JPS641417B2 - - Google Patents

Info

Publication number
JPS641417B2
JPS641417B2 JP5321380A JP5321380A JPS641417B2 JP S641417 B2 JPS641417 B2 JP S641417B2 JP 5321380 A JP5321380 A JP 5321380A JP 5321380 A JP5321380 A JP 5321380A JP S641417 B2 JPS641417 B2 JP S641417B2
Authority
JP
Japan
Prior art keywords
coal ash
coal
gypsum
strength
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5321380A
Other languages
Japanese (ja)
Other versions
JPS56149366A (en
Inventor
Hiroyuki Matsumura
Tatsusaburo Nakamura
Taisuke Shibata
Tomoaki Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5321380A priority Critical patent/JPS56149366A/en
Publication of JPS56149366A publication Critical patent/JPS56149366A/en
Publication of JPS641417B2 publication Critical patent/JPS641417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、石炭燃焌時に排出される石炭灰を䞻
原料ずしお硬化䜓を補造する方法、詳しくは石炭
灰に消石灰および氎石こうを添加しおなる混合
粉䜓を原料ずしお成圢䜓を䜜補し、この成圢䜓を
氎蒞気で凊理するこずにより、機械的匷床の倧き
い氎和硬化䜓を補造する方法に関するものであ
る。 〔埓来の技術〕 近幎我囜においおは、1978幎の石油危機以来の
囜際的な石油䟛絊䞍安によ぀お倚倧なる石油茞入
量の確保が難しくなり、石油䟝存床を小さくする
ための石油代替゚ネルギの開発が囜家的な課題ず
な぀おおり、石油ず同じ化石燃料である石炭が
぀の柱ずしお芋盎されおいる。石炭の倧量消費に
必芁な石炭利甚技術の実甚化には皮々の課題があ
るが、なかでも石炭燃焌時に発生する倚量の石炭
灰の凊理が重芁な問題ずしおクロヌズアツプされ
おいる。 石炭燃焌時には通垞、石炭䜿甚量のほが15〜20
重量の石炭灰が発生する。埓来我囜においお
は、石炭灰の玄10〜20重量はフラむアツシナず
しおセメント混和材、セメント原料などに再利甚
されおおり、残りは埋立地に廃棄されおいた。し
かしながら、フラむアツシナずしお珟圚の方匏に
よりセメント原料に利甚する方法に関しおは、将
来の石炭灰の倧量発生に察応するだけの需芁量は
期埅できず、たた埋立地ぞの廃棄は海面埋立およ
び陞䞊埋立においおも環境保党の立堎から、灰捚
地の甚地の確保が難しくなり぀぀ある。このため
石炭火力発電所などにおける本栌的な石炭利甚の
際には、きわめお倚量の石炭灰が発生するこずを
考慮するず、珟状の石炭灰の凊理方法にお党おの
石炭灰を凊理するこずはきわめお困難であり、石
炭灰の凊理技術および有効利甚技術が、石炭゚ネ
ルギ利甚の芏暡に倧きな圱響を及がすず考えられ
る。たた石炭灰の倧量凊理方匏の確立には、資源
ずしおの有効再利甚が必須である。これはたず第
に囜産資源に乏しい我囜においおは、単なる廃
棄ではない再利甚が省資源・省゚ネルギに盎接結
び぀くこず、第に環境砎壊がきわめお少ないこ
ずに基づくものである。 埓来、特公昭43−21667号公報には、重油焚火
力発電所においお石灰石粉末を甚いお排ガス䞭の
SO2を陀去した埌のダストず、排出石炭灰ずを甚
いおコンクリヌトを補造する方法が開瀺されおい
る。 たた特開昭53−1222号公報には、無氎石こうに
氎酞化カルシりムもしくは酞化カルシりムを加え
お混合したものを第の原料ずし、石炭灰に垌硫
酞を加えお混合し也燥したものを第の原料ずし
お、第の原料ず第の原料ずを混合しおセメン
トを補造する方法が開瀺されおいる。 〔発明が解決しようずする問題点〕 前蚘の特公昭43−21667号公報蚘茉の方法にお
いおは、混合粉䜓の割合範囲は瀺されおいない
が、公報第頁の第衚に瀺されるように、アツ
シナの割合は配合の堎合が58.1465÷335
465×100、配合の堎合が33.3306÷
306306306×100で、アツシナの割合が比
范的少なく、石炭燃焌時に倚量に排出される石炭
灰を凊理するのには適しおいない。たた氎蒞気で
凊理する堎合、180℃、10気圧ずいう比范的高枩、
高圧の氎蒞気を甚いおいる公報第頁巊欄第17
行。このようにこの公報蚘茉の方法は、重油焚
火力発電所においお脱硫凊理した石灰石粉末を有
効利甚するこずを目的ずしおいるので、比范的高
枩、高圧の氎蒞気を䜿甚しおも、圧瞮匷床は40
Kgcm2、70Kgcm2第頁第衚参照ずきわめ
お䜎い倀にしかならない。 この公報蚘茉の方法においおは、䞊蚘のよう
に、180℃、10気圧の比范的高枩、高圧の蒞気で
逊生するものであるから、補造蚭備ずしおオヌト
クレヌブが必芁であり公報第頁巊欄17行参
照、蚭備が過倧ずなり、連続凊理ができないの
でバツチ凊理を行わねばならず、石炭灰の倧量凊
理に䞍適であり、しかも180℃に維持するための
加熱甚゚ネルギコストが倚倧ずなる。 たた前蚘の特開昭53−1222号公報蚘茉の方法に
おいおも、混合粉䜓の割合範囲は瀺されおいない
が、公報の頁巊䞊欄の実斜䟋に粗粒石炭灰14.9
、氎酞化カルシりム5.0、無氎石こう79.5
の堎合に぀いお瀺され、無氎石こうの割合がきわ
めお倧きく、石炭灰の割合が少なくな぀おいる。
したが぀お石炭燃焌時に倚量に排出される石炭灰
を凊理するには奜たしい方法ずは蚀えない。すな
わち、この公報蚘茉の方法は、無氎石こう、氎酞
化カルシりムたたは酞化カルシりム、石炭灰、
硫酞を原料ずするもので、氎和硬化埌の氎石こ
うが匷床メンバヌずなり、石炭灰を硫酞ずの反応
生成物であるNa2SO4、K2SO4が無氎石こうの凝
結促進剀ずなり、無氎石こうが䞻原料である。䞀
方、本発明は、石炭灰、消石灰、氎石こうを原
料ずするもので、これらの反応生成物゚トリン
ガむトが匷床メンバヌずなり、石炭灰が䞻原料
である。このようにこの公報蚘茉の方法ず、本発
明ずは匷床発珟メカニズムが異な぀おいる。たた
この公報には成圢䜓を80〜100℃の比范的䜎枩の
垞圧氎蒞気で凊理するずいう技術的思想は䜕ら瀺
唆されおいない。 本発明は䞊蚘の諞点に鑑みなされたもので、石
炭灰を土朚・建築分野にお資源ずしお倧量に掻甚
すべく、石炭灰を䞻原料ずしお機械的匷床の倧き
い氎和硬化䜓を補造する方法を提䟛するこずを目
的ずするものである。 〔問題点を解決するための手段および䜜甚〕 䞊蚘の目的を達成するために、本発明の石炭灰
を䞻原料ずする硬化䜓の補造方法は、石炭燃焌時
に排出される石炭灰60〜85重量、消石灰10〜25
重量、氎石こう〜25重量からなる混合粉
䜓に、氎を添加しお混緎した埌、この混緎物を型
枠たたは成圢容噚を甚いお成圢し、぀いでこの成
圢䜓を80〜100℃の垞圧氎蒞気で凊理するように
したものである。 本発明の方法においお、混氎量粉䜓100重量
に察しお添加する氎の重量は、10〜60、
望たしくは30〜50である。 以䞋、本発明の構成を詳现に説明する。䞀般
に、石炭灰の代衚的性状である成分、組成および
粒床分垃は、石炭の産地および燃焌時の履歎に倧
きく䟝存する。たず第に、石炭の産出地によ぀
おSiO2、Al2O3、CaO、Fe2O3、Na2O、K2Oなど
の成分の配合割合が異なり、第に我囜にお珟圚
発生する石炭灰は埮粉炭燃焌灰が䞻であり、発生
堎所および採取方匏によ぀お電気集じん機EP
灰原粉、现粉、粗粉、クリンカアツシナ、シ
ンダアツシナず区別されそれぞれ粒床分垃が異な
る。このため石炭灰、消石灰、氎石こうを原料
ずしお氎蒞気凊理によ぀お高匷床の氎和硬化䜓を
䜜補する際には、原料ずしお䜿甚する石炭灰の組
成および粒床分垃によ぀お、氎和硬化䜓の適正補
造条件は埮劙に異なる。補造条件ずしお寄䞎率の
倧きい芁因は、石炭灰の前凊理䞻ずしお粉砕、
石炭灰、消石灰、氎石こうの配合割合、および
氎蒞気凊理条件枩床、時間などである。なお
氎蒞気は、凊理装眮の匷床などの関係で垞圧氎蒞
気を甚いる。 石炭灰、消石灰、氎石こうからなる原料粉䜓
における補造条件ず氎和硬化䜓の性状ずの関係は
抂略぀ぎの通りである。氎蒞気凊理により生成す
る氎和硬化䜓の䞻成分は、゚トリンガむト
3CaO・Al2O3・3CaSO4・32H2O、皮々の圢態
のケむ酞カルシりム氎和物XCaO・YSiO2・
ZH2Oであるが、匷床メンバヌずしお最も寄䞎
するものぱトリンガむトである。たず原料混合
粉䜓䞭の氎石こう含有量が少ない際には、カル
シりムモノサルフオアルミネヌト氎和物
3CaO・Al2O3・CaSO4・12H2Oが䞻成分ずな
り氎和硬化䜓の匷床は小さいが、氎石こう含有
量が倧きくなるにしたが぀お匷床メンバヌずなる
゚トリンガむト量が倚くなり匷床が倧きくなる。
さらに氎石こう添加量が倚くなるず、氎蒞気凊
理時に反応にあずからない遊離の石こうが生じお
氎和硬化䜓の匷床は䜎䞋する。したが぀お氎石
こう量は〜25重量に限定される。 たた原料混合粉䜓䞭の消石灰含有量が少ない際
には、カルシりムモノサルフオアルミネヌト氎和
物が䞻成分ずなり氎和硬化䜓の匷床は小さく、消
石灰の添加量が倚くなるにしたが぀お、゚トリン
ガむトの生成量が倧きくなり匷床も倧きくなる。
消石灰の添加量がさらに倧きくなるず、゚トリン
ガむトの生成反応にあずからない消石灰が倚くな
぀お匷床が䜎䞋する。すなわち消石灰の配合割合
が30重量を越えるず、氎蒞気凊理埌に倚くの消
石灰が残り、也燥雰囲気䞋では消石灰が炭酞カル
シりムになり、その際の反応膚匵によりヘアクラ
ツクミクロクラツクが倚数発生し、補品性が
劣化する。これらのこずから消石灰量は10〜25重
量に限定される。 石炭灰の粒床分垃も氎和硬化䜓の性状に倧きな
圱響を及がす。䞀般に石炭灰の粒床が小さくなる
にしたが぀お、すなわち比衚面積が倧きくなるに
したが぀お、短い凊理時間で氎和硬化䜓は所定の
匷床を呈する傟向にある。これは石炭灰、消石
灰、氎石こうを原料ずし氎蒞気凊理による゚ト
リンガむトの生成反応はスルヌ゜ルヌシペンリア
クシペンthrough solution reactionであり、
Al2O3の溶解床は消石灰、石こうに范べお著しく
小さく、゚トリンガむトの生成速床がAl2O3の溶
解速床に䟝存するためず掚定できる。 氎蒞気凊理条件は凊理枩床および凊理時間が䞻
な芁因であり、氎蒞気条件の適正領域は䞊述の劂
く石炭灰の粒床分垃によ぀おも異なる。䞀般に氎
蒞気凊理時間が短い際には、氎和硬化䜓はカルシ
りムモノサルフオアルミネヌト氎和物、氎石こ
う、゚トリンガむトの混合物からなり匷床は小さ
く、氎蒞気凊理時間が長くなるにしたが぀お、゚
トリンガむトの生成量が倚くなり匷床も倧きくな
る。氎蒞気凊理を長時間にわたり実斜し゚トリン
ガむトの生成が終結した埌も氎蒞気凊理を斜す
ず、゚トリンガむトは耐熱性に欠けるため無氎石
こうずカルシりムアルミネヌト氎和物ずに分解
し、氎和硬化䜓の匷床は䜎䞋する。 なお氎和硬化䜓を、盞察湿床70〜100の雰囲
気䞭で〜30日間逊生すれば、゚トリンガむト等
の反応が進行し、匷床向䞊を図るこずができる。 䞊述の劂く氎和硬化䜓の補造条件は、原料ずな
る石炭灰の性状に䟝存するずころが倧きく、石炭
の成分、組成および粒床分垃に察応した最も奜適
な石炭灰の前凊理粉砕条件、消石灰および
氎石こうの添加量、ならびに氎蒞気凊理条件凊
理枩床、凊理時間を遞定するこずが望たしい。 本発明においお䜿甚する氎石こうは、倩然石
こうおよびリン酞石こう、補塩石こう、湿匏排煙
脱硫石こうなどの化孊石こうのいずれでもよい。
石炭燃焌時に発生する硫黄酞化物の陀去の際に、
氎石こうずしお回収される排煙脱硫石こうを䜿
甚するこずにより、石炭燃焌時の排出物である石
炭灰ず硫黄酞化物の䞡者を、同䞀発生個所におか
぀同時に凊理できるこずも本発明の利点の぀で
ある。 本発明における原料粉䜓ず氎ずを混緎した埌、
型枠などの䞭で圢成される氎蒞気凊理前の成圢䜓
は、短時間の垞枩逊生ではその匷床はあたり倧き
くなく、取扱いおよび搬送などの際に欠損などの
生じるおそれがある堎合には、必芁に応じお、氎
蒞気凊理前の成圢䜓の䜜補の際に、突き固めプレ
ス成圢などにより機械的匷床を倧きくしおおくこ
ずも有甚である。 本発明の方法においお、垞圧氎蒞気の枩床が80
℃未満の堎合は、゚トリンガむト生成速床が遅い
ため、生成量が少なく、か぀生成結晶が倪くな
り、高匷床を発珟しないずいう䞍郜合があり、䞀
方、100℃を越える堎合は、゚トリンガむトの成
長よりも分解の方が起こりやすいため、生成した
゚トリンガむトの分解が起こり、高匷床を発珟し
ないずいう䞍郜合がある。 たた石灰のうち、消石灰は硬化䜓を倚孔化しお
カサ密床を小さくし、生石灰は硬化䜓を緻密化し
おカサ密床を倧きくする䜜甚・効果を有しおい
る。 さらに石こうのうち、半氎石こうは溶解床が
0.58β型、0.45α型無氎物100g溶液
at50℃で、混緎物は速やかに硬化が進行する。
なお溶液は、石こう飜和氎溶液である氎石こう
は溶解床が0.26無氎物100g溶液at50℃で、
混緎物は硬化しない。型無氎石こうは溶解床が
0.21無氎物100g溶液at50℃で、本発明の
ように、硬化促進剀がない堎合は硬化せず、硬化
促進剀が存圚する堎合は、溶解床が高くなり埐々
に硬化するずいう䜜甚・効果を有しおいる。した
が぀お、石こうの皮類により、脱型時の成圢䜓の
匷床が異なる。 䞊蚘のように、石炭、石こうの䜜甚・効果の違
いにより、石炭灰−石灰−石こう混緎物の硬化速
床、硬化䜓のカサ密床、匷床が異なる。このた
め、甚途によ぀お異なる芁求品質に察応しお、石
灰および石こうを䜿い分ける。 たずえば、硬化䜓の圧瞮匷床に着目すれば、石
こうの溶解床ずの関係が密接であり、生石灰系で
は、同䞀石炭灰を甚いた堎合の硬化䜓の圧瞮匷床
は、半氎石こう系氎石こう系型無氎石こ
う系ずなり、消石灰系では、同䞀石炭灰を甚いた
堎合の硬化䜓の圧瞮匷床は、半氎石こう系氎
石こう系型無氎石こう系ずなる。 〔実斜䟋〕 ぀ぎに実斜䟋および比范䟋に぀いお説明する。
実斜䟋および比范䟋における原料石炭灰は垂販フ
ラむアツシナであり、性状を第衚に瀺す。
[Industrial Application Field] The present invention relates to a method for producing a hardened material using coal ash discharged during coal combustion as a main raw material, and more specifically, a method for producing a hardened material using coal ash as a main raw material, and more specifically, a mixed powder made by adding slaked lime and dihydrate gypsum to coal ash as a raw material. The present invention relates to a method for producing a hydrated and hardened body with high mechanical strength by preparing a molded body as a molded body and treating this molded body with steam. [Conventional technology] In recent years, it has become difficult for Japan to secure a large amount of oil imports due to the international oil supply instability since the oil crisis of 1978, and efforts have been made to develop alternative energies to oil in order to reduce the country's dependence on oil. has become a national issue, and coal, a fossil fuel like oil, has become a national issue.
It is being reconsidered as one pillar. There are various issues to overcome in the practical application of coal utilization technology, which is necessary for mass consumption of coal, and among them, the treatment of large amounts of coal ash generated during coal combustion has been highlighted as an important issue. When burning coal, usually almost 15-20 of the coal usage
% coal ash is generated. Previously in Japan, approximately 10 to 20% by weight of coal ash was reused as fly ash for cement admixtures, cement raw materials, etc., and the rest was disposed of in landfills. However, with regard to the current method of using fly ash as a raw material for cement, it is not expected that the demand will be sufficient to meet the large amount of coal ash generated in the future, and disposal in landfills is not possible either in sea-surface or land-based landfills. From the standpoint of environmental conservation, it is becoming difficult to secure land for ash dumping. For this reason, considering that an extremely large amount of coal ash is generated during full-scale use of coal in coal-fired power plants, it is extremely difficult to treat all of the coal ash using current coal ash processing methods. Coal ash processing and effective utilization technologies are thought to have a major impact on the scale of coal energy use. In addition, effective reuse as a resource is essential for establishing a mass processing method for coal ash. This is based, firstly, on the fact that in our country, which lacks domestic resources, reuse rather than mere disposal directly leads to resource and energy conservation, and secondly, there is extremely little environmental destruction. Previously, Japanese Patent Publication No. 43-21667 describes how limestone powder is used to reduce exhaust gas in heavy oil-fired power plants.
A method of producing concrete using dust after removing SO 2 and discharged coal ash is disclosed. Furthermore, in JP-A-53-1222, the first raw material is a mixture of anhydrous gypsum and calcium hydroxide or calcium oxide, and the second raw material is a mixture of coal ash and dilute sulfuric acid. A method for producing cement by mixing a first raw material and a second raw material is disclosed. [Problems to be solved by the invention] In the method described in the above-mentioned Japanese Patent Publication No. 43-21667, the ratio range of the mixed powder is not indicated, but as shown in Table 1 on page 2 of the publication, In the case of combination A, the ratio of the thickness is 58.1% {465 ÷ (335
+465)×100}, 33.3% for combination B {306÷
(306 + 306 + 306) x 100}, the ratio of ash is relatively small, and it is not suitable for processing coal ash, which is emitted in large quantities during coal combustion. In addition, when processing with steam, the temperature is relatively high at 180℃ and 10 atm.
High-pressure steam is used (No. 17, left column, page 2 of the bulletin)
line). As described above, the method described in this publication aims to effectively utilize desulfurized limestone powder in heavy oil-fired power plants, so even if relatively high temperature and high pressure steam is used, the compressive strength is 40%.
Kg/cm 2 , 70Kg/cm 2 (see Table 2 on page 2), which is an extremely low value. In the method described in this publication, as mentioned above, the curing is performed using relatively high-temperature, high-pressure steam at 180°C and 10 atm, so an autoclave is required as manufacturing equipment (page 2, left column 17 of the publication). (see row), the equipment is too large and continuous processing is not possible, so batch processing must be performed, making it unsuitable for processing large amounts of coal ash, and furthermore, the cost of heating energy to maintain the temperature at 180°C is significant. Also, in the method described in the above-mentioned Japanese Patent Application Laid-Open No. 1222-1983, the proportion range of the mixed powder is not indicated, but in the example in the upper left column of page 3 of the publication, coarse coal ash 14.9
%, calcium hydroxide 5.0%, anhydrous gypsum 79.5%
The case is shown in which the proportion of anhydrite is extremely large and the proportion of coal ash is small.
Therefore, it cannot be said to be a preferable method for treating coal ash that is emitted in large quantities during coal combustion. That is, the method described in this publication uses anhydrous gypsum, calcium hydroxide (or calcium oxide), coal ash,
It uses sulfuric acid as a raw material, and dihydrate gypsum after hydration hardening becomes the strength member, and Na 2 SO 4 and K 2 SO 4 , which are the reaction products of coal ash with sulfuric acid, serve as setting accelerators for anhydrous gypsum. Anhydrous gypsum is the main raw material. On the other hand, the present invention uses coal ash, slaked lime, and dihydrate gypsum as raw materials, and their reaction product (ettringite) becomes a strength member, and coal ash is the main raw material. As described above, the method described in this publication and the present invention differ in the strength development mechanism. Further, this publication does not suggest any technical concept of treating the molded body with normal pressure steam at a relatively low temperature of 80 to 100°C. The present invention was made in view of the above points, and in order to utilize coal ash in large quantities as a resource in the civil engineering and construction fields, the present invention provides a method for producing a hydrated material with high mechanical strength using coal ash as the main raw material. The purpose is to provide [Means and effects for solving the problems] In order to achieve the above object, the method for producing a hardened material using coal ash as a main raw material of the present invention is to reduce the amount of coal ash emitted from coal ash by weight of 60 to 85% by weight. %, slaked lime 10-25
After adding water and kneading a mixed powder consisting of 8-25% by weight of dihydrate gypsum, this kneaded product is molded using a mold or a molding container, and then this molded body is heated to 80-100% by weight. It is designed to be treated with normal pressure steam at ℃. In the method of the present invention, the amount of mixed water (weight % of water added to 100 weight % of powder) is 10 to 60%,
Desirably it is 30-50%. Hereinafter, the configuration of the present invention will be explained in detail. In general, the typical properties of coal ash, such as its components, composition, and particle size distribution, greatly depend on the place of production and combustion history of the coal. First of all, the proportions of ingredients such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O, etc. differ depending on the place where coal is produced. The coal ash generated is mainly pulverized coal combustion ash, and depending on the location and collection method, it may be necessary to use an electrostatic precipitator (EP).
It is distinguished into ash (raw powder, fine powder, coarse powder), clinker ash, and cinder ash, each with a different particle size distribution. Therefore, when producing a high-strength hydration-hardened body by steam treatment using coal ash, slaked lime, and dihydrate gypsum as raw materials, hydration-hardening The proper manufacturing conditions for each body are slightly different. Factors that have a large contribution rate as production conditions are pretreatment of coal ash (mainly crushing),
These include the blending ratio of coal ash, slaked lime, and dihydrate gypsum, and steam treatment conditions (temperature, time), etc. Note that atmospheric pressure steam is used as the steam due to the strength of the processing equipment. The relationship between the manufacturing conditions for the raw material powder consisting of coal ash, slaked lime, and dihydrate gypsum and the properties of the hydrated product is roughly as follows. The main components of the hydrated hardened product produced by steam treatment are ettringite (3CaO・Al 2 O 3・3CaSO 4・32H 2 O) and various forms of calcium silicate hydrate (XCaO・YSiO 2・
ZH 2 O), but the one that contributes the most as a strength member is ettringite. First, when the content of dihydrate gypsum in the raw material mixed powder is low, calcium monosulfo aluminate hydrate (3CaO・Al 2 O 3・CaSO 4・12H 2 O) becomes the main component and becomes a hydrated hardened product. The strength is small, but as the dihydrate gypsum content increases, the amount of ettringite, which is a strength member, increases and the strength increases.
Furthermore, when the amount of dihydrate gypsum added increases, free gypsum that does not participate in the reaction occurs during steam treatment, resulting in a decrease in the strength of the hydrated hardened product. Therefore, the amount of dihydrate gypsum is limited to 8 to 25% by weight. In addition, when the slaked lime content in the raw material mixed powder is low, calcium monosulfo aluminate hydrate becomes the main component, and the strength of the hydrated hardened product is small, and as the amount of slaked lime added increases, The amount of ettringite produced increases and the strength also increases.
If the amount of slaked lime added is further increased, more slaked lime does not take part in the ettringite production reaction, resulting in a decrease in strength. In other words, if the blending ratio of slaked lime exceeds 30% by weight, a large amount of slaked lime will remain after steam treatment, and in a dry atmosphere, the slaked lime will turn into calcium carbonate, and the reaction expansion will generate many hair cracks (microcracks), resulting in poor product quality. deteriorates. For these reasons, the amount of slaked lime is limited to 10 to 25% by weight. The particle size distribution of coal ash also has a large effect on the properties of the hydrated hardened material. Generally, as the particle size of coal ash becomes smaller, that is, as the specific surface area becomes larger, the hydrated and hardened material tends to exhibit a predetermined strength in a shorter treatment time. This reaction uses coal ash, slaked lime, and dihydrate gypsum as raw materials, and the reaction that produces ettringite through steam treatment is a through solution reaction.
The solubility of Al 2 O 3 is significantly lower than that of slaked lime and gypsum, and it can be assumed that this is because the rate of formation of ettringite depends on the rate of dissolution of Al 2 O 3 . The steam treatment conditions are mainly determined by the treatment temperature and treatment time, and the appropriate range of the steam conditions also differs depending on the particle size distribution of the coal ash as described above. Generally, when the steam treatment time is short, the hydrated hardened product consists of a mixture of calcium monosulfo aluminate hydrate, dihydrate gypsum, and ettringite, and its strength is low; The amount of produced increases and the strength also increases. If steam treatment is carried out for a long time and steam treatment is continued even after the formation of ettringite has been completed, ettringite lacks heat resistance and decomposes into anhydrous gypsum and calcium aluminate hydrate, and the strength of the hydrated hardened product decreases. descend. Note that if the hydrated hardened product is cured for 1 to 30 days in an atmosphere with a relative humidity of 70 to 100%, the reaction of ettringite and the like will proceed and the strength can be improved. As mentioned above, the manufacturing conditions for the hydrated hardened material largely depend on the properties of the coal ash used as the raw material, and the most suitable coal ash pretreatment (pulverization) conditions and slaked lime that correspond to the components, composition, and particle size distribution of the coal. and 2
It is desirable to select the amount of water gypsum added and the steam treatment conditions (treatment temperature, treatment time). The dihydrate gypsum used in the present invention may be any of natural gypsum and chemical gypsum such as phosphate gypsum, salt-produced gypsum, and wet flue gas desulfurization gypsum.
When removing sulfur oxides generated during coal combustion,
Another advantage of the present invention is that by using flue gas desulfurization gypsum recovered as dihydrate gypsum, both coal ash and sulfur oxides, which are emissions from coal combustion, can be treated at the same location and at the same time. There is one. After kneading the raw material powder and water in the present invention,
The strength of the molded product formed in a mold before steam treatment is not very high after a short period of room temperature curing, and if there is a risk of damage during handling or transportation, Accordingly, it is also useful to increase the mechanical strength by tamping press molding or the like when producing a molded body before steam treatment. In the method of the present invention, the temperature of atmospheric pressure steam is 80°C.
If the temperature is below 100°C, the rate of ettringite formation is slow, resulting in a small amount of produced crystals and thick crystals that do not exhibit high strength. Since this is more likely to occur, the generated ettringite will be decomposed and high strength will not be developed. Among the limes, slaked lime has the effect of making the hardened body porous and reducing the bulk density, and quicklime has the effect of making the hardened body dense and increasing the bulk density. Furthermore, among gypsum, hemihydrate gypsum has a low solubility.
0.58 (β type), 0.45 (α type) (g anhydride/100g solution
at 50°C), the kneaded material rapidly hardens.
The solution is gypsum dihydrate, which is a saturated aqueous solution, with a solubility of 0.26 (g anhydride/100g solution at 50°C).
The kneaded material does not harden. The solubility of type anhydrous gypsum is
0.21 (g anhydride/100g solution at 50°C), as in the present invention, if there is no curing accelerator, no curing will occur, but if a curing accelerator is present, the solubility will increase and the curing will occur gradually. It has an effect. Therefore, the strength of the molded product upon demolding varies depending on the type of gypsum. As mentioned above, the hardening speed of the coal ash-lime-gypsum mixture, bulk density, and strength of the hardened product differ due to the differences in the actions and effects of coal and gypsum. For this reason, lime and gypsum are used depending on the quality required depending on the purpose. For example, if we focus on the compressive strength of a hardened product, there is a close relationship with the solubility of gypsum; in a quicklime system, the compressive strength of a hardened product using the same coal ash is For slaked lime systems, the compressive strength of the hardened material when using the same coal ash is as follows: hemihydrate gypsum system > dihydrate gypsum system > type anhydrous gypsum system. [Example] Next, Examples and Comparative Examples will be described.
The raw material coal ash in Examples and Comparative Examples is commercially available fly ash, and its properties are shown in Table 1.

【衚】 原料石炭灰の化孊的成分ずしおは、線回折分
析によれば倧量の石英α−SiO2、䞭量のムラ
むト3Al2O3、2SiO2、少量のマグネタむト
Fe3O4が認められた。 石炭灰および氎和硬化䜓の詊隓方法を぀ぎに瀺
す。ブレヌン比衚面積枬定は、島接補䜜所補の粉
䜓比衚面積枬定噚SS−100圢を䜿甚し、空気透過
法によ぀た。曲げ匷床詊隓は、詊隓片ずしお20×
20×80mmのものを䜿甚し、詊隓装眮ずしお䞞
菱科孊補䜜所補のMKS改良型䞇胜匷床詊隓機を
䜿甚した。詊隓方法は点曲げ法によ぀た。圧瞮
匷床詊隓は、詊隓片ずしお20×20×20mmのも
のを䜿甚し、詊隓装眮ずしおむンストロン瀟補の
䞇胜詊隓機最倧荷重10トンを䜿甚した。詊隓
方法は定たわみ速床法によ぀た。 なお実斜䟋および比范䟋においおは、氎蒞気は
垞圧氎蒞気を䜿甚した。 実斜䟋  石炭灰70郚、消石灰20郚、氎石こう10郚、氎
45郚を混合しおスラリヌずし、このスラリヌを型
枠䞭に泚入しお成圢䜓を埗た。この成圢䜓を脱型
しお密閉容噚内に収玍し、96℃の氎蒞気ず15時間
接觊させお氎和硬化䜓を埗た。氎和硬化䜓の特性
は第衚の劂くであ぀た。 比范䟋  石炭灰80郚、氎石こう郚添加なしず
し、他は実斜䟋ず同様の実隓を行぀た。氎和硬
化䜓の特性は第衚の劂くであ぀た。 比范䟋  石炭灰90郚、消石灰郚添加なしずし、他
は実斜䟋ず同様の実隓を行぀た。氎和硬化䜓の
特性は第衚の劂くであ぀た。 比范䟋  実斜䟋においお埗た成圢䜓を氎蒞気凊理する
こずなく詊隓した。結果は第衚に瀺す劂くであ
぀た。
[Table] According to X-ray diffraction analysis, the chemical components of raw coal ash include a large amount of quartz (α-SiO 2 ), a medium amount of mullite (3Al 2 O 3 , 2SiO 2 ), and a small amount of magnetite (Fe 3 O4 ) was observed. The test methods for coal ash and hydrated hardened bodies are shown below. The Blaine specific surface area was measured using a powder specific surface area measuring instrument SS-100 manufactured by Shimadzu Corporation, using the air permeation method. The bending strength test uses 20× as a test piece.
A 20 x 80 (mm) piece was used, and the MKS improved universal strength testing machine manufactured by Marubishi Kagaku Seisakusho was used as the testing device. The test method was a three-point bending method. In the compressive strength test, a 20 x 20 x 20 (mm) test piece was used, and an Instron universal testing machine (maximum load: 10 tons) was used as the test device. The test method was based on the constant deflection rate method. Note that in the Examples and Comparative Examples, atmospheric pressure steam was used as the steam. Example 1 70 parts of coal ash, 20 parts of slaked lime, 10 parts of dihydrate gypsum, water
45 parts were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was demolded, stored in a closed container, and brought into contact with steam at 96° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 1 An experiment similar to Example 1 was conducted except that 80 parts of coal ash and 0 parts of dihydrate gypsum (no addition) were used. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 2 An experiment similar to Example 1 was conducted except that 90 parts of coal ash and 0 parts of slaked lime (no addition) were used. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 3 The molded article obtained in Example 1 was tested without steam treatment. The results were as shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以䞊説明したように、本発明の方法においお
は、原料䞭の石炭灰配合割合が60〜85重量ず倧
きいため、石炭灰を倧量に凊理するこずができ、
たた80〜100℃の比范的䜎枩の垞圧氎蒞気逊生で
あるので、オヌプン構造が可胜加圧密閉構造が
䞍芁で補造蚭備が簡玠化され、連続逊生が可胜
で石炭灰の倧量凊理に適しおおり、しかも蒞気枩
床が100℃以䞋のため、廃蒞気などの䜎枩蒞気が
䜿甚でき、゚ネルギコストを䜎枛するこずができ
る。 そしお本発明の方法によれば、石炭燃焌時の排
出物である石炭灰に安䟡な原料である消石灰およ
び氎石こうを添加し氎蒞気凊理を斜すこずによ
り、高匷床の硬化䜓を容易にか぀安䟡に補造する
こずが可胜であり、本発明の方法は石炭灰を有効
利甚しお土朚・建築の分野における各皮建材およ
び構造材の補造に寄䞎する技術ずしおきわめお有
益である。
As explained above, in the method of the present invention, since the coal ash blending ratio in the raw material is as high as 60 to 85% by weight, a large amount of coal ash can be processed.
In addition, because it uses normal pressure steam curing at a relatively low temperature of 80 to 100°C, an open structure is possible (no pressurized and sealed structure is required), simplifying manufacturing equipment, and continuous curing is possible, making it suitable for large-scale processing of coal ash. Furthermore, since the steam temperature is below 100°C, low-temperature steam such as waste steam can be used, reducing energy costs. According to the method of the present invention, by adding slaked lime and dihydrate gypsum, which are inexpensive raw materials, to coal ash, which is an exhaust product during coal combustion, and subjecting it to steam treatment, a high-strength hardened product can be easily and inexpensively produced. The method of the present invention is extremely useful as a technology that contributes to the production of various building materials and structural materials in the fields of civil engineering and architecture by effectively utilizing coal ash.

Claims (1)

【特蚱請求の範囲】[Claims]  石炭燃焌時に排出される石炭灰60〜85重量
、消石灰10〜25重量、氎石こう〜25重量
からなる混合粉䜓に、氎を添加しお混緎した
埌、この混緎物を型枠たたは成圢容噚を甚いお成
圢し、぀いでこの成圢䜓を80〜100℃の垞圧氎蒞
気で凊理するこずを特城ずする石炭灰を䞻原料ず
する硬化䜓の補造方法。
1 After adding water and kneading a mixed powder consisting of 60 to 85% by weight of coal ash, 10 to 25% by weight of slaked lime, and 8 to 25% by weight of dihydrate gypsum discharged during coal combustion, this kneaded product is A method for producing a hardened body using coal ash as a main raw material, which comprises forming the body using a mold or a molding container, and then treating the formed body with atmospheric pressure steam at 80 to 100°C.
JP5321380A 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash Granted JPS56149366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321380A JPS56149366A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321380A JPS56149366A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Publications (2)

Publication Number Publication Date
JPS56149366A JPS56149366A (en) 1981-11-19
JPS641417B2 true JPS641417B2 (en) 1989-01-11

Family

ID=12936552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321380A Granted JPS56149366A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Country Status (1)

Country Link
JP (1) JPS56149366A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980956U (en) * 1982-11-22 1984-05-31 株匏䌚瀟島接補䜜所 ion gun
JPS59232958A (en) * 1983-06-13 1984-12-27 川厎重工業株匏䌚瀟 Manufacture of granular hardened body form coal ash as main raw material
JPS59232957A (en) * 1983-06-13 1984-12-27 川厎重工業株匏䌚瀟 Manufacture of granular hardened body from coal ash as main raw material

Also Published As

Publication number Publication date
JPS56149366A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
Song et al. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler
Singh et al. Phosphogypsum—Fly ash cementitious binder—Its hydration and strength development
Thaarrini et al. RETRACTED: Feasibility Studies on Compressive Strength of Ground Coal Ash Geopolymer Mortar
Zhou et al. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method
CN102643107B (en) Calcination-free desulfurized gypsum-based ceramsite concrete perforated brick
CN105541150A (en) An active admixture prepared by utilizing semi-dry process desulfurized fly ash
CN105384375A (en) Active admixture for building materials
JPS641416B2 (en)
CN114804807B (en) Full-solid waste soft foundation sludge solidified powder and preparation method thereof
JPS641417B2 (en)
JPS641419B2 (en)
JPS641418B2 (en)
JPS6125673B2 (en)
Hu et al. A non-fired ceramsite construction material with enhanced lightweight high strength properties
JPS641421B2 (en)
JPS641422B2 (en)
JPS641423B2 (en)
JPS641420B2 (en)
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
Liu et al. Rheology, mechanics, microstructure and durability of low-carbon cementitious materials based on circulating fluidized bed fly ash: A comprehensive review
CN115304296B (en) Recyclable cement and preparation method thereof
JPS594395B2 (en) Method for producing hardened material using coal ash as main raw material
JPH0138069B2 (en)
JPS5953228B2 (en) Method for producing hardened material using coal ash as main raw material
JPS6324941B2 (en)