容器の両エミ
ツタ端子電極間にあらかじめリボン状等の接地電
極板を設けておき、トランジスタチツプのエミツ
タボンデングパツドからはこの接地電極板にボン
デング細線等を用いて短かい距離で接続する構造
があつた。
Conventionally, high-frequency, high-power transistors are placed in a transistor container made of an insulating substrate in order to minimize ground inductance and obtain maximum gain or output. Two emitter terminal electrodes with different directions are provided, and a thin bonding wire is connected to each via the emitter bonding pad of the transistor chip, or the ground inductance from the emitter electrode of the transistor chip to the emitter terminal electrode of the transistor container is In order to further reduce the noise, a ground electrode plate in the form of a ribbon is provided in advance between both emitter terminal electrodes of the transistor container, and a thin bonding wire or the like is connected to this ground electrode plate from the emitter bonding pad of the transistor chip. There was a structure in which connections were made over short distances.

その他、接地インダクタンスを減らす方法とし
て、絶縁性基板から成るトランジスタ容器内のト
ランジスタチツプに平行してエミツタボンデイン
グパツド側の接地電極にたんざく状のスルーホー
ルを設け絶縁性基板の裏面に設けられた接地メタ
ライズ面と導通する方法等が一般に行われてい
た。
In addition, as a method to reduce grounding inductance, a tanza-shaped through hole is provided in the ground electrode on the emitter bonding pad side in parallel to the transistor chip in the transistor container made of an insulating substrate, and is provided on the back side of the insulating substrate. The commonly used method was to connect the ground metallized surface to a ground metallized surface.

しかしながら、上述の如き接地インダクタンス
を減らす方法は、いずれも構造および製法が複雑
で、トランジスタ容器の価格を上げる要因となつ
ていた。また上述のいずれの方法においても、物
理的に接地インダクタンスを零にすることはでき
ず、高利得、高出力を得ることには限界があつ
た。
However, the above-described methods for reducing grounding inductance all have complicated structures and manufacturing methods, which are factors that increase the price of transistor containers. Furthermore, in any of the above-mentioned methods, it is impossible to physically reduce the ground inductance to zero, and there is a limit to obtaining high gain and high output.

本発明の目的は、上述の如き価格上昇の原因を
とり除き、また接地インダクタンスの低減をはか
り高出力、高帯域の高周波高出力トランジスタを
提供することにある。
An object of the present invention is to provide a high-output, high-bandwidth, high-frequency, high-output transistor that eliminates the causes of the price increase as described above and reduces grounding inductance.

本発明の他の目的は、トランジスタをチツプキ
ヤリアとして、もしくは膜回路基板の一部として
用いることを可能とし、高周波出力混成膜集積回
路を容易に実現できるトランジスタを提供するこ
とにある。
Another object of the present invention is to provide a transistor that can be used as a chip carrier or as part of a film circuit board, and that can easily realize a high-frequency output hybrid film integrated circuit.

本発明によれば、トランジスタ容器内にもしく
は混成膜集積回路内に接地電極板を設けることな
く、接地インダクタンスを物理的にも、回路的に
も、減らすことを可能ならしめる。即ち本発明
は、絶縁性基板の表面のほぼ中央に帯状にメタラ
イズされ、両端がスルーホールまたは側面メタラ
イズにより基板の裏面メタライズと接続されたエ
ミツタ接地導体部と、該エミツタ接地部をはさん
で前記絶縁性基板の表面の両側にそれぞれメタラ
イズされたベース、コレクタ各端子導体部とを有
する絶縁性基板と、該絶縁性基板上に搭載された
トランジスタチツプおよび複数のコンデンサチツ
プと、該トランジスタチツプおよびコンデンサチ
ツプと前記エミツタ接地導体部および前記各端子
導体部とを接続する複数のボンデング線とより成
る半導体装置において、前記トランジスタチツプ
は、前記エミツタ接地導体部のほぼ中央に設けら
れエミツタ接地導体部とは分離された島状のコレ
クタ導体部に搭載接続され、かつ前記コンデンサ
チツプは、その一方の電極が前記トランジスタチ
ツプと前記ベース端子導体部の間のエミツタ接地
導体部上に搭載接続されており、エミツタボンデ
ング線、ベースボンデング線、コレクタボンデン
グ線、それぞれは、前記トランジスタチツプと前
記コレクタ端子部の間にあるエミツタ接地導体部
から前記トランジスタチツプのエミツタボンデン
グパツドを介して前記複数のコンデンサチツプの
うちのいずれかの他の電極に、前記トランジスタ
チツプのベースボンデングパツドから前記複数の
コンデンサチツプのうちの残りの他の電極を介し
て前記ベース端子部に、前記コレクタ導体部から
前記コレクタ端子部にそれぞれ接続されているこ
とを特徴とする。
According to the present invention, it is possible to reduce ground inductance both physically and circuit-wise without providing a ground electrode plate within the transistor container or within the hybrid film integrated circuit. That is, the present invention provides an emitter grounding conductor portion which is metallized in a band shape approximately at the center of the surface of an insulating substrate, and whose both ends are connected to the metallization on the back side of the substrate through a through hole or side surface metallization, and an emitter grounding conductor portion sandwiching the emitter grounding portion. An insulating substrate having a base, a collector and each terminal conductor portion metalized on both sides of the insulating substrate, a transistor chip and a plurality of capacitor chips mounted on the insulating substrate, and the transistor chip and the capacitor. In a semiconductor device comprising a plurality of bonding wires connecting a chip, the emitter grounding conductor portion, and each of the terminal conductor portions, the transistor chip is provided approximately at the center of the emitter grounding conductor portion, and the emitter grounding conductor portion is different from the semiconductor device. The capacitor chip is mounted and connected to a separated island-shaped collector conductor, and one electrode of the capacitor chip is mounted and connected to an emitter grounded conductor between the transistor chip and the base terminal conductor. A terminal bonding line, a base bonding line, and a collector bonding line each connect the plurality of terminals from an emitter ground conductor located between the transistor chip and the collector terminal section to the emitter bonding pad of the transistor chip. from the base bonding pad of the transistor chip to the base terminal portion of the plurality of capacitor chips through the remaining other electrodes of the plurality of capacitor chips; , and are connected to the collector terminal portion, respectively.

以下に本発明の実施例を図面を用いて説明す
る。第1図は本発明の半導体装置の第1の実施例
で、第2図はその等価回路図である。第2図の各
回路素子は、第1図の各部品と対応させるため第
1図の部品の番号と同じ番号に「ダツシユ」を付
けて示してある。第1図において、絶縁性基板1
のほぼ中央にメタライズ層で帯状のエミツタ接地
導体部2を設けてあり、このエミツタ接地導体部
は絶縁性基板1の両側で側面メタライズ21,2
2により絶縁性基板の裏面メタライズ層と導通し
ている。また、エミツタ接地導体部の両端にはそ
れぞれ外部導出用のエミツタ端子23,24を設
けてある。一方、絶縁性基板1上には、エミツタ
導体部2をはさんでその両側に互いに180゜方向の
異るベース端子部3とコレクタ端子部4とがメタ
ライズされており、ベース、コレクタ各端子部に
はそれぞれベース端子31、コレクタ端子41が
接続されている。更に、エミツタ接地導体部2の
ほぼ中央にはエミツタ接地導体ランドと電気的に
絶縁するための隙25を置いて島状のコレクタ導
体部5が設けてある。コレクタ導体部5、ベース
端子部側のエミツタ接地導体部とにそれぞれ、ト
ランジスタチツプ50、5個のコンデンサを内蔵
した1個のコンデンサアレイチツプ60がダイボ
ンデングされている。そして、エミツタボンデン
グ線71と72は、トランジスタチツプ50のエ
ミツタボンデングパツドを介してコレクタ端子部
4側のエミツタ接地導体部2から、コンデンサア
レイチツプ60内のコンデンサに接続されてい
る。ベースボンデング線81と82は、コンデン
サアレイチツプ60の残りのコンデンサを介し
て、トランジスタチツプ50のベースボンデング
パツドからベース端子部3に接続されている。コ
レクタボンデング線90,91はそれぞれコレク
タ導体部5の端からコレクタ端子部4に接続され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a semiconductor device of the present invention, and FIG. 2 is an equivalent circuit diagram thereof. Each circuit element in FIG. 2 is shown with the same number as the number of the part in FIG. 1 with a "dash" added to make it correspond to each part in FIG. 1. In FIG. 1, an insulating substrate 1
A band-shaped emitter grounding conductor part 2 is provided with a metallized layer approximately in the center of the insulating substrate 1, and this emitter grounding conductor part is connected to side metallization 21, 2 on both sides of the insulating substrate 1.
2, it is electrically connected to the backside metallized layer of the insulating substrate. Further, emitter terminals 23 and 24 for leading to the outside are provided at both ends of the emitter grounding conductor portion, respectively. On the other hand, on the insulating substrate 1, a base terminal part 3 and a collector terminal part 4 are metalized on both sides of the emitter conductor part 2 in different directions of 180 degrees from each other. A base terminal 31 and a collector terminal 41 are connected to these terminals, respectively. Further, an island-shaped collector conductor portion 5 is provided approximately at the center of the emitter ground conductor portion 2 with a gap 25 for electrical insulation from the emitter ground conductor land. A transistor chip 50 and one capacitor array chip 60 containing five capacitors are die-bonded to the collector conductor portion 5 and the emitter grounded conductor portion on the base terminal side, respectively. The emitter bonding lines 71 and 72 are connected from the emitter grounding conductor 2 on the collector terminal 4 side to the capacitor in the capacitor array chip 60 via the emitter bonding pad of the transistor chip 50. . Base bonding lines 81 and 82 are connected from the base bonding pad of transistor chip 50 to base terminal portion 3 via the remaining capacitors of capacitor array chip 60. Collector bonding wires 90 and 91 are each connected from the end of the collector conductor section 5 to the collector terminal section 4.

周知のように、高周波高出力のトランジスタチ
ツプを、エミツタ共通として動作させる場合、ベ
ース・エミツタ間の入力インピーダンスは、イン
ダクタンス性であり、一方コレクタ・エミツタ間
の出力インピーダンスは容量性であるのでこのト
ランジスタチツプを容器に収納して使用する場
合、動作周波数で高利得高出力を得るには、エミ
ツタ接地インピーダンスを極小にする構造にする
ことのほか、入力側、出力側ともにできるだけト
ランジスタチツプのQ以上はQが上がないよう
に、即ち、入力側にはインダクタンス性を相殺す
るための容量性の、また出力側には容量性を相殺
するためのインダクタンス性のトランジスタ容器
またはトランジスタ各端子とトランジスタチツプ
間に整合回路を構成することが必要である。とこ
ろがこのようなトランジスタ容器または内部整合
回路を有するトランジスタ容器に収納されたトラ
ンジスタを設計しようとすれば、エミツタ接地イ
ンダクタンスを極小にしようとすれば、入力また
は出力インピーダンスのQが上り、述に入出力イ
ンピーダンスのQを極小にしようとすればエミツ
タ接地インダクタンスが大きくなりやすく、その
ため、入出力インピーダンスのQと、接地インダ
クタンスの両方を同時に極小にすることは、言い
かえればトランジスタの性能をよりトランジスタ
チツプの持つ性能に高めることは因難であつた。
本発明の半導体装置は、トランジスタのエミツタ
接地インダクタンスとトランジスタの入、出力イ
ンピーダンスのQとの両方を同時に極小にするこ
とを意図しており、第2図の等価回路からもわか
るように、エミツタ接地インピーダンスは動作周
波数においてエミツタボンデング線72とコンデ
ンサ62とが直列共振するようにコンデンサ62
の容量を選ぶことにより最小にすることができ
る。このときトランジスタのエミツタ電流分はボ
ンデング線71をバイパスして接地に流すことが
できる。
As is well known, when a high frequency, high output transistor chip is operated with a common emitter, the input impedance between the base and emitter is inductive, while the output impedance between the collector and emitter is capacitive. When using the chip in a container, in order to obtain high gain and high output at the operating frequency, in addition to creating a structure that minimizes emitter grounding impedance, it is necessary to minimize the Q of the transistor chip on both the input and output sides. In order to prevent the Q from increasing, use a transistor container with capacitance on the input side to cancel out the inductance, and an inductance on the output side to cancel out the capacitance, or between each terminal of the transistor and the transistor chip. It is necessary to configure a matching circuit. However, if you try to design a transistor housed in such a transistor container or a transistor container with an internal matching circuit, if you try to minimize the grounded emitter inductance, the Q of the input or output impedance increases, and the input/output impedance increases. If you try to minimize the Q of the impedance, the grounded emitter inductance tends to increase, so minimizing both the Q of the input/output impedance and the grounded inductance at the same time will, in other words, improve the performance of the transistor by improving the performance of the transistor chip. It was a challenge to improve its performance.
The semiconductor device of the present invention is intended to simultaneously minimize both the emitter-grounded inductance of the transistor and the Q of the input and output impedances of the transistor. The impedance is set between the capacitor 62 and the capacitor 62 so that the emitter bonding wire 72 and the capacitor 62 resonate in series at the operating frequency.
can be minimized by selecting the capacity of At this time, the emitter current of the transistor can bypass the bonding line 71 and flow to the ground.

トランジスタのベース側入力インピーダンスの
Qは、ボンデング線81と、エミツタボンデング
パツドに最も近接したエミツタ接地部2上にある
コンデンサアレイチツプ60内の容量65と、ボ
ンデング線82とからなる整合回路により極小に
押えることが可能となる。
The Q of the input impedance on the base side of the transistor is determined by a matching circuit consisting of the bonding line 81, the capacitor 65 in the capacitor array chip 60 on the emitter grounding part 2 closest to the emitter bonding pad, and the bonding line 82. This makes it possible to keep it to a minimum.

次にトランジスタのコレクタ側出力インピーダ
ンスのQは、コレクタダイボンデングするための
コレクタ導体部をコレクタ端子部から分離して、
エミツタ接地導体部内に島状にして最小の面積に
して設けてあるので、出力インピーダンスの容量
成分はチツプのそれと比べてほとんど増えず、ボ
ンデング線90,91を経てコレクタ端子部4に
接続されるので、これも、動作周波数においてボ
ンデング線90,91とコレクタ端子部4とを整
合回路と倣してその長さを設計すれば極小に押え
ることができる。
Next, the Q of the collector side output impedance of the transistor is determined by separating the collector conductor part for collector die bonding from the collector terminal part.
Since the emitter is provided as an island in the grounded conductor section with a minimum area, the capacitance component of the output impedance hardly increases compared to that of the chip, and it is connected to the collector terminal section 4 via the bonding wires 90 and 91. This can also be minimized by designing the lengths of the bonding wires 90, 91 and the collector terminal portion 4 in a manner similar to a matching circuit at the operating frequency.

第3図は、本発明の半導体装置の他の実施例
で、第1図の実施例のエミツタ端子23,24、
ベース端子部3、ベース端子31、コレクタ端子
部4、コレクタ端子41の無い場合のもので、そ
の等価回路図は第2図の点線100で囲まれたも
のである。この半導体装置は、混成膜集積回路内
で使用すれば、即ち、膜回路基板の間にもしく
は、膜回路基板内に設けた穴の中に入れ、本実施
例の左側に位置する膜回路基板上の入力回路とコ
ンデンサチツプの容量61,63,65とをボン
デング線で接続することにより、かつ本実施例の
右側に位置する膜回路基板上の出力回路と、コレ
クタ導体部5とをボンデング線で接続することに
より、本発明の第1の半導体装置と同じ機能を持
つことが可能となる。このとき、膜回路と半導体
装置とを接続するための入、出力側のボンデング
線はそれぞれ整合回路の一部としての役割を果た
すことは無論のことである。第1、第3図の実施
例ではエミツタ接地用のコンデンサ62,64
と、ベース側入力整合回路用シヤントコンデンサ
61,63,65とは片側裏面を共通電極とする
コンデンサアレイチツプを用いたが、本発明の半
導体装置は、コンデンサアレイチツプでなくと
も、即ち入力整合回路用コンデンサとエミツタ接
地用のコンデンサはそれぞれ別個にトランジスタ
のベース側ボンデング側のエミツタ接地導体部に
その一方の電極が接続されていさえすれば良い。
FIG. 3 shows another embodiment of the semiconductor device of the present invention, in which the emitter terminals 23, 24 of the embodiment of FIG.
This is the case without the base terminal portion 3, base terminal 31, collector terminal portion 4, and collector terminal 41, and its equivalent circuit diagram is surrounded by a dotted line 100 in FIG. If this semiconductor device is used in a hybrid film integrated circuit, that is, it is inserted between the film circuit boards or into a hole provided in the film circuit board, and placed on the film circuit board located on the left side of this embodiment. By connecting the input circuit and the capacitances 61, 63, and 65 of the capacitor chips with bonding wires, the output circuit on the membrane circuit board located on the right side of this embodiment and the collector conductor portion 5 can be connected with bonding wires. By connecting, it becomes possible to have the same function as the first semiconductor device of the present invention. At this time, it goes without saying that the bonding lines on the input and output sides for connecting the membrane circuit and the semiconductor device each play a role as a part of the matching circuit. In the embodiments shown in FIGS. 1 and 3, capacitors 62 and 64 for grounding the emitters
The shunt capacitors 61, 63, and 65 for the input matching circuit on the base side are capacitor array chips having a common electrode on the back surface of one side, but the semiconductor device of the present invention does not need to be a capacitor array chip; It is only necessary that one electrode of the circuit capacitor and the emitter grounding capacitor be separately connected to the emitter grounding conductor portion on the bonding side of the base side of the transistor.

高周波高出力トランジスタは、より高圧力にす
るため、同一チツプ内に多数のトランジスタ素子
を配列したり、このようなチツプを同一容器内に
複数個配列したりして用いるのが一般的である
が、このような高周波高出力トランジスタでは、
しばしば熱的、高周波電力的不調和が生じ、その
ため使用したトランジスタ素子数に比例した出力
が取り出せないことがある。この不調和を解消す
るためには、各トランジスタ素子のエミツタとエ
ミツタ接地導体部までの接地インダクタンスは適
当量であつた方が高出力が得られる場合があり、
このため接地キヤパシタンス62,64およびボ
ンデング線72,74は設けない方が良いことが
ある。
To achieve higher pressure, high-frequency, high-output transistors are generally used by arranging a large number of transistor elements in the same chip, or by arranging multiple such chips in the same container. , in such a high frequency high power transistor,
Thermal and high-frequency power disharmony often occur, and therefore it may not be possible to obtain an output proportional to the number of transistor elements used. In order to eliminate this disharmony, higher output may be obtained by setting an appropriate amount of grounding inductance between the emitter of each transistor element and the emitter grounding conductor.
For this reason, it may be better not to provide the ground capacitances 62, 64 and the bonding lines 72, 74.

以上説明したように、本発明の半導体装置は、
(1)絶縁性基板の表面にエミツタ接地導体部を設け
これを裏面接地メタライズと導通したこと、(2)エ
ミツタ接地導体部内に島状に最小の面積のコレク
タ導体部を設けて、そこにトランジスタチツプを
ダイボンデングしたこと、(3)トランジスタチツプ
に近接、平行してベースボンデングパツド側のエ
ミツタ接地導体部上に、少くともベース入力整合
回路用シヤントコンデンサをダイボンデングした
こと、(4)エミツタ、ベースボンデング線それぞれ
は、少くともエミツタボンデングパツドから同じ
側にあるエミツタ接地導体ランドに、ベースボン
デングパツドから入力整合用シヤントコンデンサ
に、それぞれ接続すること、により(1)エミツタ接
地導体部から裏面メタライズ接地までのインピー
ダンスは最小になる、(2)コレクタ端子部の寄生容
量を排除でき、このためコレクタ、接地間の容量
は最小に押えられるので出力側Qを不必要に上げ
なくて済む、(3)ベースボンデングパツドからシヤ
ント容量に接続するボンデング線の長さを最小に
できるので、Qの最も低い入力整合回路を提供で
きる、(4)エミツタボンデングパツドからエミツタ
接地導体部までのインダクタンスを最適化でき
る。
As explained above, the semiconductor device of the present invention has
(1) A grounded emitter conductor is provided on the surface of the insulating substrate and electrically connected to the grounded metallization on the rear surface. (2) An island-shaped collector conductor with the minimum area is provided within the grounded emitter, and the transistor is connected there. (3) At least a shunt capacitor for the base input matching circuit has been die-bonded on the emitter grounding conductor on the base bonding pad side close to and parallel to the transistor chip; (4) The emitter , each of the base bonding wires is connected at least from the emitter bonding pad to an emitter ground conductor land on the same side, and from the base bonding pad to the input matching shunt capacitor, respectively (1). The impedance from the emitter grounding conductor to the backside metallized grounding is minimized. (2) Parasitic capacitance at the collector terminal can be eliminated, so the capacitance between the collector and grounding can be kept to a minimum, making the output side Q unnecessary. (3) Since the length of the bonding wire connecting the base bonding pad to the shunt capacitor can be minimized, the input matching circuit with the lowest Q can be provided. (4) Emitter bonding pad The inductance from the emitter to the ground conductor can be optimized.

以上の理由から本発明は従来の高周波高出力ト
ランジスタと比べて構造上簡単で、かつそのため
廉価で、高性能で、Qの低い、従つて回路上使い
やすい半導体装置を提供できる。
For the above reasons, the present invention can provide a semiconductor device that is structurally simpler than conventional high-frequency, high-output transistors, is inexpensive, has high performance, has a low Q, and is therefore easy to use in terms of circuitry.

高出力トランジスタは熱の発生が大きいが、こ
の熱の放散をよくするために絶縁性基板としてし
ばしばBeO基板が用いられる。このBeO基板の
大きさは、熱抵抗を小さくしようとすればトラン
ジスタチツプの大きさよりかなり大きくしなけれ
ばならず、このため従来はトランジスタの入、出
力インピーダンスのQが上ることを犠性にして来
た。本発明の他の利点は本発明の第2の半導体装
置を混成膜集積回路に用いれば、上述の説明から
わかるようにトランジスタチツプの入、出力イン
ピーダンスのQを上げることなくBeO基板の大
きさをトランジスタチツプの大きさよりかなり大
きくすることができるので、熱抵抗を小さくし信
頼性のよい高周波高出力混成膜集積回路を提供す
ることができる。
High-power transistors generate a large amount of heat, and to improve the dissipation of this heat, BeO substrates are often used as insulating substrates. The size of this BeO substrate must be made much larger than the size of the transistor chip in order to reduce thermal resistance, and for this reason conventionally, this has been done at the expense of increasing the Q of the input and output impedance of the transistor. Ta. Another advantage of the present invention is that if the second semiconductor device of the present invention is used in a hybrid film integrated circuit, the size of the BeO substrate can be reduced without increasing the Q of the input and output impedance of the transistor chip, as can be seen from the above explanation. Since it can be made much larger than the size of a transistor chip, it is possible to provide a high-frequency, high-output hybrid film integrated circuit with low thermal resistance and high reliability.

尚、上記にエミツタ接地用のものの実施例を説
明したが、ベース接地用のものにも同様に適用で
き、この場合ベース電極が接地電極となり、エミ
ツタ電極が入力電極となる。
Although the embodiment of the emitter grounding device has been described above, it can be similarly applied to the base grounding device, and in this case, the base electrode becomes the ground electrode and the emitter electrode becomes the input electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ本発明の一
実施例による半導体装置の平面図、その等価回路
図、および本発明の他の実施例による半導体装置
の平面図である。 1……絶縁性基板、2……エミツタ接地導体ラ
ンド、21,22……側面メタライズ、23,2
4……エミツタ(外部接続)端子、25……隙、
3……ベース端子ランド、31……ベース(外部
接続)端子、4……コレクタ端子ランド、41…
…コレクタ(外部接続)端子、5……コレクタ導
体ランド、50……トランジスタチツプ、60…
…コンデンサアレイチツプ、61,62,63,
64,65……コンデンサアレイ内の各コンデン
サ、70,71,72……エミツタボンデング
線、80,81,82……ベースボンデング線、
90,91,92……コレクタボンデング線、1
00……第3図の等価回路図。
1, 2, and 3 are a plan view of a semiconductor device according to one embodiment of the present invention, an equivalent circuit diagram thereof, and a plan view of a semiconductor device according to another embodiment of the present invention, respectively. 1... Insulating board, 2... Emitter grounding conductor land, 21, 22... Side metallization, 23, 2
4... Emitter (external connection) terminal, 25... Gap,
3... Base terminal land, 31... Base (external connection) terminal, 4... Collector terminal land, 41...
...Collector (external connection) terminal, 5...Collector conductor land, 50...Transistor chip, 60...
...Capacitor array chip, 61, 62, 63,
64, 65... Each capacitor in the capacitor array, 70, 71, 72... Emitter bonding wire, 80, 81, 82... Base bonding wire,
90,91,92...Collector bonding wire, 1
00...Equivalent circuit diagram of FIG. 3.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板表面上に形成された共通電極導体
部と、該共通電極導体部に接続された接地電極端
子と、該共通電極導体部をはさんで前記絶縁性基
板表面の両側に対向してそれぞれ形成された入力
および出力用導体部と、前記絶縁性基板上に搭載
されたトランジスタチツプおよびコンデンサチツ
プとを有する半導体装置において、前記トランジ
スタチツプは、前記共通電極導体部の近傍でこれ
から分離して設けられた島状の導体部上に搭載さ
れ、かつ前記コンデンサチツプは一方の電極が前
記トランジスタチツプと前記入力用導体部間の前
記共通電極導体部上に搭載接続された複数の単位
コンデンサからなり、共通電極細線は前記共通電
極導体部から前記トランジスタチツプの接地電極
を介して前記単位コンデンサの所定のものの他の
電極に、前記トランジスタチツプの接地電極と前
記所定の単位コンデンサの他の電極との間に設け
られた前記共通電極細線のインダクタンス成分と
前記所定の単位コンデンサの容量値とが前記トラ
ンジスタチツプの所望動作周波数において共振現
象を起こすように接続され、入力細線は前記トラ
ンジスタチツプの入力電極から前記単位コンデン
サの他のものの他の電極を介して前記入力導体部
に接続され、出力細線は前記出力導体部から前記
島状導体部に接続されていることを特徴とする半
導体装置。
1. A common electrode conductor portion formed on the surface of the insulating substrate, a ground electrode terminal connected to the common electrode conductor portion, and a ground electrode terminal facing both sides of the surface of the insulating substrate with the common electrode conductor portion sandwiched therebetween. In a semiconductor device having input and output conductor parts formed respectively, and a transistor chip and a capacitor chip mounted on the insulating substrate, the transistor chip is separated from the common electrode conductor part in the vicinity of the common electrode conductor part. The capacitor chip includes a plurality of unit capacitors mounted on the provided island-shaped conductor part, and one electrode of which is mounted and connected on the common electrode conductor part between the transistor chip and the input conductor part. , the common electrode thin wire is connected from the common electrode conductor portion to the other electrode of the predetermined unit capacitor through the ground electrode of the transistor chip, and between the ground electrode of the transistor chip and the other electrode of the predetermined unit capacitor. The inductance component of the common electrode thin wire provided between the two and the capacitance value of the predetermined unit capacitor are connected so as to cause a resonance phenomenon at a desired operating frequency of the transistor chip, and the input thin wire is connected from the input electrode of the transistor chip. A semiconductor device characterized in that the unit capacitor is connected to the input conductor section through another electrode of another unit capacitor, and the output thin wire is connected from the output conductor section to the island-shaped conductor section.
JP56159935A 1981-10-07 1981-10-07 Semiconductor device Granted JPS5861652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159935A JPS5861652A (en) 1981-10-07 1981-10-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159935A JPS5861652A (en) 1981-10-07 1981-10-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5861652A JPS5861652A (en) 1983-04-12
JPS647682B2 true JPS647682B2 (en) 1989-02-09

Family

ID=15704364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159935A Granted JPS5861652A (en) 1981-10-07 1981-10-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5861652A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022839U (en) * 1983-07-22 1985-02-16 日本電気株式会社 semiconductor equipment
US4577213A (en) * 1984-03-05 1986-03-18 Honeywell Inc. Internally matched Schottky barrier beam lead diode

Also Published As

Publication number Publication date
JPS5861652A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
US4982311A (en) Package for very large scale integrated circuit
JP2721093B2 (en) Semiconductor device
JPH01181540A (en) Tab package
US7342262B2 (en) Split-gate power module for suppressing oscillation therein
JPH07193182A (en) Semiconductor device
JP2001168234A (en) Grounding plane for semiconductor chip
US3728589A (en) Semiconductor assembly
US5399906A (en) High-frequency hybrid semiconductor integrated circuit structure including multiple coupling substrate and thermal dissipator
JPS647682B2 (en)
JP2880023B2 (en) High frequency transistor circuit
JPS6255721B2 (en)
JPS6364081B2 (en)
JPS6035247Y2 (en) semiconductor equipment
JP2534841B2 (en) Envelope for microwave integrated circuit
JP3102006B2 (en) High frequency high power transistor
JPH01143502A (en) Microwave integrated circuit
JP2606487B2 (en) Semiconductor device
JPS605055B2 (en) semiconductor equipment
JPH02140969A (en) Semiconductor integrated circuit device
JPS6043022B2 (en) Microwave device module
JPH05211279A (en) Hybrid integrated circuit
JPH04320041A (en) Thick film hybrid integrated circuit
JP2701644B2 (en) Semiconductor device
JPS6327859B2 (en)
JPH01283951A (en) Transistor device