JPH0138069B2 - - Google Patents

Info

Publication number
JPH0138069B2
JPH0138069B2 JP20680484A JP20680484A JPH0138069B2 JP H0138069 B2 JPH0138069 B2 JP H0138069B2 JP 20680484 A JP20680484 A JP 20680484A JP 20680484 A JP20680484 A JP 20680484A JP H0138069 B2 JPH0138069 B2 JP H0138069B2
Authority
JP
Japan
Prior art keywords
fluidized bed
weight
coal
bed combustion
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20680484A
Other languages
Japanese (ja)
Other versions
JPS6186461A (en
Inventor
Hiroyuki Matsumura
Taisuke Shibata
Tomoaki Takada
Jun Tatebayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59206804A priority Critical patent/JPS6186461A/en
Publication of JPS6186461A publication Critical patent/JPS6186461A/en
Publication of JPH0138069B2 publication Critical patent/JPH0138069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/061Ashes from fluidised bed furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、燃料である石炭および脱硫剀である
石炭石から構成される流動局における流動局燃焌
の際に発生する石炭灰および䜿甚枈脱硫剀からら
なる混合粉䜓を䞻原料ずしお硬化䜓を補造する方
法、詳しくは䞊蚘混合粉䜓に氎を加えお混緎し、
粒状物あるいはスラリヌにした埌、逊生する具
䜓的には湿空逊生埌、氎蒞気凊理するこずによ
り、硬化䜓を補造するに際しお、混合粉䜓の塑性
限界の3/7〜6/7の氎でも぀お予め充分混緎したの
ち、さらに氎を加えお混緎するこずを特城ずする
硬化䜓の補造方法に関するものである。 埓来の技術 近幎我囜においおは、1973幎の石油危機以来の
囜際的な石油䟛絊䞍安によ぀お倚倧なる石油茞入
量の確保が難しくなり、゚ネルギ需絊状態におけ
る石油䟝存床を小さくするための石油代替゚ネル
ギの開発が囜家的な課題ずなり、石炭゚ネルギが
぀の柱ずしおクロヌズアツプされおいる。 石炭を燃料ずする際の燃焌方匏は、埓来埮粉炭
燃焌方匏が䞭心であ぀たが、最近流動局燃焌方匏
が泚目されおいる。この流動局燃焌方匏は、通
垞、炉内脱硫方匏が採甚され、燃料である石炭ず
炉内脱硫のための脱硫剀である石炭石を投入しボ
むラ内にお流動局を構成させる方匏である。流動
局燃焌方匏は埓来の埮粉炭燃焌方匏に范べお、第
に火炉容積が小さくお枈みボむラ容積が小さく
なるこず、第に燃料石炭の品皮に関する制玄が
少ないこず、第に750〜850℃の䜎枩燃焌が可胜
であり、灰の凝結に関するトラブルがなくサヌマ
ルNOXの発生が少ないこず、第に䌝熱氎管衚
面での総括䌝熱係数が倧きいこずなどの長所を有
しおいる。䞀方、流動局燃焌技術の実甚化の課題
ずしお灰凊理䞊の問題がある。流動局燃焌の際に
発生する灰は、いわゆる石炭灰ず䜿甚枈脱硫剀か
らなり、䜿甚枈脱硫剀は脱硫生成物である型無
氎石こうず未反応の生石灰から構成されおいる。
石炭燃焌ガス䞭の硫黄酞化物の陀去効率、すなわ
ち脱硫率を倧きくするため、通垞Caのモル
比が〜ずなるように石炭石の投入量が蚭定さ
れおおり、750〜850℃における硫黄酞化物ずの反
応により石炭石が生石灰および型無氎石こうず
なり、石炭灰ずずもに排出される。流動局燃焌灰
の発生量は䜿甚石炭の品皮、脱硫率、ボむラの運
転条件などにより盞圓に異なるが、通垞、石炭
灰、型無氎石こう、生石灰の発生量はそれぞれ
䜿甚石炭量のほが15〜20重量、〜10重量、
〜10重量である。 発明が解決しようずする問題点 埓来、我囜における発生石炭灰の倧郚分は埮粉
炭燃焌によるものであり、そのうち玄10〜20重量
はフラむアツシナずしおセメント混和材、セメ
ント原料などに再利甚され残りは埋立地に廃棄さ
れおいた。しかしながら、セメント原料ぞの再利
甚および埋立地ぞの廃棄のいずれにおいおも、将
来の石炭灰の倧量発生に充分察凊し埗るこずは期
埅できないのが珟状である。このように埮粉炭燃
焌灰においおも、石炭灰の凊理方法が倧きな問題
になり぀぀あり、流動局燃焌灰に぀いおも石炭火
力発電所などにおける流動局燃焌による本栌的な
石炭利甚の際にきわめお倚量の流動局燃焌灰が発
生するこずを考慮するず、流動局燃焌灰ずしお独
自の凊分方匏を確立するこずが流動局燃焌技術の
実甚化にず぀おきわめお重芁な課題ずな぀おい
る。たた流動局燃焌灰の倧量凊分方匏の確立に
は、資源ずしおの有効再利甚が必須である。これ
はたず第に囜産資源の乏しい我囜においおは、
単なる廃棄でない再利甚が省資源・省゚ネルギに
盎接結び぀くこず、第に環境砎壊がきわめお少
ないこずに基づくものである。 本発明は䞊蚘の諞点に鑑み、流動局燃焌灰を土
朚建築分野にお資源ずしお倧量に掻甚すべく、流
動局燃焌灰を原料ずしお機械的匷床の倧きい硬化
䜓を䜜補するこずを目的ずしおなされたものであ
る。 問題点を解決するための手段および䜜甚 本発明の流動局燃焌灰を䞻原料ずする硬化䜓の
補造方法は、燃料ずしおの石炭および脱硫剀ずし
おの石炭石から構成される流動局における流動局
燃焌の際に発生する石炭灰および䜿甚枈脱硫剀
に、石炭灰分60〜85重量、石炭分10〜25重量
、石こう分〜25重量の配合割合ずなるよう
に、生石灰たたはおよび消石灰、ならびに型
無氎石こう、半氎石こうたたはおよび氎石こ
うを必芁に応じお添加しお混合粉䜓を調補し、こ
の混合粉䜓に氎を加えお混緎した埌、逊生する方
法においお、混合粉䜓の塑性限界の3/7〜6/7の氎
を混合粉䜓に加えお予め充分混緎した埌、さらに
氎を加えお混緎するこずを特城ずしおいる。混合
粉䜓の塑性限界の3/7〜6/7の氎を加えお予め充分
混緎した埌、さらに氎を加えお混緎しお粒状物た
たはスラリヌにした埌、通垞は、加圧成圢たたは
流し蟌み成圢を行い、湿空逊生し、さらに65〜90
℃の比范的䜎枩の垞圧氎蒞気にお凊理する。たた
䞊蚘粒状物を成圢するこずなく、湿空逊生し、さ
らに65〜90℃の垞圧氎蒞気にお凊理するこずもあ
る。さらに垞圧氎蒞気にお凊理するこずにより埗
られた硬化䜓を、粒埄40mm以䞋の粒状硬化䜓に粉
砕するこずもある。 以䞋、本発明の構成を詳现に説明する。䞀般に
流動局燃焌灰の代衚的性状である成分組成は䜿甚
する石炭の品皮に倧きく存圚する。たず第に石
炭の産出地によ぀お燃焌残枣であるSiO2、
Al2O3、CaO、Fe2O3、Na2O、K2Oなどの成分の
配合割合が異なり、第に石炭䞭の硫黄含有量に
よ぀お脱硫生成物である型無氎石こうおよび未
反応の脱硫剀である生石灰の含有量が異なる。こ
のため流動局燃焌灰を䞻原料ずする氎蒞気凊理に
よる高匷床の硬化䜓の䜜補の際には、流動局燃焌
灰の性状によ぀お硬化䜓の適正補造条件は異な
る。䞻な補造条件は、必芁な際に添加される生石
灰などおよびたたは型無氎石こうなどの量、
混緎条件、湿空逊生条件、氎蒞気凊理条件などで
ある。 流動局燃焌灰を䞻原料ずする硬化䜓の補造条件
ず硬化䜓の性状ずの関係は抂略぀ぎの通りであ
る。氎蒞気凊理により生成する硬化䜓の䞻成分は
゚トリンガむド3CaO・Al2O3・3CaSO4・
32H2O、皮々の圢態のケむ酞カルシりム氎和物
XCaO・YSiO2・ZH2Oであるが、匷床メンバ
ヌずしお最も寄䞎するものぱトリンガむドであ
る。たず原料混合粉䜓䞭の型無氎石こう含有量
およびたたは生石灰含有量が少ない際には、カ
ルシりムモノサルフオアルミネヌト氎和物
3CaO・Al2O3・CaSO4・12H2Oが䞻成分ずな
り硬化䜓の匷床は小さいが、型無氎石こう含有
量およびたたは生石灰含有量が倧きくなるにし
たが぀お゚トリンガむド量が倚くなり硬化䜓の匷
床も倧きくなる。さらに型無氎石こうおよび
たたは生石灰含有量が倚くなるず、氎蒞気凊理時
に反応にあずからない遊離の石こうおよびたた
は消石灰が生じ硬化䜓の匷床は䜎䞋する。氎蒞気
凊理による硬化䜓の機械的匷床が最も倧きくなる
最適成分配合は、生石灰および型無氎石こう以
倖の石炭灰分60〜85重量、生石灰分10〜25重量
、型無氎石こう〜25重量である。生石灰
分およびたたは型無氎石こう分が最適成分配
合より少ない際には、生石灰分およびたたは
型無氎石こうの添加が必芁である。添加の際には
生石灰の代替ずしお消石灰を甚いおもよく、たた
型無氎石こうの代りに半氎石こうたたはおよ
び氎石こうを甚いおもよい。なお消石灰の配合
割合が30重量を越えるず、氎蒞気凊理埌に倚く
の消石灰が残り、也燥零囲気䞋では消石灰が炭酞
カルシりムになり、その際の反応膚匵によりヘア
クラツクミクロクラツクが倚数発生し、補品
性が劣化する。 䞀方、混緎条件も硬化䜓の性状に倧きな圱響を
及がす。流動局燃焌灰䞭の生石灰は、通垞型無
氎石こうによ぀お被芆されおいるため、被芆され
おいない生石灰ず比べお氎による消化反応速床が
緩慢であり、混合粉䜓を所定量の氎で䞀床に混緎
し、垞圧氎蒞気凊理によ぀お高匷床硬化䜓の補造
可胜である。しかしながら、流動局燃焌灰䞭の生
石灰が型無氎石こうによ぀お充分被芆されおい
ないか、生石灰の割合がが倚い際には、混合粉䜓
を所定量の氎で䞀床に混緎するず、急激なる消化
反応によ぀お混緎物の枩床が急䞊昇し、凝結硬化
反応が進行し、搬送性に支障をきたすずずもに垞
圧氎蒞気凊理によ぀おも高匷床硬化䜓の補造が困
難ずなる。このような際には予め゚トリンガむド
などの氎和反応が進行せず、か぀生石灰の消化に
必芁なる氎でも぀お混緎し、生石灰の消化を充分
進行させた埌、さらに氎を加えお混緎し、垞圧氎
蒞気凊理を斜すこずによ぀お高匷床硬化䜓の補造
が可胜である。予備混緎で添加する氎の量は混合
粉䜓の塑性限界の3/7〜6/7が適正である。すなわ
ち塑性限界の3/7よりも少ないず生石灰の消化反
応速床が終了するのに長時間を芁し、6/7よりも
倚いず生石灰の消化反応ならびに゚トリンガむト
などの氎和反応が急速に進行し凝結硬化するため
である。なお予備混緎時間は生石灰の掻性床合、
混緎容量などによ぀お異なるが通垞10〜30分が奜
適である。 逊生条件は、逊生枩床および逊生時間が䞻な芁
因である。逊生凊理は氎和反応を緩慢に進行さ
せ、65〜90℃の氎蒞気凊理時の氎和反応膚匵に耐
え埗る適正匷床ずし、氎蒞気凊理により高匷床硬
化䜓を䜜成するこずを目的ずする。すなわち逊生
枩床が䜎いか、逊生時間が短いず逊生凊理埌の硬
化䜓の匷床が小さくなり、65〜90℃の氎蒞気凊理
によりクラツクが倚数発生し、硬化䜓匷床が䜎䞋
する。䞀方逊生枩床が高すぎるず逊生時にクラツ
クが発生し、たた逊生時間が長すぎるず倪い結晶
の生成量が倚くな぀お、氎蒞気凊理により生成す
る斜状晶の生成物が少なくな぀お、いずれも硬化
䜓匷床が䜎䞋する。たた盞察湿床が80よりも䜎
いず、氎が蒞発し氎和反応が充分進行しなくな
る。このため高匷床硬化䜓補造のためには、垞枩
〜60℃望たしくは35〜60℃、盞察湿床80以
䞊で〜25時間逊生するのが適切である。たた逊
生枩床を高くするこずにより、高匷床硬化䜓補造
のため逊生時間を倧幅に短瞮化でき、硬化䜓の工
業的倧芏暡補造時の工皋が著しく簡玠化されるこ
ずになる。 氎蒞気凊理条件は凊理枩床および凊理時間が䞻
な芁因である。䞀般に氎蒞気凊理時間が短いか、
氎蒞気凊理枩床が䜎い際には、氎和硬化䜓はカル
シりムモノサルフオアルミネヌト氎和物、氎石
こう、゚トリンガむトの混合物からなり匷床は小
さく、氎蒞気凊理時間が長くなるか、氎蒞気凊理
枩床が高くなるにしたが぀お゚トリンガむトの生
成量が倚くなり匷床も倧きくなる。氎蒞気凊理を
長時間にわたり実斜するか、氎蒞気凊理枩床を高
くしすぎるず゚トリンガむトは耐熱性に欠けるた
め、生成した゚トリンガむトは無氎石こうずカル
シりムアルミネヌト氎和物に分解し、粒状硬化䜓
の匷床は䜎䞋する。 適正なる氎蒞気凊理条件は燃焌灰の氎和反応性
などに異なり、流動局燃焌灰においおは65〜90℃
の枩床で、〜15時間、垞圧氎蒞気凊理するこず
により高匷床粒状硬化䜓が埗られる。なお氎蒞気
凊理枩床が高くなるに䌎い、氎蒞気凊理時間は短
くお高匷床硬化䜓が埗られる。このように流動局
燃焌灰を䞻原料ずする硬化䜓の補造の際には、流
動局燃焌灰の性状などに合わせお、添加氎量、混
緎条件ならびに逊生条件、氎蒞気凊理条件を適切
に遞定するこずが必芁である。 本発明による硬化䜓は高匷床であり、人工魚
瀁、土朚甚ブロツクなどの利甚が期埅される。た
た本発明による硬化䜓を、混緎時にあるいは粉砕
により粒状化するこずによ぀お道路材料、埋め戻
し材料ならびに地盀改良材などの土朚材料ずしお
の利甚も期埅でき、その際の䞻たる特城は次の通
りである。たず第に、単䜍䜓積重量が埓来の類
䌌材料である砕石、砂利よりも盞圓に小さく、な
おか぀砕石、砂利ずほが同等の地盀支持力を呈す
るこずである。すなわち、砕石、砂利の1/2〜2/3
の重量でも぀お同等の地盀支持力を発揮するこず
である。第に、道路郚ならびに埋め戻し郚は通
垞、湿最状態かもしくは床の高い状態にあり、こ
のような環境䞋では本発明による粒状硬化䜓は経
時的に地盀支持力が増加する特城ず有するこずで
ある。 実斜䟋 ぀ぎに実斜䟋および比范䟋に぀いお説明する。
実斜䟋および比范䟋における流動局燃焌灰の化孊
組成および物性を第衚に、構成化合物割合を第
衚に瀺す。
Industrial Application Field The present invention mainly uses a mixed powder consisting of coal ash and spent desulfurization agent generated during fluidized bed combustion in a fluidized bed consisting of coal as a fuel and coal stone as a desulfurization agent. A method for producing a cured product as a raw material, in detail, adding water to the above mixed powder and kneading it,
After making it into granules or slurry, it is cured (specifically, steam treated after curing in a humid air), and when producing a hardened product, the water content is 3/7 to 6/7 of the plasticity limit of the mixed powder. The present invention relates to a method for producing a cured product, which is characterized in that after sufficient kneading is carried out in advance, water is further added and kneaded. Conventional Technology In recent years, it has become difficult for Japan to secure a large amount of oil imports due to the international oil supply instability that has been occurring since the 1973 oil crisis. Coal energy development has become a national issue, and coal energy has been highlighted as one of the pillars of energy. Conventionally, pulverized coal combustion has been the main combustion method when coal is used as fuel, but fluidized bed combustion has recently been attracting attention. This fluidized bed combustion method usually employs an in-furnace desulfurization method, in which coal as a fuel and coal stone as a desulfurizing agent for in-furnace desulfurization are input to form a fluidized bed in a boiler. Compared to the conventional pulverized coal combustion method, the fluidized bed combustion method has the following advantages: firstly, the furnace volume is smaller and the boiler volume is smaller; secondly, there are fewer restrictions on the type of fuel coal; It has the advantages of being able to burn at a low temperature of °C, having no problems with ash condensation, and generating little thermal NOX, and fourth, having a large overall heat transfer coefficient on the surface of the heat transfer water tube. On the other hand, there is a problem with ash disposal in the practical application of fluidized bed combustion technology. The ash generated during fluidized bed combustion is composed of so-called coal ash and spent desulfurization agent, and the spent desulfurization agent is composed of anhydrous gypsum, which is a desulfurization product, and unreacted quicklime.
In order to increase the removal efficiency of sulfur oxides in coal combustion gas, that is, the desulfurization rate, the amount of coal stone input is usually set so that the Ca/S molar ratio is 3 to 6, and the temperature is 750 to 850℃. Coal stone becomes quicklime and type anhydrous gypsum through reaction with sulfur oxides, which are discharged together with coal ash. The amount of fluidized bed combustion ash generated varies considerably depending on the type of coal used, desulfurization rate, boiler operating conditions, etc., but normally, the amount of coal ash, type anhydride, and quicklime generated is approximately 15 to 20 times the amount of coal used. Weight%, 1-10% by weight,
It is 1 to 10% by weight. Problems to be Solved by the Invention Conventionally, most of the coal ash generated in Japan has come from pulverized coal combustion, of which about 10 to 20% by weight is reused as fly ash for cement admixtures, cement raw materials, etc., and the rest is recycled as fly ash. It had been disposed of in a landfill. However, the current situation is that it cannot be expected that future large quantities of coal ash will be adequately coped with either by reusing it as a raw material for cement or disposing of it in a landfill. In this way, the treatment method of pulverized coal combustion ash is also becoming a major issue, and fluidized bed combustion ash is also being produced in extremely large quantities during full-scale coal utilization through fluidized bed combustion in coal-fired power plants. Considering that fluidized bed combustion ash is generated, establishing a unique disposal method for fluidized bed combustion ash is an extremely important issue for the practical application of fluidized bed combustion technology. Furthermore, in order to establish a mass disposal system for fluidized bed combustion ash, effective reuse as a resource is essential. First of all, in Japan, where domestic resources are scarce,
This is based on the fact that reuse rather than mere disposal directly leads to resource and energy conservation, and secondly, it causes very little environmental damage. In view of the above points, the present invention was made with the aim of producing a hardened body with high mechanical strength using fluidized bed combustion ash as a raw material, in order to utilize fluidized bed combustion ash in large quantities as a resource in the field of civil engineering and construction. It is something. Means and Effects for Solving the Problems The method for producing a hardened body using fluidized bed combustion ash as a main raw material of the present invention is characterized by fluidized bed combustion in a fluidized bed composed of coal as a fuel and coal stone as a desulfurizing agent. Add quicklime or/and slaked lime to the coal ash and spent desulfurization agent generated during , and type anhydrous gypsum, hemihydrate gypsum or/and dihydrate gypsum are added as necessary to prepare a mixed powder, water is added to this mixed powder, kneaded, and then cured. It is characterized in that water in an amount of 3/7 to 6/7 of the plasticity limit of the powder is added to the mixed powder and thoroughly kneaded in advance, and then water is further added and kneaded. After thoroughly kneading the mixed powder by adding 3/7 to 6/7 of the plasticity limit of water, and then adding water and kneading it into granules or slurry, it is usually pressure-molded or cast-molded. 65 to 90 days after curing in a humid air.
Treat with normal pressure steam at a relatively low temperature of ℃. Alternatively, the above-mentioned granules may be cured in a humid air without being molded, and further treated with normal pressure steam at 65 to 90°C. Further, the cured product obtained by treatment with atmospheric pressure steam may be pulverized into granular cured products with a particle size of 40 mm or less. Hereinafter, the configuration of the present invention will be explained in detail. In general, the component composition, which is a typical property of fluidized bed combustion ash, largely depends on the type of coal used. First of all, SiO 2 , which is a combustion residue, depends on the place where the coal is produced.
The blending ratio of components such as Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O is different, and secondly, the desulfurization product, anhydrous gypsum and non-type anhydrous gypsum, depends on the sulfur content in the coal. The content of quicklime, which is a desulfurizing agent in the reaction, is different. Therefore, when producing a high-strength hardened body by steam treatment using fluidized bed combustion ash as a main raw material, the appropriate manufacturing conditions for the hardened body differ depending on the properties of the fluidized bed combustion ash. The main manufacturing conditions are the amount of quicklime etc. and/or molded anhydrous gypsum etc. added when necessary;
These include kneading conditions, moist air curing conditions, and steam treatment conditions. The relationship between the manufacturing conditions of a hardened body using fluidized bed combustion ash as the main raw material and the properties of the hardened body is roughly as follows. The main component of the hardened material produced by steam treatment is ettrin guide (3CaO・Al 2 O 3・3CaSO 4・
32H 2 O) and various forms of calcium silicate hydrate (XCaO・YSiO 2・ZH 2 O), but the one that contributes the most as a strength member is the ettrin guide. First, when the content of anhydrous gypsum and/or quicklime in the raw material mixed powder is low, calcium monosulfur aluminate hydrate (3CaO・Al 2 O 3・CaSO 4・12H 2 O) is the main Although the strength of the cured product is small, as the content of anhydrous gypsum and/or the content of quicklime increases, the amount of ettrin guide increases and the strength of the cured product also increases. In addition, type anhydrous gypsum and/or
Alternatively, when the quicklime content increases, free gypsum and/or slaked lime that does not participate in the reaction occurs during steam treatment, resulting in a decrease in the strength of the hardened product. The optimum composition of ingredients that maximizes the mechanical strength of the hardened material by steam treatment is 60 to 85% by weight of coal ash other than quicklime and molded anhydrous gypsum, 10 to 25% by weight of quicklime, and 5 to 25% by weight of molded anhydrous gypsum. be. When the quicklime content and/or the type anhydrous gypsum content is less than the optimum component mix, it is necessary to add the quicklime content and/or the type anhydrous gypsum. When adding, slaked lime may be used instead of quicklime, and hemihydrate gypsum and/or dihydrate gypsum may be used instead of type anhydrous gypsum. If the blending ratio of slaked lime exceeds 30% by weight, a large amount of slaked lime will remain after steam treatment, and the slaked lime will turn into calcium carbonate in a dry atmosphere, and the reaction expansion at that time will generate many hair cracks (microcracks), which will deteriorate the product. quality deteriorates. On the other hand, kneading conditions also have a large effect on the properties of the cured product. The quicklime in the fluidized bed combustion ash is coated with ordinary anhydrous gypsum, so the digestion reaction rate with water is slower than that of uncoated quicklime. A high-strength cured product can be produced by kneading and treating with atmospheric pressure steam. However, if the quicklime in the fluidized bed combustion ash is not sufficiently covered with molded anhydrous gypsum, or if the proportion of quicklime is high, if the mixed powder is kneaded with a predetermined amount of water at once, rapid digestion will occur. The temperature of the kneaded material rises rapidly due to the reaction, and the coagulation and hardening reaction progresses, impeding transportability and making it difficult to produce a high-strength cured product even by atmospheric pressure steam treatment. In such a case, if the hydration reaction such as Ettlin Guide does not proceed and the water necessary for the digestion of quicklime is mixed in advance, and after the digestion of quicklime has progressed sufficiently, water is added and kneaded. A high-strength cured product can be produced by subjecting it to atmospheric pressure steam treatment. The appropriate amount of water to be added during preliminary kneading is 3/7 to 6/7 of the plasticity limit of the mixed powder. In other words, if it is less than 3/7 of the plasticity limit, it will take a long time for the digestion reaction of quicklime to complete, and if it is more than 6/7, the digestion reaction of quicklime and the hydration reaction of ettringite etc. will proceed rapidly. This is because it solidifies and hardens. The preliminary kneading time depends on the activity level of quicklime,
Although it varies depending on the kneading capacity etc., 10 to 30 minutes is usually suitable. The main factors for curing conditions are curing temperature and curing time. The purpose of the curing treatment is to allow the hydration reaction to proceed slowly, to obtain an appropriate strength that can withstand the expansion of the hydration reaction during steam treatment at 65 to 90°C, and to create a high-strength cured product by steam treatment. That is, if the curing temperature is low or the curing time is short, the strength of the cured product after curing will be reduced, and many cracks will occur due to steam treatment at 65 to 90°C, resulting in a decrease in the strength of the cured product. On the other hand, if the curing temperature is too high, cracks will occur during curing, and if the curing time is too long, the amount of thick crystals will increase, and the amount of oblique crystals produced by steam treatment will decrease, resulting in hardening. Body strength decreases. Furthermore, if the relative humidity is lower than 80%, water will evaporate and the hydration reaction will not proceed sufficiently. Therefore, in order to produce a high-strength cured product, it is appropriate to cure at room temperature to 60°C (preferably 35 to 60°C) and relative humidity of 80% or higher for 5 to 25 hours. Furthermore, by increasing the curing temperature, the curing time can be significantly shortened to produce a high-strength cured product, and the process for industrial large-scale production of the cured product can be significantly simplified. Steam treatment conditions are the main factors of treatment temperature and treatment time. Steam treatment time is generally short or
When the steam treatment temperature is low, the hydrated hardened product consists of a mixture of calcium monosulfo aluminate hydrate, dihydrate gypsum, and ettringite, and its strength is low, and the steam treatment time becomes longer or the steam treatment temperature becomes higher. As the temperature increases, the amount of ettringite produced increases and the strength also increases. If steam treatment is carried out for a long time or if the steam treatment temperature is too high, ettringite lacks heat resistance, so the generated ettringite will decompose into anhydrous gypsum and calcium aluminate hydrate, and the strength of the granular hardened product will decrease. do. Appropriate steam treatment conditions vary depending on the hydration reactivity of the combustion ash, etc. For fluidized bed combustion ash, the temperature is 65 to 90℃.
A high-strength granular hardened product can be obtained by treating with normal pressure steam at a temperature of 5 to 15 hours. Note that as the steam treatment temperature increases, the steam treatment time becomes shorter and a high-strength cured product can be obtained. In this way, when manufacturing a hardened product using fluidized bed combustion ash as the main raw material, the amount of water added, kneading conditions, curing conditions, and steam treatment conditions must be appropriately selected according to the properties of the fluidized bed combustion ash. is necessary. The cured product according to the present invention has high strength and is expected to be used in artificial reefs, civil engineering blocks, etc. Furthermore, by granulating the hardened product of the present invention during kneading or pulverization, it can be expected to be used as civil engineering materials such as road materials, backfill materials, and ground improvement materials. It is. First, it has a unit volume weight that is considerably smaller than conventional similar materials such as crushed stone and gravel, and yet exhibits ground bearing capacity that is almost equivalent to crushed stone and gravel. i.e. 1/2 to 2/3 of crushed stone and gravel
The objective is to demonstrate the same ground bearing capacity even with the weight of Second, road sections and backfill sections are usually in wet or highly wet conditions, and in such environments, the granular hardened material according to the present invention has the characteristic that the ground bearing capacity increases over time. It is. Examples Next, examples and comparative examples will be described.
The chemical composition and physical properties of the fluidized bed combustion ash in Examples and Comparative Examples are shown in Table 1, and the proportions of constituent compounds are shown in Table 2.

【衚】【table】

【衚】 流動局燃焌灰および硬化䜓の詊隓方法を぀ぎに
瀺す。ブレヌン比衚面積枬定は島接補䜜所補の粉
䜓比衚面積枬定噚SS−100圢を䜿甚し、空気透過
法によ぀た。液性限界はJIS  1205土の液性
限界詊隓方法に基づき枬定し、塑性限界は
JISA1206土の塑性限界詊隓方法に基づき枬定
した。曲げ匷床詊隓は詊隓片ずしお40×40×160
mmのものを䜿甚し、詊隓装眮ずしお䞞菱科孊
補䜜所補のMKS改良型䞇胜匷床詊隓機を䜿甚し
た。詊隓方法は点曲げ法によ぀た。圧瞮匷床詊
隓は詊隓片ずしお40×40×40mmのものを䜿甚
し、詊隓装眮ずしおむンストロン瀟補の䞇胜詊隓
機最倧荷重10トンを䜿甚した。詊隓方法は定
たわみ速床法によ぀た。修正CBRはJIS 
1210突固めによる土の締固め詊隓方法によ぀
お䞊䞋方向に局に分けお、各局92回突固めたず
きの最倧也燥密床の95の締固め床に盞圓する
日氎浞埌のCBRをいい、このCBRはJIS 
1211路床土支持力比詊隓方法により、盎埄
cmの貫入棒の貫入抵抗より次匏で䞎えられる。 CBR 貫入量2.5mmのずきの荷重Kg1370Kg×100
 実斜䟋  第衚に瀺した流動局燃焌灰100重量郚に氎20
重量郚を添加し、15分混緎した埌、さらに氎26重
量郚を添加し、分混緎しお粒状物にし、この粒
状物を20Kgcm2の圧力にお加圧成圢し、50℃、
盞察湿床80以䞊の湿空䞋で15時間逊生した埌、
80℃の垞圧氎蒞気䞋で10時間凊理し、硬化䜓を埗
た。硬化䜓の特性は第衚のごずくであ぀た。 実斜䟋  第衚に瀺した流動局燃焌灰100重量郚に氎30
重量郚添加し、15分間混緎したのち、さらに氎16
重量郚を添加し、分混緎しお粒状にし、この粒
状物を20Kgcm2の圧力にお加圧成圢し、50℃、
盞察湿床80以䞊の湿空䞋で15時間逊生した埌、
80℃の垞圧氎蒞気䞋で10時間凊理し、硬化䜓を埗
た。硬化䜓の特性は第衚のごずくであ぀た。 実斜䟋  第衚に瀺した流動局燃焌灰100重量郚に氎30
重量郚添加し、15分混緎した埌、さらに氎30重量
郚を添加し、分混緎しおスラリヌにし、このス
ラリヌを型枠に流し蟌み、50℃、盞察湿床80以
䞊の湿空䞋で15時間逊生した埌、80℃の垞圧氎蒞
気䞋で10時間凊理し、硬化䜓を埗た。硬化䜓の特
性は第衚のごずくであ぀た。 比范䟋  第衚に瀺した流動局燃焌灰100重量郚に氎を
46重量郚添加し、分混緎しお粒状物にし、この
粒状物を20Kgcm2の圧力にお加圧成圢し、50
℃、盞察湿床80以䞊の湿空䞋で15時間逊生した
埌、80℃の垞圧氎蒞気䞋で10時間凊理し、硬化䜓
を埗た。硬化䜓の特性は第衚のごずくであ぀
た。 比范䟋  第衚に瀺した流動局燃焌灰100重量郚に氎60
重量郚添加し、分混緎しおスラリヌにし、この
スラリヌを型枠に流し蟌み、50℃、盞察湿床80
以䞊の湿空䞋で15時間逊生した埌、80℃の垞圧氎
蒞気䞋で10時間凊理をし、硬化䜓を埗た。硬化䜓
の特性は第衚のごずくであ぀た。
[Table] Test methods for fluidized bed combustion ash and hardened material are shown below. The Blaine specific surface area was measured using a powder specific surface area measuring device model SS-100 manufactured by Shimadzu Corporation, using the air permeation method. The liquid limit is measured based on JIS A 1205 (Soil liquid limit test method), and the plastic limit is
Measured based on JISA1206 (Soil plasticity limit test method). Bending strength test uses 40 x 40 x 160 as a test piece
(mm), and the MKS improved universal strength testing machine manufactured by Marubishi Kagaku Seisakusho was used as the testing device. The test method was a three-point bending method. For the compressive strength test, a 40 x 40 x 40 (mm) specimen was used, and a universal testing machine (maximum load: 10 tons) manufactured by Instron was used as the testing device. The test method was based on the constant deflection rate method. Modified CBR is JIS A
4, which corresponds to a compaction degree of 95% of the maximum dry density when divided into three layers in the vertical direction and tamped each layer 92 times according to 1210 (Test method for soil compaction by compaction).
It refers to CBR after being immersed in water for a day, and this CBR is JIS A.
1211 (subgrade soil bearing capacity ratio test method), diameter 5
The penetration resistance of a penetration rod of cm is given by the following formula. CBR = Load when penetration depth is 2.5mm (Kg) / 1370 (Kg) x 100
(%) Example 1 100 parts by weight of fluidized bed combustion ash shown in Table 1 was mixed with 20 parts by weight of water.
After adding part by weight and kneading for 15 minutes, 26 parts by weight of water was further added and kneaded for 2 minutes to form a granule.The granule was press-molded at a pressure of 20Kg/cm 2 G and heated at 50℃. ,
After curing for 15 hours in a humid atmosphere with a relative humidity of 80% or more,
A cured product was obtained by treatment under normal pressure steam at 80°C for 10 hours. The properties of the cured product were as shown in Table 3. Example 2 Add 30 parts of water to 100 parts by weight of fluidized bed combustion ash shown in Table 1.
After adding 16 parts by weight and kneading for 15 minutes, add 16 parts by weight of water.
parts by weight were added, kneaded for 2 minutes to form granules, and the granules were pressure-molded at a pressure of 20 kg/cm 2 G at 50°C.
After curing for 15 hours in a humid atmosphere with a relative humidity of 80% or more,
A cured product was obtained by treatment under normal pressure steam at 80°C for 10 hours. The properties of the cured product were as shown in Table 3. Example 3 Add 30 parts of water to 100 parts by weight of fluidized bed combustion ash shown in Table 1.
After adding part by weight and kneading for 15 minutes, 30 parts by weight of water was further added and kneaded for 3 minutes to form a slurry. This slurry was poured into a mold and heated at 50℃ and in a humid atmosphere with a relative humidity of 80% or more for 15 minutes. After curing for an hour, it was treated under normal pressure steam at 80°C for 10 hours to obtain a cured product. The properties of the cured product were as shown in Table 3. Comparative Example 1 Water was added to 100 parts by weight of fluidized bed combustion ash shown in Table 1.
Add 46 parts by weight, knead for 2 minutes to form granules, press-form the granules at a pressure of 20 kg/cm 2 G,
After curing for 15 hours in a humid atmosphere at 80°C and relative humidity of 80% or more, the material was treated for 10 hours under normal pressure steam at 80°C to obtain a cured product. The properties of the cured product were as shown in Table 3. Comparative Example 2 Add 60 parts of water to 100 parts by weight of fluidized bed combustion ash shown in Table 1.
Add part by weight, knead for 3 minutes to make a slurry, pour this slurry into a mold, and heat at 50℃ and relative humidity 80%.
After curing in the above humid atmosphere for 15 hours, it was treated under normal pressure steam at 80°C for 10 hours to obtain a cured product. The properties of the cured product were as shown in Table 3.

【衚】 実斜䟋  第衚の実斜䟋に瀺す粉砕前の硬化䜓をゞペ
ヌクラツシダヌにお粉砕し、20mm以䞋100重量、
10mm以䞋70重量、mm以䞋39重量、mm以䞋
30重量、0.1mm以䞋重量の粒床分垃の粒状
硬化䜓を埗た。の粒状硬化䜓の特性は第衚に瀺
すごずくであ぀た。 実斜䟋  第衚に瀺した流動局燃焌灰100重量郚に氎30
重量郚添加し、15分混緎した埌、さらに氎16重量
郚を添加し、分混緎しお粒状物にし、この粒状
郚を50℃、盞察湿床80以䞊の湿空䞋で15時間湿
空逊生した埌、80℃の垞圧氎蒞気䞋で10時間凊理
し、20mm以䞋100重量、10mm以䞋80重量、
mm以䞋45重量、mm以䞋36重量、0.1mm以䞋
重量の粒床分垃の粒状硬化䜓を埗た。この粒
状硬化䜓の特性は第衚に瀺すごずくであ぀た。 比范䟋  第衚の比范䟋に瀺す粉砕前の硬化䜓をゞペ
ヌクラツシダヌにお粉砕し、粒床調敎するこずに
よ぀お実斜䟋ず同じ粒床分垃の粒状硬化䜓を埗
た。この粒状硬化䜓の特性は第衚に瀺すごずく
であ぀た。
[Table] Example 3 The cured product shown in Example 2 in Table 3 was crushed using a geo crusher, and 100% by weight of 20 mm or less,
10mm or less 70% by weight, 5mm or less 39% by weight, 1mm or less
A granular cured product having a particle size distribution of 30% by weight and 3% by weight of 0.1 mm or less was obtained. The properties of the granular cured product were as shown in Table 4. Example 4 Add 30 parts of water to 100 parts by weight of fluidized bed combustion ash shown in Table 1.
After adding part by weight and kneading for 15 minutes, further add 16 parts by weight of water and kneading for 2 minutes to form a granule. After curing, treat under normal pressure steam at 80℃ for 10 hours, 100% by weight for 20mm or less, 80% by weight for 10mm or less, 5
A granular cured product was obtained with a particle size distribution of 45% by weight of less than mm, 36% by weight of less than 1mm, and 4% by weight of less than 0.1mm. The properties of this granular cured product were as shown in Table 4. Comparative Example 3 A granular cured product having the same particle size distribution as Example 3 was obtained by pulverizing the pre-pulverized hardened material shown in Comparative Example 1 in Table 3 using a di-yo crusher and adjusting the particle size. The properties of this granular cured product were as shown in Table 4.

【衚】 発明の効果 以䞊説明したように、本発明によれば石炭燃焌
時の排出物である流動局燃焌灰を塑性限界の3/7
〜6/7の氎でも぀お予め充分混緎した埌、さらに
氎を加えお混緎し、湿空逊生を行い、さらに垞圧
氎蒞気凊理などの逊生を斜すこずによ぀お、匷床
の倧きい硬化䜓ならびに粒状硬化䜓を短時間にか
぀容易に補造するこずが可胜であり、本発明は流
動局燃焌灰を有効利甚した土朚・建築の分野にお
ける各皮建材、構造材ならびに道路材、埋め戻し
材などの補造に寄䞎する技術ずしおきわめお有益
である。
[Table] Effects of the Invention As explained above, according to the present invention, fluidized bed combustion ash, which is an exhaust product during coal combustion, is reduced to 3/7 of the plastic limit.
After thoroughly kneading with ~6/7 water, further water is added, kneaded, and then cured in a humid air, and further curing such as atmospheric pressure steam treatment is performed to form a hardened product with high strength and granular form. It is possible to easily produce a hardened product in a short time, and the present invention is applicable to the production of various building materials, structural materials, road materials, backfilling materials, etc. in the fields of civil engineering and construction by effectively utilizing fluidized bed combustion ash. It is extremely useful as a contributing technology.

Claims (1)

【特蚱請求の範囲】  燃料ずしおの石炭および脱硫剀ずしおの石炭
石から構成される流動局における流動局燃焌の際
に発生する石炭灰および䜿甚枈脱硫剀に、石炭灰
分60〜85重量、石灰分10〜25重量、石こう分
〜25重量の配合割合ずなるように、生石灰た
たはおよび消石灰、ならびに型無氎石こう、
半氎石こうたたはおよび氎石こうを必芁に応
じお添加しお混合粉䜓を調補し、この混合粉䜓に
氎を加えお混緎した埌、逊生する方法においお、
混合粉䜓の塑性限界の3/7〜6/7の氎を混合粉䜓に
加えお予め充分混緎した埌、さらに氎を加えお混
緎するこずを特城ずする流動局燃焌灰を䞻原料ず
する硬化䜓の補造方法。  逊生埌の硬化䜓を粒埄40mm以䞋の粒状硬化䜓
に粉砕する特蚱請求の範囲第項蚘茉の流動局燃
焌灰を䞻原料ずする硬化䜓の補造方法。
[Scope of Claims] 1 Coal ash generated during fluidized bed combustion in a fluidized bed consisting of coal as a fuel and coal stone as a desulfurization agent and a spent desulfurization agent containing 60 to 85% by weight of coal ash, Quicklime or/and slaked lime, and molded anhydrous gypsum, so that the lime content is 10 to 25% by weight and the gypsum content is 5 to 25% by weight.
In the method of preparing a mixed powder by adding hemihydrate gypsum or/and dihydrate gypsum as necessary, adding water to this mixed powder, kneading, and curing,
The main raw material is fluidized bed combustion ash, which is characterized by adding 3/7 to 6/7 of the plasticity limit of water to the mixed powder, thoroughly kneading it in advance, and then adding water and kneading it. Method for producing cured product. 2. A method for producing a hardened body using fluidized bed combustion ash as a main raw material according to claim 1, which comprises pulverizing the cured body into granular hardened bodies having a particle size of 40 mm or less.
JP59206804A 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material Granted JPS6186461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206804A JPS6186461A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206804A JPS6186461A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Publications (2)

Publication Number Publication Date
JPS6186461A JPS6186461A (en) 1986-05-01
JPH0138069B2 true JPH0138069B2 (en) 1989-08-10

Family

ID=16529363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206804A Granted JPS6186461A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Country Status (1)

Country Link
JP (1) JPS6186461A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225349A (en) * 1989-02-23 1990-09-07 Hideo Igami Cured form using coal ash and production thereof

Also Published As

Publication number Publication date
JPS6186461A (en) 1986-05-01

Similar Documents

Publication Publication Date Title
KR102125577B1 (en) Composition agent
KR101410797B1 (en) Mortar compound for floor using non-sintering inorganic binder
KR101289825B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR101543307B1 (en) Method of manufacture and Environment-Friendly Quarry Landfill filler of occurred in the circulating fluidized bed boiler using gas desulfurization gypsum
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
EP0296621A1 (en) Process for producing hard materials from combustion ash of fluidized bed
KR101416005B1 (en) Nature-friendly block using non-sintering inorgarnic binder and manufacturing method thereof
KR102478241B1 (en) Backfiller Composition With High Flowability
KR102522763B1 (en) Binder for secondary concrete product and manufacturing method of secondary concrete product
JPH0138069B2 (en)
JPS641416B2 (en)
JPS6125673B2 (en)
JPH0629159B2 (en) Method for producing a cured body using fluidized bed combustion ash as a raw material
JPS641417B2 (en)
JPS641419B2 (en)
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
JPS641418B2 (en)
CN114735983B (en) Coal ash brick containing fluidized bed sulfur fixation ash and preparation method thereof
JPS641423B2 (en)
JPH0338227B2 (en)
JPS641420B2 (en)
KR20240047715A (en) Concrete block composition containing calcium carbonate and manufacturing method thereof
JPS6324941B2 (en)
JPH11292586A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate produced thereby
Ng Utilisation of alum sludge ash in mortar production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees