JPS6324941B2 - - Google Patents

Info

Publication number
JPS6324941B2
JPS6324941B2 JP57176841A JP17684182A JPS6324941B2 JP S6324941 B2 JPS6324941 B2 JP S6324941B2 JP 57176841 A JP57176841 A JP 57176841A JP 17684182 A JP17684182 A JP 17684182A JP S6324941 B2 JPS6324941 B2 JP S6324941B2
Authority
JP
Japan
Prior art keywords
weight
water
coal ash
parts
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57176841A
Other languages
Japanese (ja)
Other versions
JPS5969464A (en
Inventor
Hiroyuki Matsumura
Taisuke Shibata
Toranosuke Hirokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP17684182A priority Critical patent/JPS5969464A/en
Publication of JPS5969464A publication Critical patent/JPS5969464A/en
Publication of JPS6324941B2 publication Critical patent/JPS6324941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭燃焼時に排出される石炭灰を主
原料として硬化体を製造する方法、詳しくは石炭
灰に消石灰または/および生石灰、ならびに2水
石こう、半水石こうまたは/および型無水石こ
うを添加してなる混合粉体を水とともに混練し、
常温養生によつて機械的強度の大きい水和硬化体
を製造する方法に関するものである。 近年我国においては、石油依存度を小さくする
ための石油代替エネルギーの開発が国家的な課題
であり、なかでも石炭エネルギーが一つの柱とし
て注目されている。一次エネルギー源としての石
炭の大量消費に対処するための石炭利用技術の実
用化における課題の一つに、石炭燃焼時に発生す
る多量の石炭灰の処理が挙げられる。 石炭燃焼時には通常、石炭使用量のほぼ10〜20
重量%の石炭灰が発生する。通常の微粉炭燃焼ボ
イラより発生するいわゆる微粉炭燃焼灰は、その
発生場所によつてボトムアツシユ、シンダアツシ
ユおよびフライアツシユに区分され、そのうちフ
ライアツシユが発生量の大部分を占める。従来我
国においては、フライアツシユの一部はセメント
混和材、セメント原料などに再利用されており、
残りは埋立地などにて処分されている。 しかしながら、現在の方式による再利用だけで
は、将来発生するであろう膨大な石炭灰量に対応
し得るだけの需要量は期待できず、一方、現行の
石炭灰の埋立地などへの処分については、環境規
制の強化に伴い石炭灰処分用地の確保が難しくな
りつつあり、本格的な石炭火力発電所の稼動の際
には、現状の石炭灰の処分方式および有効利用方
式によつて発生する全ての石炭灰を処理すること
は難しくなる見通しである。また石炭灰の大量処
理技術の検討に際しては、環境汚染がなくかつで
きるだけ再利用を志向することが必要である。こ
れは国産資源に乏しく国土が狭隘な我国において
は、単なる投棄処分ではなく石炭灰を資源として
再利用を図ることが重要となるためである。 本発明は上記の諸点に鑑み、石炭灰を海面埋立
および土地造成のための土盤材、軟弱地盤を対象
とする土盤改良材、ならびに導路建設用路盤材な
どの土木部門に大量に活用すべく、石炭灰を原料
として曲げ強度の大きい土盤状硬化体を製造する
ことを目的としてなされたもので、石炭灰50〜90
重量%、望ましくは60〜80重量%、消石灰また
は/および生石灰(以下、消石灰などと略す)5
〜40重量%、望ましくは15〜30重量%、2水石こ
う、半水石こうまたは/および型無水石こう
(以下、2水石こうなどと略す)4〜40重量%、
望ましくは5〜20重量%からなる混合粉体に10〜
60重量%の混水量(粉体100重量%に対して添加
する水の重量%)の水を添加して硬化体を製造す
る際に、混合粉体100重量部に対して0.1〜2重量
部の硫酸を予め水に加えて混合粉体と混練する
か、混合粉体に水を添加する際に加えて混練した
後、この混練物を形枠または成形容器などを用い
て成形し、ついでこの成形体を80〜100℃の水蒸
気で処理することを特徴とする石炭灰を主原料と
する硬化体の製造方法を提供するものである。 以下、本発明の構成を詳細に説明する。一般
に、石炭灰の代表的性状である成分、組成および
粒度分布は石炭の産地および燃焼時の履歴に大き
く依存する。まず第一に、石炭の産出地によつて
SiO2、Al2O3、CaO、Fe2O3、Na2O、K2Oなどの
成分の配合割合が異なり、第2に我国にて現在発
生する石炭灰は微粉炭燃焼灰が主であり、発生場
所および採取方式によつてそれぞれ粒度分布が異
なる。このため石炭灰を主原料とし水蒸気処理に
よつて機械的強度の大きい水和硬化体を製造する
際には、石炭灰の組成および粒度分布によつて水
和硬化体の適正製造条件は微妙に異なる。製造条
件として寄与率が大きい要因は、原料粉体の配合
割合、混練時間、水蒸気処理温度および水蒸気処
理時間である。なお水蒸気は常圧水蒸気を用いる
のが望ましい。 水蒸気処理によつて生成する水和硬化体の主成
分は、エトリンガイト(3CaO・Al2O3
3CaSO4・32H2O)、種々の形態のケイ酸カルシ
ウム水和物(xCaO・ySiO2・zH2O)であるが、
早期の強度発現に最も寄与するのはエトリンガイ
ドである。このため、原料粉体の配合割合は、エ
トリンガイトの生成に最も好都合なものが適切で
あり、消石灰などの添加量は5〜40重量%、望ま
しくは15〜30重量%、2水石こうなどの添加量は
4〜40重量%、望ましくは5〜20重量%に限定さ
れる。また水蒸気処理条件は処理温度および処理
時間が主な要因である。 一般に水蒸気処理温度が低い際および水蒸気処
理時間が短かい際には、反応の進行が緩慢とな
り、水和硬化体はカルシウムモノサルフオアルミ
ネート水和物(3CaO・Al2O3・CaSO4
12H2O)、2水石こうおよびエトリンガイトの混
合物からなり強度が小さい。反応の進行とともに
エトリンガイトの生成量が大になり強度も大きく
なる。 石炭灰の粒度分布も水和硬化体の性状に大きな
影響をおよぼす。一般に石炭灰の粒度が小さくな
るにしたがつて、すなわち比表面積が大きくなる
にしたがつて短かい養生時間で水和硬化体は所定
の強度を呈する傾向にある。これはエトリンガイ
トの生成反応はスルーソルーシヨンリアクシヨン
(through solution reaction)であり、また石炭
灰中に含有されるアルミナ(Al2O3)の溶解速度
が消石灰、2水石こうに較べて著しく小さく、エ
トリンガイトの生成速度はアルミナの溶解速度に
依存すると推定できるためである。このように、
水和硬化体の性状は、石炭灰の成分および組成、
他の原料粉体の添加量、混水量、混練方式および
混練時間ならびに水蒸気処理温度および処理時間
などの製造条件によつて大きく影響され、水和硬
化体の要求特性にあわせて各製造条件を適切に選
定することが必要である。 本発明は、混合粉体と水の混練時に少量の硫酸
を添加することにより、水蒸気処理後の水和硬化
体のとくに曲げ強度の向上を図ることを目的とし
たものであり、硫酸添加量は原料混合粉体100重
量部に対して0.1〜2重量部が好適である。なお
硫酸は予め水に溶解させておいてもよく、混合粉
体と水とを混練する際に添加してもよいが、混練
は同時に実施するのが好適である 本発明において、混水量を10〜60重量%として
いるが、混水量を少なくすると強度が高くなるが
成形性が悪くなり、混水量が10重量%程度以下で
は成形できなくなる。また混水量を多くすると流
動性が大きくなつて固化し難くなり、混水量60重
量%程度が限度である。したがつて本発明におい
て、望ましい混水量は30〜50重量%である。 つぎに実施例および比較例について説明する。
実施例および比較例における原料石炭灰は市販フ
ライアツシユであり、その組成および性状を第1
表に示す。
The present invention relates to a method for producing a hardened body using coal ash discharged during coal combustion as a main raw material, specifically, to coal ash, slaked lime or/and quicklime, and dihydrate gypsum, hemihydrate gypsum or/and type anhydrous gypsum are added. Knead the mixed powder with water,
The present invention relates to a method for producing a hydrated material with high mechanical strength by curing at room temperature. In recent years, the development of alternative energy sources for oil in order to reduce our dependence on oil has become a national issue in our country, and coal energy is attracting attention as one of the pillars of energy. One of the challenges in the practical application of coal utilization technology to cope with the large consumption of coal as a primary energy source is the disposal of large amounts of coal ash generated during coal combustion. When burning coal, usually almost 10 to 20 of the coal usage
% coal ash is generated. The so-called pulverized coal combustion ash generated from a typical pulverized coal combustion boiler is classified into bottom ash, cinder ash, and fly ash, depending on where it is generated, and of these, fly ash accounts for the majority of the amount generated. Traditionally in Japan, a portion of fly ash has been reused as cement admixtures, cement raw materials, etc.
The rest is disposed of in landfills. However, it is not possible to expect enough demand to meet the huge amount of coal ash that will be generated in the future through current recycling methods alone. With the tightening of environmental regulations, it is becoming increasingly difficult to secure land for coal ash disposal. It is expected that it will be difficult to dispose of this amount of coal ash. Furthermore, when considering mass processing technology for coal ash, it is necessary to aim for reuse as much as possible without causing environmental pollution. This is because in a country with limited domestic resources and limited land, it is important to reuse coal ash as a resource rather than simply dumping it. In view of the above points, the present invention utilizes coal ash in large quantities in the civil engineering sector, such as as a soil material for sea surface reclamation and land reclamation, as a soil improvement material for soft ground, and as a roadbed material for conduit construction. This was made with the aim of producing a hardened soil with high bending strength using coal ash as a raw material.
Weight%, preferably 60 to 80% by weight, slaked lime or/and quicklime (hereinafter abbreviated as slaked lime etc.) 5
~40% by weight, preferably 15-30% by weight, 4-40% by weight of dihydrate gypsum, hemihydrate gypsum or/and type anhydrous gypsum (hereinafter abbreviated as dihydrate gypsum etc.),
Preferably, 10 to 20% by weight of mixed powder is added.
When producing a cured body by adding 60% by weight of water (weight% of water added to 100% by weight of powder), 0.1 to 2 parts by weight per 100 parts by weight of mixed powder. of sulfuric acid is added to water in advance and kneaded with the mixed powder, or added and kneaded when water is added to the mixed powder, then the kneaded product is shaped using a form frame or a molding container, and then this The present invention provides a method for producing a hardened body using coal ash as a main raw material, characterized in that the formed body is treated with steam at 80 to 100°C. Hereinafter, the configuration of the present invention will be explained in detail. In general, the typical properties of coal ash, such as components, composition, and particle size distribution, greatly depend on the coal's production area and combustion history. First of all, it depends on where the coal comes from.
The proportions of ingredients such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O are different, and secondly, the coal ash currently generated in Japan is mainly pulverized coal combustion ash. Yes, the particle size distribution varies depending on the location and collection method. Therefore, when producing a hydrated hardened material with high mechanical strength using steam treatment using coal ash as the main raw material, the appropriate manufacturing conditions for the hydrated hardened material may vary depending on the composition and particle size distribution of the coal ash. different. Factors that have a large contribution rate as manufacturing conditions are the blending ratio of raw material powder, kneading time, steam treatment temperature, and steam treatment time. Note that it is desirable to use normal pressure steam as the steam. The main component of the hydrated hardened product produced by steam treatment is ettringite (3CaO・Al 2 O 3
3CaSO 4 32H 2 O), various forms of calcium silicate hydrate (xCaO ySiO 2 zH 2 O),
Etrin guides contribute most to early strength development. For this reason, the appropriate mixing ratio of the raw material powder is the one most favorable for the production of ettringite, and the amount of slaked lime added is 5 to 40% by weight, preferably 15 to 30% by weight, and the addition of dihydrate gypsum, etc. The amount is limited to 4-40% by weight, preferably 5-20% by weight. Furthermore, the steam treatment conditions are mainly determined by treatment temperature and treatment time. Generally, when the steam treatment temperature is low and the steam treatment time is short, the reaction progresses slowly, and the hydrated hardened product becomes calcium monosulfo aluminate hydrate (3CaO・Al 2 O 3・CaSO 4
12H 2 O), dihydrate gypsum, and ettringite, and has low strength. As the reaction progresses, the amount of ettringite produced increases and its strength also increases. The particle size distribution of coal ash also has a large effect on the properties of the hydrated hardened material. Generally, as the particle size of coal ash becomes smaller, that is, as the specific surface area becomes larger, the hydrated hardened material tends to exhibit a predetermined strength with a shorter curing time. This is because the formation reaction of ettringite is a through solution reaction, and the dissolution rate of alumina (Al 2 O 3 ) contained in coal ash is significantly lower than that of slaked lime and dihydrate gypsum. This is because it can be estimated that the production rate of ettringite depends on the dissolution rate of alumina. in this way,
The properties of the hydrated hardened product are determined by the components and composition of the coal ash,
It is greatly affected by manufacturing conditions such as the amount of other raw material powders added, the amount of water mixed, the kneading method and kneading time, and the steam treatment temperature and treatment time, and each manufacturing condition should be adjusted appropriately according to the required characteristics of the hydrated hardened product. It is necessary to select the The purpose of the present invention is to improve the bending strength of the hydrated product after steam treatment by adding a small amount of sulfuric acid during kneading of mixed powder and water, and the amount of sulfuric acid added is The amount is preferably 0.1 to 2 parts by weight per 100 parts by weight of the raw material mixed powder. Note that sulfuric acid may be dissolved in water in advance or may be added when kneading the mixed powder and water, but it is preferable to carry out the kneading at the same time.In the present invention, the amount of water mixed is ~60% by weight, but if the amount of mixed water is reduced, the strength will increase, but the moldability will deteriorate, and if the amount of mixed water is less than about 10% by weight, molding will not be possible. In addition, when the amount of mixed water is increased, the fluidity increases and it becomes difficult to solidify, and the amount of mixed water is about 60% by weight as the limit. Therefore, in the present invention, the desirable amount of water to be mixed is 30 to 50% by weight. Next, Examples and Comparative Examples will be described.
The raw material coal ash in the examples and comparative examples is commercially available fly ash, and its composition and properties were
Shown in the table.

【表】 石炭灰および水和硬化体の試験方法を次に示
す。ブレーン比表面積測定は、島津製作所の粉体
比表面積測定器SS―100形を使用し、空気透過法
によつた。曲げ強度試験は試験片として20×20×
80(mm)のものを使用し、圧縮強度試験は試験片
として20×20×20(mm)のものを使用し、試験装
置としてインストロン社製の万能試験機を使用し
た。試験方法は定たわみ法によつた。実施例およ
び比較例においては、常温養生は直射日光をうけ
ない室内にて実施した。実施例および比較例の詳
細を第2表に示す。 実施例 1 石炭灰81.5部、消石灰12.5部、2水石こう6
部、硫酸0.5部、水35部を混練してスラリーとし、
このスラリーを型枠中に注入して成形体を得た。
この成形体を95℃の水蒸気で15時間処理して水和
硬化体を得た。水和硬化体の特性は第2表のごと
くであつた。 実施例 2 石炭灰81.5部、消石灰12.5部、2水石こう6
部、硫酸1.0部、水35部を混練してスラリーとし、
このスラリーを型枠中に注入して成形体を得た。
この成形体を95℃の水蒸気で15時間処理して水和
硬化体を得た。水和硬化体の特性は第2表のごと
くであつた。 比較例 1 石炭灰82.5部、消石灰12.5部、2水石こう6
部、水35部を混練してスラリーとし、このスラリ
ーを型枠中に注入して成形体を得た。この成形体
を95℃の水蒸気で15時間処理して水和硬化体を得
た。水和硬化体の特性は第2表のごとくであつ
た。 比較例 2 石炭灰77.5部、消石灰12.5部、2水石こう10
部、水35部を混練してスラリーとし、このスラリ
ーを型枠中に注入して成形体を得た。この成形体
を95℃の水蒸気で15時間処理して水和硬化体を得
た。水和硬化体の特性は第2表のごとくであつ
た。 比較例 3 石炭灰81.5部、消石灰12.5部、2水石こう6
部、硫酸2.5部、水35部を混練してスラリーとし、
このスラリーを型枠中に注入して成形体を得た。
この成形体を95℃の水蒸気で15時間処理して水和
硬化体を得た。水和硬化体の特性は第2表のごと
くであつた。
[Table] The test methods for coal ash and hydrated hardened bodies are shown below. The Blaine specific surface area was measured using a powder specific surface area measuring instrument SS-100 manufactured by Shimadzu Corporation, using the air permeation method. The bending strength test uses 20×20× as a test piece.
80 (mm) was used, and for the compressive strength test, a 20 x 20 x 20 (mm) test piece was used as the test piece, and a universal testing machine manufactured by Instron was used as the testing device. The test method was based on the constant deflection method. In Examples and Comparative Examples, room temperature curing was carried out indoors without direct sunlight. Details of Examples and Comparative Examples are shown in Table 2. Example 1 81.5 parts of coal ash, 12.5 parts of slaked lime, 6 parts of dihydrate gypsum
1 part, 0.5 parts of sulfuric acid, and 35 parts of water to make a slurry.
This slurry was injected into a mold to obtain a molded body.
This molded body was treated with steam at 95° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Example 2 81.5 parts of coal ash, 12.5 parts of slaked lime, 6 parts of dihydrate gypsum
1 part, 1.0 part of sulfuric acid, and 35 parts of water to make a slurry.
This slurry was injected into a mold to obtain a molded body.
This molded body was treated with steam at 95° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Comparative example 1 82.5 parts of coal ash, 12.5 parts of slaked lime, 6 parts of dihydrate gypsum
1 part and 35 parts of water were kneaded to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was treated with steam at 95° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Comparative example 2 77.5 parts of coal ash, 12.5 parts of slaked lime, 10 parts of dihydrate gypsum
1 part and 35 parts of water were kneaded to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was treated with steam at 95° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Comparative example 3 81.5 parts of coal ash, 12.5 parts of slaked lime, 6 parts of dihydrate gypsum
1 part, 2.5 parts of sulfuric acid, and 35 parts of water to make a slurry.
This slurry was injected into a mold to obtain a molded body.
This molded body was treated with steam at 95° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2.

【表】 第2表より原料粉体と水との混練時に硫酸を添
加した後に水蒸気処理を施すことによつて、曲げ
強度の大きい水和硬化体を製造し得ることがわか
る。 以上説明したように、本発明によれば石炭燃焼
時の排出物である石炭灰、安価な原料である消石
灰または/および生石灰、2水石こう、半水石こ
うまたは/および型無水石こうを使用し、水に
て混練した後に水蒸気処理を施すことによつて曲
げ強度の大きい水和硬化体を容易にかつ安価に製
造することが可能であり、本発明は石炭灰を有効
に活用し土木・建築の分野における埋立、土地造
成、道路建設等のための土盤材などの製造に寄与
する技術として有益である。
Table 2 shows that by adding sulfuric acid during kneading of the raw material powder and water and then subjecting it to steam treatment, a hydrated hardened product with high bending strength can be produced. As explained above, according to the present invention, coal ash, which is an exhaust product during coal combustion, slaked lime and/or quicklime, which is an inexpensive raw material, dihydrate gypsum, hemihydrate gypsum, and/or type anhydrous gypsum are used, By kneading with water and then steaming, it is possible to easily and inexpensively produce a hydrated material with high bending strength. It is useful as a technology that contributes to the production of soil materials for land reclamation, land reclamation, road construction, etc. in the field.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭燃焼時に排出される石炭灰50〜90重量
%、消石灰または/および生石灰5〜40重量%、
2水石こう、半水石こうまたは/および型無水
石こう4〜40重量%からなる混合粉体に10〜60重
量%の混水量の水を添加して硬化体を製造する際
に、混合粉体100重量部に対して0.1〜2重量部の
硫酸を予め水に加えて混合粉体と混練するか、混
合粉体に水を添加する際に加えて混練した後、こ
の混練物を型枠または成形容器などを用いて成形
し、ついでこの成形体を80〜100℃の水蒸気で処
理することを特徴とする石炭灰を主原料とする硬
化体の製造方法。
1 50-90% by weight of coal ash discharged during coal combustion, 5-40% by weight of slaked lime or/and quicklime,
When manufacturing a hardened body by adding water in an amount of 10 to 60% by weight to a mixed powder consisting of 4 to 40% by weight of dihydrate gypsum, hemihydrate gypsum or/and type anhydrous gypsum, 100% of the mixed powder Either 0.1 to 2 parts by weight of sulfuric acid is added to water in advance and kneaded with the mixed powder, or it is added when water is added to the mixed powder and kneaded, and then the kneaded product is molded into a mold or molded. A method for producing a hardened body using coal ash as a main raw material, which comprises forming the body using a container or the like, and then treating the formed body with steam at 80 to 100°C.
JP17684182A 1982-10-06 1982-10-06 Manufacture of hardened body from coal ash Granted JPS5969464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17684182A JPS5969464A (en) 1982-10-06 1982-10-06 Manufacture of hardened body from coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17684182A JPS5969464A (en) 1982-10-06 1982-10-06 Manufacture of hardened body from coal ash

Publications (2)

Publication Number Publication Date
JPS5969464A JPS5969464A (en) 1984-04-19
JPS6324941B2 true JPS6324941B2 (en) 1988-05-23

Family

ID=16020765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17684182A Granted JPS5969464A (en) 1982-10-06 1982-10-06 Manufacture of hardened body from coal ash

Country Status (1)

Country Link
JP (1) JPS5969464A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118219A (en) * 1991-03-21 1992-06-02 Chemstar Lime Company Method of capping tailings ponds
JP5765527B2 (en) * 2011-03-24 2015-08-19 東京電力株式会社 Method for producing solidified body for water retention roadbed material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143436A (en) * 1978-04-28 1979-11-08 Matsushita Electric Works Ltd Production of inorganic cured body
JPS56149763A (en) * 1980-03-28 1981-11-19 Philips Nv Low pressure mercury vapor discharge lamp
JPS56149365A (en) * 1980-04-21 1981-11-19 Kawasaki Heavy Ind Ltd Manufacture of hardened body chiefly based on coal ash

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143436A (en) * 1978-04-28 1979-11-08 Matsushita Electric Works Ltd Production of inorganic cured body
JPS56149763A (en) * 1980-03-28 1981-11-19 Philips Nv Low pressure mercury vapor discharge lamp
JPS56149365A (en) * 1980-04-21 1981-11-19 Kawasaki Heavy Ind Ltd Manufacture of hardened body chiefly based on coal ash

Also Published As

Publication number Publication date
JPS5969464A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
KR101289825B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
CN109896770A (en) A kind of concrete intensifier
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
KR100580583B1 (en) Concrete products with high-strength using reclaimed coal ash and waste stone powder as fine aggregates and its manufacturing method
JPS6324941B2 (en)
KR20040020494A (en) Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
JPS641416B2 (en)
JPH0244781B2 (en)
JPS6125673B2 (en)
JPS6256097B2 (en)
JPS6339538B2 (en)
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
JPS5953229B2 (en) Method for producing hardened material using coal ash as main raw material
JPS641417B2 (en)
JPS641419B2 (en)
KR101380327B1 (en) Solidified agent composition
JPS641418B2 (en)
JPH0629159B2 (en) Method for producing a cured body using fluidized bed combustion ash as a raw material
JPS5953230B2 (en) Method for producing hardened material using coal ash as main raw material
JPS5969465A (en) Manufacture of hardened body from coal ash
JPS641423B2 (en)
JPS5953227B2 (en) Method for producing hardened material using coal ash as main raw material
JPS594395B2 (en) Method for producing hardened material using coal ash as main raw material
KR890001995B1 (en) Methods for producing the construction materials using abriquct ash
JPH0138069B2 (en)