JPS6256097B2 - - Google Patents
Info
- Publication number
- JPS6256097B2 JPS6256097B2 JP57176838A JP17683882A JPS6256097B2 JP S6256097 B2 JPS6256097 B2 JP S6256097B2 JP 57176838 A JP57176838 A JP 57176838A JP 17683882 A JP17683882 A JP 17683882A JP S6256097 B2 JPS6256097 B2 JP S6256097B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- coal ash
- coal
- raw material
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010883 coal ash Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 18
- 239000003245 coal Substances 0.000 claims description 17
- 229910052602 gypsum Inorganic materials 0.000 claims description 13
- 239000010440 gypsum Substances 0.000 claims description 13
- 238000004898 kneading Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 12
- 150000004683 dihydrates Chemical class 0.000 claims description 12
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 6
- 235000012255 calcium oxide Nutrition 0.000 claims description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 5
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 11
- 239000000920 calcium hydroxide Substances 0.000 description 11
- 235000011116 calcium hydroxide Nutrition 0.000 description 11
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910001653 ettringite Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000010881 fly ash Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、石炭燃焼時に排出される石炭灰を主
原料として硬化体を製造する方法、詳しくは石炭
灰に消石灰または/および生石灰、ならびに2水
石こう、半水石こうまたは/および型無水石こ
うを添加してなる混合粉体を水とともに混練し、
常温養生によつて機械的強度の大きい水和硬化体
を製造する方法に関するものである。
近年我国においては、石油依存度を小さくする
ための石油代替エネルギーの開発が国家的な課題
であり、なかでも石炭エネルギーが一つの柱とし
て注目されている。一次エネルギー源としての石
炭の大量消費に対処するための石炭利用技術の実
用化における課題の一つに、石炭燃焼時に発生す
る多量の石炭灰の処理が挙げられる。
石炭燃焼時には通常、石炭使用量のほぼ10〜20
重量%の石炭灰が発生する。通常の微粉炭燃焼ボ
イラより発生するいわゆる微粉炭燃焼灰は、その
発生場所によつてボトムアツシユ、シンダアツシ
ユおよびフライアツシユに区分され、そのうちフ
ライアツシユが発生量の大部分を占める。従来我
国においては、フライアツシユの一部はセメント
混和材、セメント原料などに再利用されており、
残りは埋立地などにて処分されている。
しかしながら、現在の方式による再利用だけで
は、将来発生するであろう膨大な石炭灰量に対応
し得るだけの需要量は期待できず、一方、現行の
石炭灰の埋立地などへの処分については、環境規
制の強化に伴い石炭灰処分用地の確保が難しくな
りつつあり、本格的な石炭火力発電所の稼動の際
には、現状の石炭灰の処分方式および有効利用方
式によつて発生する全ての石炭灰を処理すること
は難しくなる見通しである。また石炭灰の大量処
理技術の検討に際しては、環境汚染がなくかつで
きるだけ再利用を志向することが必要である。こ
れは国産資源に乏しく国土が狭隘な我国において
は、単なる投棄処分ではなく石炭灰を資源として
再利用を図ることが重要となるためである。
本発明は上記の諸点に鑑み、石炭灰を海面埋立
および土地造成のための土盤材、軟弱地盤を対象
とする土盤改良材、ならびに道路建設用路盤材な
どの土木部門に大量に活用すべく、石炭灰を原料
として圧縮強度の大きい土盤状硬化体を製造する
ことを目的としてなされたもので、石炭灰50〜94
重量%、望ましくは60〜80重量%、消石灰また
は/および生石灰(以下、消石灰などと略す)5
〜40重量%、望ましくは15〜30重量%、2水石こ
う、半水石こうまたは/および型無水石こう
(以下、2水石こうなどと略す)1〜40重量%、
望ましくは5〜20重量%からなる混合粉体を原料
とし硬化体を製造する際に、10〜60重量%の混水
量(粉体100重量%に対して添加する水の重量
%)の水にて該原料粉体を混練した後に、この混
練物を型枠または成形容器を用いて所定の形状の
もとで常温養生を施すことにより、またはこの混
練物を直接、施工対象箇所に投入し不定形の状態
にて常温養生を施すことにより、圧縮強度の大き
い土盤状硬化体を製造する方法を提供するもので
ある。
以下、本発明の構成を詳細に説明する。一般
に、石炭灰の代表的性状である成分、組成および
粒度分布は石炭の産地および燃焼時の履歴に大き
く依存する。まず第一に、石炭の産出地によつて
SiO2、Al2O3、CaO、Fe2O3、Na2O、K2Oなどの
成分の配合割合が異なり、第2に我国にて現在発
生する石炭灰は微粉炭燃焼灰が主であり、発生場
所および採取方式によつてそれぞれ粒度分布が異
なる。このため、石炭灰の主原料とし常温養生に
よつて圧縮強度の大きい水和硬化体を製造する際
には、石炭灰の組成および粒度分布によつて水和
硬化体の適正製造条件は微妙に異なる。製造条件
として寄与率が大きい要因は、原料粉体の配合割
合、混練時間および混練温度、常温養生時間であ
る。
常温養生によつて生成する水和硬化体の主成分
は、エトリンガイト(3CaO・Al2O3・3CaSO4・
32H2O)、種々の形態のケイ酸カルシウム水和物
(xCaO・ySiO2・zH2O)であるが、早期の強度
発現に最も寄与するのはエトリンガイトである。
このため、原料粉体の配合割合は、エトリンガイ
トの生成に最も好都合なものが適切であり、消石
灰などの添加量は5〜40重量%、望ましくは15〜
30重量%、2水石こうなどの添加量は1〜40重量
%、望ましくは5〜20重量%に限定される。また
常温養生は主として処理時間が主な要因である。
常温養生では、エトリンガイドが生成し通常の土
木工事に充分耐えうるための数Kg/cm2以上の圧縮
強度を呈するには通常2、3日〜1週間を要す
る。
石炭灰の粒度分布も水和硬化体の性状に大きな
影響をおよぼす。一般に石炭灰の粒度が小さくな
るにしたがつて、すなわち比表面積が大きくなる
にしたがつて短かい養生時間で水和硬化体は所定
の強度を呈する傾向にある。これはエトリンガイ
トの生成反応はスルーソルーシヨンリアクシヨン
(through solution reaction)であり、また石炭
灰中に含有されるアルミナ(Al2O3)の溶解速度
が消石灰、2水石こうに較べて著しく小さく、エ
トリンガイトの生成速度はアルミナの溶解速度に
依存すると推定できるためである。このように、
水和硬化体の性状は、石炭灰の成分および組成、
他の原料粉体の添加量、混水量、混練方式および
混練時間ならびに常温養生期間などの製造条件に
よつて大きく影響され、水和硬化体の要求特性に
あわせて各製造条件を適切に選定することが必要
である。
本発明は、各原料粉体の適切なる配合割合から
なる混合粉体と水とを同時に混練することによ
り、初期強度の大きい水和硬化体を簡素な混練工
程にてかつ短かい混練時間のもとで常温養生を施
すことによつて製造することを目的としたもので
ある。
本発明において、混水量を10〜60重量%として
いるが、混水量を少なくすると強度が高くなるが
成形性が悪くなり、混水量が10重量%程度以下で
は成形できなくなる。また混水量を多くすると流
動性が大きくなつて固化し難くなり、混水量60重
量%程度が限度である。したがつて本発明におい
て、望ましい混水量は30〜50重量%である。
つぎに実施例および比較例について説明する。
実施例および比較例における原料石炭灰は市販フ
ライアツシユであり、組成および性状を第1表に
示す。
The present invention relates to a method for producing a hardened body using coal ash discharged during coal combustion as a main raw material, specifically, to coal ash, slaked lime or/and quicklime, and dihydrate gypsum, hemihydrate gypsum or/and type anhydrous gypsum are added. Knead the mixed powder with water,
The present invention relates to a method for producing a hydrated material with high mechanical strength by curing at room temperature. In recent years, the development of alternative energy sources for oil in order to reduce our dependence on oil has become a national issue in our country, and coal energy is attracting attention as one of the pillars of energy. One of the challenges in the practical application of coal utilization technology to cope with the large consumption of coal as a primary energy source is the disposal of large amounts of coal ash generated during coal combustion. When burning coal, usually almost 10 to 20 of the coal usage
% coal ash is generated. The so-called pulverized coal combustion ash generated from a typical pulverized coal combustion boiler is classified into bottom ash, cinder ash, and fly ash, depending on where it is generated, and of these, fly ash accounts for the majority of the amount generated. Traditionally in Japan, a portion of fly ash has been reused as cement admixtures, cement raw materials, etc.
The rest is disposed of in landfills. However, it is not possible to expect enough demand to meet the huge amount of coal ash that will be generated in the future through current recycling methods alone. With the tightening of environmental regulations, it is becoming increasingly difficult to secure land for coal ash disposal. It is expected that it will be difficult to dispose of this amount of coal ash. Furthermore, when considering mass processing technology for coal ash, it is necessary to aim for reuse as much as possible without causing environmental pollution. This is because in a country with limited domestic resources and limited land, it is important to reuse coal ash as a resource rather than simply dumping it. In view of the above points, the present invention utilizes coal ash in large quantities in the civil engineering sector, such as as a soil material for sea surface reclamation and land reclamation, as a soil improvement material for soft ground, and as a road base material for road construction. It was developed for the purpose of producing a hardened clay body with high compressive strength using coal ash as a raw material.
Weight%, preferably 60 to 80% by weight, slaked lime or/and quicklime (hereinafter abbreviated as slaked lime etc.) 5
~40% by weight, preferably 15-30% by weight, 1-40% by weight of dihydrate gypsum, hemihydrate gypsum or/and type anhydrous gypsum (hereinafter abbreviated as dihydrate gypsum etc.),
Preferably, when producing a cured product using a mixed powder containing 5 to 20% by weight as a raw material, it is preferable to add 10 to 60% by weight of water (weight% of water added to 100% by weight of powder). After kneading the raw material powder, the kneaded product is cured at room temperature in a predetermined shape using a mold or a molding container, or this kneaded product is directly poured into the area to be constructed. The present invention provides a method for manufacturing a hardened soil body with high compressive strength by curing at room temperature in a fixed shape. Hereinafter, the configuration of the present invention will be explained in detail. In general, the typical properties of coal ash, such as components, composition, and particle size distribution, greatly depend on the coal's production area and combustion history. First of all, it depends on where the coal comes from.
The proportions of ingredients such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O are different, and secondly, the coal ash currently generated in Japan is mainly pulverized coal combustion ash. Yes, the particle size distribution varies depending on the location and collection method. Therefore, when producing a hydrated hardened material with high compressive strength using coal ash as the main raw material and curing at room temperature, the appropriate manufacturing conditions for the hydrated hardened material may vary depending on the composition and particle size distribution of the coal ash. different. Factors that have a large contribution rate as manufacturing conditions are the mixing ratio of raw material powder, kneading time and kneading temperature, and room temperature curing time. The main component of the hydrated hardened material produced by curing at room temperature is ettringite (3CaO・Al2O3・3CaSO4・
32H 2 O) and various forms of calcium silicate hydrate (xCaO・ySiO 2・zH 2 O), but the one that contributes most to early strength development is ettringite.
For this reason, the appropriate mixing ratio of the raw material powder is the one most favorable for the production of ettringite, and the amount of slaked lime etc. to be added is 5 to 40% by weight, preferably 15 to 40% by weight.
30% by weight, and the amount of dihydrate gypsum added is limited to 1 to 40% by weight, preferably 5 to 20% by weight. Furthermore, the main factor in curing at room temperature is the processing time.
When cured at room temperature, it usually takes a few days to a week for Etrin guide to form and exhibit a compressive strength of several kg/cm 2 or more, which is sufficient to withstand normal civil engineering work. The particle size distribution of coal ash also has a large effect on the properties of the hydrated hardened material. Generally, as the particle size of coal ash becomes smaller, that is, as the specific surface area becomes larger, the hydrated hardened material tends to exhibit a predetermined strength with a shorter curing time. This is because the formation reaction of ettringite is a through solution reaction, and the dissolution rate of alumina (Al 2 O 3 ) contained in coal ash is significantly lower than that of slaked lime and dihydrate gypsum. This is because it can be estimated that the production rate of ettringite depends on the dissolution rate of alumina. in this way,
The properties of the hydrated hardened product are determined by the components and composition of the coal ash,
It is greatly influenced by manufacturing conditions such as the amount of other raw material powders added, amount of water mixed, kneading method and kneading time, and room temperature curing period, and each manufacturing condition must be appropriately selected according to the required characteristics of the hydrated material. It is necessary. The present invention is capable of producing a hydrated material with high initial strength in a simple kneading process and in a short kneading time by simultaneously kneading a mixed powder consisting of an appropriate blending ratio of each raw material powder and water. It is intended to be manufactured by curing at room temperature. In the present invention, the amount of mixed water is 10 to 60% by weight, but if the amount of mixed water is reduced, the strength will increase, but the moldability will deteriorate, and if the amount of mixed water is less than about 10% by weight, molding will not be possible. In addition, when the amount of mixed water is increased, the fluidity increases and it becomes difficult to solidify, and the amount of mixed water is about 60% by weight as the limit. Therefore, in the present invention, the desirable amount of water to be mixed is 30 to 50% by weight. Next, Examples and Comparative Examples will be described.
The raw material coal ash in Examples and Comparative Examples is commercially available fly ash, and the composition and properties are shown in Table 1.
【表】
石炭灰および水和硬化体の試験方法を次に示
す。プレーン比表面積測定は、島津製作所製の粉
体比表面積測定器SS−100形を使用し、空気透過
法によつた。曲げ強度試験は試験片として20×20
×80(mm)のものを使用し、圧縮強度試験は試験
片として20×20×20(mm)のものを使用し、試験
装置としてインストロン社製の万能試験機を使用
した。試験方法は定たわみ法によつた。実施例お
よび比較例において、常温養生は直射日光をうけ
ない室内にて実施した。実施例および比較例の詳
細を第2表に示す。
実施例 1
石炭灰88部、消石灰10部、2水石こう2部、水
40部を同時に混練してスラリとし、このスラリー
を室内で7日間常温養生して水和硬化体を得た。
水和硬化体の特性は第2表のごとくであつた。
実施例 2
石炭灰85部、消石灰10部、2水石こう5部、水
40部を同時に混練してスラリーとし、このスラリ
ーを室内で7日間常温養生して水和硬化体を得
た。水和硬化体の特性は第2表のごとくであつ
た。
実施例 3
石炭灰90部、消石灰5部、2水石こう5部、水
40部を同時に混練してスラリーとし、このスラリ
ーを室内で7日間常温養生して水和硬化体を得
た。水和硬化体の特性は第2表のごとくであつ
た。
実施例 4
石炭灰80部、消石灰15部、2水石こう5部、水
40部を同時に混練してスラリーとし、このスラリ
ーを室内で7日間常温養生して水和硬化体を得
た。水和硬化体の特性は第2表のごとくであつ
た。
比較例 1
石炭灰90部、消石灰10部、水40部を同時に混練
してスラリーとし、このスラリーを室内で7日間
常温養生して水和硬化体を得た。水和硬化体の特
性は第2表のごとくであつた。
比較例 2
石炭灰95部、2水石こう5部、水40部を同時に
混練してスラリーとし、このスラリーを室内で7
日間常温養生して水和硬化体を得た。水和硬化体
の特性は第2表のごとくであつた。[Table] The test methods for coal ash and hydrated hardened bodies are shown below. The plain specific surface area measurement was performed using a powder specific surface area measuring instrument SS-100 manufactured by Shimadzu Corporation and by an air permeation method. Bending strength test uses 20×20 as a test piece
For the compressive strength test, a 20 x 20 x 20 (mm) test piece was used as the test piece, and a universal testing machine manufactured by Instron was used as the testing device. The test method was based on the constant deflection method. In Examples and Comparative Examples, curing at room temperature was carried out indoors without direct sunlight. Details of Examples and Comparative Examples are shown in Table 2. Example 1 88 parts of coal ash, 10 parts of slaked lime, 2 parts of dihydrate gypsum, water
40 parts were simultaneously kneaded to form a slurry, and this slurry was cured at room temperature for 7 days to obtain a hydrated hardened product.
The properties of the hydrated and cured product were as shown in Table 2. Example 2 85 parts of coal ash, 10 parts of slaked lime, 5 parts of dihydrate gypsum, water
40 parts were simultaneously kneaded to form a slurry, and this slurry was cured indoors at room temperature for 7 days to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Example 3 90 parts of coal ash, 5 parts of slaked lime, 5 parts of dihydrate gypsum, water
40 parts were simultaneously kneaded to form a slurry, and this slurry was cured indoors at room temperature for 7 days to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Example 4 80 parts of coal ash, 15 parts of slaked lime, 5 parts of dihydrate gypsum, water
40 parts were simultaneously kneaded to form a slurry, and this slurry was cured indoors at room temperature for 7 days to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 1 90 parts of coal ash, 10 parts of slaked lime, and 40 parts of water were simultaneously kneaded to form a slurry, and this slurry was cured at room temperature for 7 days to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 2 95 parts of coal ash, 5 parts of dihydric gypsum, and 40 parts of water were simultaneously kneaded to form a slurry, and this slurry was heated indoors for 7
A hydrated and cured product was obtained by curing at room temperature for several days. The properties of the hydrated and cured product were as shown in Table 2.
【表】【table】
【表】
第2表により原料粉体と水とを同時に混練した
後に常温養生を施すことによつて初期強度の大き
い水和硬化体を製造し得ることがわかる。
以上説明したように、本発明によれば石炭燃焼
時の排出物である石炭灰、安価な原料である消石
灰または/および生石灰、2水石こう、半水石こ
うまたは/および型無水石こうを使用し、水に
て混練した後に常温養生を施すことによつて圧縮
強度の大きい水和硬化体を容易にかつ安価に製造
することが可能であり、本発明は石炭灰を有効に
活用し土木・建築の分野における埋立、土地造
成、道路建設等のための土盤材などの製造に寄与
する技術として有益である。また本発明の方法
は、原料粉体と水とを同時に混練するので、工程
がきわめて単純化されかつ混練時間が短縮され、
水和硬化体をより低コストで製造することができ
るという効果を有している。[Table] Table 2 shows that a hydrated hardened product with high initial strength can be produced by simultaneously kneading raw material powder and water and then curing at room temperature. As explained above, according to the present invention, coal ash, which is an exhaust product during coal combustion, slaked lime and/or quicklime, which is an inexpensive raw material, dihydrate gypsum, hemihydrate gypsum, and/or type anhydrous gypsum are used, By kneading in water and then curing at room temperature, it is possible to easily and inexpensively produce a hydrated material with high compressive strength. It is useful as a technology that contributes to the production of soil materials for land reclamation, land reclamation, road construction, etc. in the field. Furthermore, since the method of the present invention kneads the raw material powder and water at the same time, the process is extremely simplified and the kneading time is shortened.
This has the effect that a hydrated and cured product can be produced at a lower cost.
Claims (1)
%、消石炭または/および生石灰5〜40重量%、
2水石こう、半水石こうまたは/および型無水
石こう1〜40重量%からなる混合粉体を原料とし
て硬化体を製造する際に、該混合粉体に10〜60重
量%の混水量の水を添加して充分に混練し、この
混練物を型枠または成形容器などを用いて成形し
た後、常温にて養生することを特徴とする石炭灰
を主原料とする硬化体の製造方法。 2 石炭燃焼時に排出される石炭灰50〜94重量
%、消石炭または/および生石灰5〜40重量%、
2水石こう、半水石こうまたは/および型無水
石こう1〜40重量%からなる混合粉体を原料とし
て硬化体を製造する際に、該混合粉体に10〜60重
量%の混水量の水を添加して充分に混練し、この
混練物を特定の形状に成形することなく、常温に
て養生することを特徴とする石炭灰を主原料とす
る硬化体の製造方法。[Claims] 1. 50-94% by weight of coal ash discharged during coal combustion, 5-40% by weight of slaked coal or/and quicklime,
When producing a hardened body using a mixed powder of 1 to 40% by weight of dihydrate gypsum, hemihydrate gypsum, or/and type anhydrous gypsum as a raw material, 10 to 60% by weight of water is added to the mixed powder. A method for producing a hardened product using coal ash as a main raw material, which comprises adding coal ash and sufficiently kneading it, molding the kneaded product using a mold or a molding container, and then curing it at room temperature. 2 50-94% by weight of coal ash discharged during coal combustion, 5-40% by weight of slaked coal or/and quicklime,
When producing a hardened body using a mixed powder of 1 to 40% by weight of dihydrate gypsum, hemihydrate gypsum, or/and type anhydrous gypsum as a raw material, 10 to 60% by weight of water is added to the mixed powder. A method for producing a hardened product using coal ash as a main raw material, which comprises adding coal ash, sufficiently kneading it, and curing the kneaded product at room temperature without molding the kneaded product into a specific shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17683882A JPS5969453A (en) | 1982-10-06 | 1982-10-06 | Manufacture of hardened body from coal ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17683882A JPS5969453A (en) | 1982-10-06 | 1982-10-06 | Manufacture of hardened body from coal ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5969453A JPS5969453A (en) | 1984-04-19 |
JPS6256097B2 true JPS6256097B2 (en) | 1987-11-24 |
Family
ID=16020712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17683882A Granted JPS5969453A (en) | 1982-10-06 | 1982-10-06 | Manufacture of hardened body from coal ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5969453A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270449A (en) * | 1986-05-15 | 1987-11-24 | 大有建設株式会社 | Manufacture of hardened body with hydrous substance |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1033984A (en) * | 1910-09-14 | 1912-07-30 | Louis M Schmidt | Method of manufacture of hydraulic cement. |
US1834799A (en) * | 1922-05-18 | 1931-12-01 | Nickel Oscar | Process for the manufacture of cement |
JPS4893620A (en) * | 1972-02-15 | 1973-12-04 | ||
JPS5710057A (en) * | 1980-06-20 | 1982-01-19 | Hiroyuki Morita | Hot house |
-
1982
- 1982-10-06 JP JP17683882A patent/JPS5969453A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1033984A (en) * | 1910-09-14 | 1912-07-30 | Louis M Schmidt | Method of manufacture of hydraulic cement. |
US1834799A (en) * | 1922-05-18 | 1931-12-01 | Nickel Oscar | Process for the manufacture of cement |
JPS4893620A (en) * | 1972-02-15 | 1973-12-04 | ||
JPS5710057A (en) * | 1980-06-20 | 1982-01-19 | Hiroyuki Morita | Hot house |
Also Published As
Publication number | Publication date |
---|---|
JPS5969453A (en) | 1984-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101291888B (en) | Cement additive and cement composition | |
JP6292257B2 (en) | Hydrated solidified product using desulfurized slag | |
JPS6256097B2 (en) | ||
KR100580583B1 (en) | Concrete products with high-strength using reclaimed coal ash and waste stone powder as fine aggregates and its manufacturing method | |
JP3761938B2 (en) | Cavity filling material | |
JPH0244781B2 (en) | ||
JPS6339538B2 (en) | ||
JPS6324941B2 (en) | ||
JPS6125673B2 (en) | ||
JPS641416B2 (en) | ||
JPS5953229B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPS5924749B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JP2004115291A (en) | Solidified body using coal ash, and method of producing the same | |
JPS5953230B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPS5953227B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPH0629159B2 (en) | Method for producing a cured body using fluidized bed combustion ash as a raw material | |
KR890001995B1 (en) | Methods for producing the construction materials using abriquct ash | |
JPS5969465A (en) | Manufacture of hardened body from coal ash | |
JPS641418B2 (en) | ||
JPS594395B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPS641419B2 (en) | ||
JPS641417B2 (en) | ||
JP2906307B2 (en) | Manufacturing method of air milk using waste fuel incineration ash | |
JPS60221351A (en) | Manufacture of granular hardened body of coal ash as main raw material | |
JPH0338227B2 (en) |