JPS6125673B2 - - Google Patents
Info
- Publication number
- JPS6125673B2 JPS6125673B2 JP55059271A JP5927180A JPS6125673B2 JP S6125673 B2 JPS6125673 B2 JP S6125673B2 JP 55059271 A JP55059271 A JP 55059271A JP 5927180 A JP5927180 A JP 5927180A JP S6125673 B2 JPS6125673 B2 JP S6125673B2
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- weight
- molded
- coal
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010883 coal ash Substances 0.000 claims description 40
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 32
- 239000000292 calcium oxide Substances 0.000 claims description 16
- 235000012255 calcium oxide Nutrition 0.000 claims description 16
- 150000004683 dihydrates Chemical class 0.000 claims description 14
- 229910052602 gypsum Inorganic materials 0.000 claims description 14
- 239000010440 gypsum Substances 0.000 claims description 14
- 239000003245 coal Substances 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 5
- 239000000920 calcium hydroxide Substances 0.000 claims description 5
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 5
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- 238000004898 kneading Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910001653 ettringite Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 239000002956 ash Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012717 electrostatic precipitator Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- -1 calcium monosulfur aluminate Chemical class 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、石炭燃焼時に排出される石炭灰を主
原料として硬化体を製造する方法、詳しくは石炭
灰に生石灰または/および消石灰、ならびに2水
石こう、半水石こうまたは/および型無水石こ
うを添加してなる混合粉体を原料として成形体を
作製し、この成形体を養生した後水蒸気で処理す
ることにより、機械的強度の大きい水和硬化体を
製造する方法に関するものである。
近年我国においては、石油危機以来の国際的な
石油供給不安によつて多大なる石油輸入量の確保
が難しくなり、石油依存度を小さくするための石
油代替エネルギの開発が国家的な課題となつてお
り、石灰が1つの柱として見直されている。石灰
の大量消費に必要な石炭利用技術の実用化には
種々の課題があるが、なかでも石炭燃焼時に発生
する多量の石炭灰の処理が重要な問題としてクロ
ーズアツプされている。
石炭燃焼時には通常、石炭使用量のほぼ10〜20
重量%の石炭灰が発生する。従来我国において
は、石炭灰の約10〜20重量%はフライアツシユと
してセメント混和材、セメント原料などに再利用
されており、残りは埋立地に廃棄されていた。し
かしながら、フライアツシユとして現在の方式に
よりセメント原料に利用する方法に関しては、将
来の石炭灰の大量発生に対応するだけの需要量は
期待できず、また埋立地への廃棄は海面埋立およ
び陸上埋立においても環境保全の立場から、灰捨
地の用地の確保が難しくなりつつある。このため
石炭火力発電所などにおける本格的な石炭利用の
際には、現状の石炭灰の処理方式にて全ての石炭
灰を処理すことはきわめて困難であり、石炭灰の
処理技術および有効利用技術が、石炭エネルギ利
用の規模に大きな影響を及ぼすと考えられる。ま
た石炭灰の大量処理方式の確立には、資源として
の有効再利用が必須である。これは第1に国産資
源に乏しい我国においては、単なる廃棄ではない
再利用が省資源・省エネルギに直接結びつくこ
と、第2の環境破壊がきわめて少ないことに基づ
くものである。
本発明は上記の諸点に鑑み、石炭灰を土木・建
築分野にて資源として大量に活用すでく、石炭灰
を原料として機械的強度の大きいセメント状硬化
体を作製することを目的としてなされたもので、
石炭灰60〜85重量%、生石灰または/および消石
灰(以下、生石灰などと略す)10〜25重量%、2
水石こう、半水石こうまたは/および型無水石
こう(以下、2水石こうなどと略す)8〜25重量
%からなる混合粉体に100重量部に10〜60%、望
ましくは30〜50%の混水量(粉体100重量部に対
して添加する重量部となる水を添加して充分混練
した後、この混練物を型枠または成形容器などの
中に投入して所定の形状に成形し、ついでこの成
形体を相対湿度70〜100%、望ましくは90〜100%
の常温雰囲気中で1〜30日間、望ましくは2〜10
日間養生した後、80〜100℃望ましくは95〜100℃
の比較的低温の常圧水蒸気で処理することによ
り、機械的強度の大きい水和硬化体を製造する方
法を提供するものである。
以下、本発明の構成を詳細に説明する。一般
に、石炭灰の代表的性状である成分、組成および
粒度分布は、石炭の産地および燃焼時の履歴に大
きく依存する。まず第1に、石炭の産出地によつ
てSiO2,Al2O3,CaO,Fe2O3,Na2O,K2Oなど
の成分の配合割合が異なり、第2に我国にて現在
発生する石炭灰は微粉炭燃焼灰が主であり、発生
場所および採取方式によつて電気集じん機
(EP)灰(原粉、細粉、粗粉)、クリンカアツシ
ユ、シンダアツシユと区別されそれぞれ粒度分布
が異なる。このため石炭灰を主原料として水蒸気
処理によつて高強度の水和硬化体を作製する際に
は、主原料である石炭灰の組成および粒度分布に
よつて、水和硬化体の適正製造条件は微妙に異な
る。製造条件として寄与率の大きい要因は、生炭
灰、生石灰など、2水石こうなどの配合割合、水
蒸気処理条兼(温度、時間)および石炭灰の粉砕
条件である。なお水蒸気は、処理装置の強度など
の関係で常圧水蒸気を用いる。また養生は、通常
は常温雰囲気中で行なわれる。
水蒸気処理により生成する水和硬化体の主成分
は、エトリンガイト(3CaO・Al2O3・3CaSO4・
32H2O)、種々の形態のケイ酸カルシウム水和物
(XCaO・YSiO2・ZH2O)であるが、強度メンバ
ーとして最も寄与するものはエトリンガイトであ
る。まず石炭灰、生石灰など、2水石こうなどの
配合割合と水和硬化体の性状との関係は概略つぎ
の通りである。原料混合粉体中の生石灰などおよ
び/または2水石こうなどの添加量が少ない際に
は、カルシウムモノサルフオアルミネート
(3CaO・Al2O3・CaSO4・12H2O)が主成分であ
り、水和硬化体の強度は小さいが、生石灰などお
よび/または2水石こうなどの添加量が多くなる
にしたがつて強度メンバーとなるエトリンガイ量
が多くなり強度が大きくなる。さらに生石灰など
および/または2水石こうなどの添加量が多くな
ると、水蒸気処理時に反応にあずからない消石灰
および/または石こうが生じて水和硬化体の強度
は低下する。したがつて生石灰などの添加量は10
〜25重量%、2水こうなどの添加量は8〜25重量
%に限定される。
なお生石灰などの配合割合が30重量%を越える
と、水蒸気処理に多くの生石灰などが残り、乾燥
雰囲気下では生石灰などが炭酸カルシウムにな
り、その際の反応膨脹によりヘアクラツク(ミク
ロクラツク)が多数発生し、製品性が劣化する。
また水蒸気処理条件は、処理温度および処理時
間が主な要因である。一般に水蒸気処理時間が短
い際には、水和硬化体はカルシウムモノサルフオ
アルミネート水和物、2水石こう、エトリンガイ
トの混合物からなり強度は小さく、水蒸気処理時
間が長くなるにしたがつてエトリンガイトの生成
量が多くなり強度も大きくなる。なお、さらに水
蒸気処理を長時間にわたり実施し、エトリンガイ
トの生成が終結した後も水蒸気処理を施すと、エ
トリンガイトは耐熱性に欠けるため無水石こうと
カルシウムアルミネート水和物に分解し水和硬化
体の強度は低下する。
石炭灰の粒度分布も水和硬化体の性状に大きな
影響を及ぼす。一般に石炭灰の粒度が小さくなる
にしたがつて、すなわち比表面積が大きくなるに
したがつて、短い処理時間で水和硬化体は所定の
強度を呈する傾向にある。これは水蒸気処理によ
るエトリンガイトの生成反応はスルーソルーシヨ
ンリアクシヨン(through solution reaction)で
あり、Al2O3の溶解度か消石灰、2水石こうに較
べて著しく小さく、エトリンガイトの生成速度が
Al2O3の溶解速度に依存するためと推定できる。
前述の如く、水蒸気処理においては原料粉体配
合割合、水蒸気処理条件、石炭灰の粒度分布が主
な要因であるが、石炭灰の性状は産出地および燃
焼条件によつて大幅に異なり、とくに反応性の良
くない石炭灰においては、上記3要因に関する適
正領域の選定だけでは充分な機械的強度を呈し得
ない。このような石炭灰を使用する際には反応度
を上げるための好適な前処理または後処理操作が
必要とする。本発明においては、水蒸気処理の前
処理として予め相対湿度70〜100%の常温雰囲気
中で、1〜30日間養生することによつて、石炭灰
の反応性を向上させ機械的強度の大きい水和硬化
体を製造する。なお最も好適な養生条件は石炭灰
の性状によつて微妙に異なつてくるため、予め適
正領域を求めておくことが望ましい。
このように本発明においては、原料中の石炭灰
配合割合が60〜85重量%と大きいため、石炭灰を
大量に処理することができ、また80〜100℃の比
較的低温の常圧水蒸気養生であるので、オープン
構造が可能(加圧密閉構造不要)で製造設備が簡
素化され、連続養生が可能で石炭灰の大量処理に
適しており、しかも蒸気温度が100℃以下のた
め、廃蒸気などの低温蒸気が使用でき、エネルギ
コストを低減することができる。
つぎに実施例および比較例について説明する。
実施例および比較例における原料石炭灰は市販フ
ライアツシユであり、性状を第1表に示す。
The present invention relates to a method for producing a hardened body using coal ash discharged during coal combustion as a main raw material, specifically, adding quicklime or/and slaked lime, dihydrate gypsum, hemihydrate gypsum, or type anhydrous gypsum to coal ash. The present invention relates to a method for producing a hydration-hardened body with high mechanical strength by producing a molded body using a mixed powder made of the above as a raw material, curing the molded body, and then treating the molded body with steam. In recent years, it has become difficult for our country to secure a large amount of oil imports due to the international oil supply instability that has been occurring since the oil crisis, and the development of oil-alternative energy to reduce our dependence on oil has become a national issue. Lime is now being reconsidered as a pillar. There are various issues to overcome in the practical application of coal utilization technology, which is necessary for mass consumption of lime, and among them, the treatment of large amounts of coal ash generated during coal combustion has been highlighted as an important issue. When burning coal, usually almost 10 to 20 of the coal usage
% coal ash is generated. Previously in Japan, approximately 10 to 20% by weight of coal ash was reused as fly ash for cement admixtures, cement raw materials, etc., and the rest was disposed of in landfills. However, with regard to the current method of using fly ash as a raw material for cement, it is not expected that the demand will be sufficient to meet the large amount of coal ash generated in the future, and disposal in landfills is not possible either in sea-surface or land-based landfills. From the standpoint of environmental conservation, it is becoming difficult to secure land for ash dumping. For this reason, when full-scale coal is used in coal-fired power plants, etc., it is extremely difficult to process all of the coal ash using the current coal ash processing methods. is thought to have a major impact on the scale of coal energy use. In addition, effective reuse as a resource is essential for establishing a mass processing method for coal ash. This is based, firstly, on the fact that in our country, which lacks domestic resources, reuse rather than mere disposal directly leads to resource and energy conservation, and secondly, environmental destruction is extremely low. In view of the above points, the present invention was made with the aim of making use of coal ash in large quantities as a resource in the civil engineering and construction fields, and producing a cement-like hardened body with high mechanical strength using coal ash as a raw material. Something,
Coal ash 60-85% by weight, quicklime or/and slaked lime (hereinafter abbreviated as quicklime etc.) 10-25% by weight, 2
A mixed powder consisting of 8-25% by weight of hydrogypsum, hemihydrate gypsum and/or type anhydrous gypsum (hereinafter abbreviated as dihydrate gypsum etc.) is mixed with 10-60%, preferably 30-50% per 100 parts by weight. After adding the amount of water (parts by weight to be added to 100 parts by weight of the powder) and thoroughly kneading the mixture, put the kneaded product into a mold or molding container to form it into a predetermined shape, and then This molded body is heated at a relative humidity of 70 to 100%, preferably 90 to 100%.
1 to 30 days, preferably 2 to 10 days at room temperature
After curing for days, 80~100℃, preferably 95~100℃
The present invention provides a method for producing a hydrated and cured product with high mechanical strength by treating with relatively low-temperature atmospheric pressure steam. Hereinafter, the configuration of the present invention will be explained in detail. In general, the typical properties of coal ash, such as its components, composition, and particle size distribution, greatly depend on the place of production and combustion history of the coal. Firstly, the proportions of ingredients such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O differ depending on the place where coal is produced, and secondly, Coal ash generated is mainly pulverized coal combustion ash, and is classified into electrostatic precipitator (EP) ash (raw powder, fine powder, coarse powder), clinker ash, and cinder ash depending on the location and collection method. Particle size distribution is different. Therefore, when producing a high-strength hydrated body by steam treatment using coal ash as the main raw material, the appropriate manufacturing conditions for the hydrated body must be determined depending on the composition and particle size distribution of the coal ash, which is the main raw material. is slightly different. Factors that have a large contribution rate as production conditions are the blending ratio of raw coal ash, quicklime, etc., dihydrate gypsum, etc., steam treatment conditions (temperature, time), and coal ash pulverization conditions. Note that atmospheric pressure steam is used as the steam due to the strength of the processing equipment. Further, curing is usually performed in an atmosphere at room temperature. The main component of the hydrated hardened body produced by steam treatment is ettringite (3CaO・Al 2 O 3・3CaSO 4・
32H 2 O) and various forms of calcium silicate hydrate (XCaO・YSiO 2・ZH 2 O), but the one that contributes the most as a strength member is ettringite. First, the relationship between the blending ratio of coal ash, quicklime, dihydrate gypsum, etc. and the properties of the hydrated hardened product is roughly as follows. When the amount of quicklime etc. and/or dihydrate gypsum added in the raw material mixed powder is small, calcium monosulfur aluminate (3CaO・Al 2 O 3・CaSO 4・12H 2 O) is the main component. The strength of the hydrated hardened product is low, but as the amount of quicklime and/or dihydrate gypsum added increases, the amount of ettringai, which is a strength member, increases and the strength increases. Furthermore, when the amount of quicklime and/or dihydrate gypsum added increases, slaked lime and/or gypsum that does not participate in the reaction occurs during steam treatment, resulting in a decrease in the strength of the hydrated hardened product. Therefore, the amount of added quicklime etc. is 10
-25% by weight, and the amount of dihydrate etc. added is limited to 8-25% by weight. If the blending ratio of quicklime etc. exceeds 30% by weight, a lot of quicklime etc. will remain in the steam treatment, and in a dry atmosphere, the quicklime etc. will turn into calcium carbonate, and the reaction expansion will generate many hair cracks (microcracks). , product quality deteriorates. Furthermore, the steam treatment conditions are mainly determined by treatment temperature and treatment time. Generally, when the steam treatment time is short, the hydrated hardened product consists of a mixture of calcium monosulfo aluminate hydrate, dihydrate gypsum, and ettringite, and its strength is low; The amount produced increases and the strength also increases. Furthermore, if the steam treatment is further carried out for a long period of time and the steam treatment is continued even after the formation of ettringite has been completed, ettringite will decompose into anhydrous gypsum and calcium aluminate hydrate due to its lack of heat resistance, resulting in the formation of a hydrated hardened product. Strength decreases. The particle size distribution of coal ash also has a large effect on the properties of the hydrated hardened material. Generally, as the particle size of coal ash becomes smaller, that is, as the specific surface area becomes larger, the hydrated and hardened material tends to exhibit a predetermined strength in a shorter treatment time. This is because the ettringite formation reaction by steam treatment is a through solution reaction, and the solubility of Al 2 O 3 is significantly smaller than that of slaked lime and dihydrate gypsum, and the rate of ettringite formation is
It can be assumed that this is because it depends on the dissolution rate of Al 2 O 3 . As mentioned above, the main factors in steam processing are the blending ratio of raw material powder, steam treatment conditions, and particle size distribution of coal ash, but the properties of coal ash vary greatly depending on the place of production and combustion conditions. Coal ash with poor properties cannot exhibit sufficient mechanical strength simply by selecting an appropriate area regarding the above three factors. The use of such coal ash requires suitable pre- or post-treatment operations to increase the reactivity. In the present invention, coal ash is cured for 1 to 30 days in a normal temperature atmosphere with a relative humidity of 70 to 100% as a pretreatment for steam treatment, thereby improving the reactivity of coal ash and hydrating it with high mechanical strength. Manufacture a cured body. Since the most suitable curing conditions vary slightly depending on the properties of the coal ash, it is desirable to determine the appropriate range in advance. In this way, in the present invention, since the blending ratio of coal ash in the raw material is as high as 60 to 85% by weight, it is possible to process a large amount of coal ash, and it is possible to process coal ash in a relatively low temperature of 80 to 100 degrees Celsius using normal pressure steam curing. This makes it possible to have an open structure (no pressure-sealed structure required), simplifying manufacturing equipment, and allowing continuous curing, making it suitable for large-scale processing of coal ash.Moreover, the steam temperature is below 100°C, so waste steam Low-temperature steam such as can be used, reducing energy costs. Next, Examples and Comparative Examples will be described.
The raw material coal ash in Examples and Comparative Examples is commercially available fly ash, and its properties are shown in Table 1.
【表】
原料石炭灰の化学的成分としては、X線回折分
析によれば大量の石英(α―SiO2)、中量のムラ
イト(3Al2O3・2SiO2)、少量のマグネタイト
(Fe3O4)が認められた。
石炭灰および水和硬化体の試験方法をつぎに示
す。ブレーン比表面積測定は、島津製作所製の粉
体比表面積測定器SS―100形を使用し、空気透過
法によつた。曲げ強度試験は、試験片として20×
20×80(mm)のものを使用し、試験装置として丸
菱科学製作所製のMKS改良型万能強度試験機を
使用した。試験方法は3点曲げ法によつた。圧縮
強度試験は、試験片として20×20×20(mm)のも
のを使用し、試験装置としてインストロン社製の
万能試験機(最大荷重10トン)を使用した。試験
方法は定たわみ速度法によつた。
なお実施例および比較例においては、水蒸気は
常圧水蒸気を使用した。
比較例
石炭灰70部、生石灰20部、2水石こう10部、水
40部を混合してスラリーとし、このスラリーを型
枠中に注入して成形体を得た。この成形体を脱型
して養生することなく密閉容器内に収納し、97℃
の水蒸気15時間接触させて水和硬化体を得た。水
和硬化体の特性は第2表の如くであつた。
実施例 1
石炭灰70部、生石灰20部、2水石こう10部、水
40部を混合してスラリーとし、このスラリーを型
枠中に注入して成形体を得た(以下は比較例と同
じ)。この成形体を脱型として相対湿度95〜100
%、温度21〜23℃の常温雰囲気中で1日間養生し
た後、97℃の水蒸気と15時間接触させて水和硬化
体を得た。水和硬化体の特性は第2表の如くであ
つた。
実施例 2
実施例1において得た成形体を、相対湿度95〜
100%、温度21〜23℃の常温雰囲気中で2日間養
生した後、97℃の水蒸気と15日間接触させて水和
硬化体を得た。水和硬化体の特性は第2表の如く
であつた。
実施例 3
実施例1において得た成形体を、相対湿度95〜
100%、温度21〜23℃の常温雰囲気中で3日間養
生した後、97℃の水蒸気と15時間接触させて水和
硬化体を得た。水和硬化体の特性は第2表の如く
であつた。
実施例 4
実施例1において得た成形体を、相対湿度95〜
100%、温度21〜23℃の常温雰囲気中で7日間養
生した後、97℃の水蒸気と15時間接触させて水和
硬化体を得た。水和硬化体の特性は第2表の如く
であつた。[Table] According to X-ray diffraction analysis, the chemical components of raw coal ash include a large amount of quartz (α-SiO 2 ), a medium amount of mullite (3Al 2 O 3・2SiO 2 ), and a small amount of magnetite (Fe 3 O4 ) was observed. The test methods for coal ash and hydrated hardened bodies are shown below. The Blaine specific surface area was measured using a powder specific surface area measuring device model SS-100 manufactured by Shimadzu Corporation, using the air permeation method. The bending strength test uses 20× as a test piece.
A 20 x 80 (mm) piece was used, and the MKS improved universal strength testing machine manufactured by Marubishi Kagaku Seisakusho was used as the testing device. The test method was a three-point bending method. In the compressive strength test, a 20 x 20 x 20 (mm) test piece was used, and an Instron universal testing machine (maximum load: 10 tons) was used as the test device. The test method was based on the constant deflection rate method. Note that in the Examples and Comparative Examples, atmospheric pressure steam was used as the steam. Comparative example: 70 parts coal ash, 20 parts quicklime, 10 parts dihydrate gypsum, water
40 parts were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was demolded and stored in an airtight container without curing at 97°C.
A hydrated hardened product was obtained by contacting with water vapor for 15 hours. The properties of the hydrated and cured product were as shown in Table 2. Example 1 70 parts of coal ash, 20 parts of quicklime, 10 parts of dihydrate gypsum, water
40 parts were mixed to form a slurry, and this slurry was injected into a mold to obtain a molded article (the following is the same as the comparative example). Relative humidity 95 to 100 when demolding this molded body
%, and after curing for one day in a normal temperature atmosphere at a temperature of 21 to 23°C, a hydrated hardened product was obtained by contacting with steam at 97°C for 15 hours. The properties of the hydrated and cured product were as shown in Table 2. Example 2 The molded product obtained in Example 1 was heated to a relative humidity of 95 to
After curing for 2 days in a normal temperature atmosphere at a temperature of 21 to 23°C, the product was brought into contact with steam at 97°C for 15 days to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Example 3 The molded product obtained in Example 1 was heated to a relative humidity of 95 to
After curing for 3 days in a normal temperature atmosphere at a temperature of 21 to 23°C, the product was brought into contact with steam at 97°C for 15 hours to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2. Example 4 The molded article obtained in Example 1 was heated to a relative humidity of 95 to
After curing for 7 days in a normal temperature atmosphere at a temperature of 21 to 23°C, the product was brought into contact with steam at 97°C for 15 hours to obtain a hydrated hardened product. The properties of the hydrated and cured product were as shown in Table 2.
【表】
以上説明したように、本発明によれば、石炭燃
焼時の排出物である石炭灰に安価な原料である生
石炭または/および消石炭、ならびに2水石こ
う、半水石こうまたは/および型無水石こうを
添加し、水蒸気処理前の成形体に予め養生を施す
ことによつて、高強度の硬化体を容易にかつ安価
に製造することが可能であり、本発明は石炭灰を
有効利用して土木・建築の分野における各種建材
および構造材の製造に寄与する技術としてきわめ
て有益である。[Table] As explained above, according to the present invention, raw coal or/and slaked coal, which is an inexpensive raw material, and dihydrate gypsum, hemihydrate gypsum, or/and By adding molded anhydrous gypsum and pre-curing the molded product before steam treatment, it is possible to easily and inexpensively produce a high-strength hardened product, and the present invention makes effective use of coal ash. It is extremely useful as a technology that contributes to the production of various building materials and structural materials in the fields of civil engineering and architecture.
Claims (1)
%、生石灰または/および消石灰10〜25重量%、
2水石こう、半水石こうまたは/および型無水
石こう8〜25重量%からなる混合粉体100重量部
に、10〜60重量部の水を添加して混練した後、こ
の混練物を型枠または成形容器などを用いて成形
し、ついでこの成形体を相対湿度70〜100%の常
温雰囲気中で1〜30日問養生した後、80〜100℃
の常圧水蒸気で処理することを特徴とする石炭灰
を主原料とする硬化体の製造方法。1 60-85% by weight of coal ash discharged during coal combustion, 10-25% by weight of quicklime and/or slaked lime,
After adding 10 to 60 parts by weight of water to 100 parts by weight of a mixed powder consisting of 8 to 25% by weight of dihydrate gypsum, hemihydrate gypsum, and/or molded anhydrous gypsum and kneading, this kneaded product is molded or molded. It is molded using a molding container, etc., and then the molded body is cured for 1 to 30 days in a normal temperature atmosphere with a relative humidity of 70 to 100%, and then heated to 80 to 100℃.
A method for producing a hardened material using coal ash as a main raw material, characterized by treating it with atmospheric pressure steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5927180A JPS56155064A (en) | 1980-05-02 | 1980-05-02 | Manufacture of hardened body made from coal ash as main raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5927180A JPS56155064A (en) | 1980-05-02 | 1980-05-02 | Manufacture of hardened body made from coal ash as main raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56155064A JPS56155064A (en) | 1981-12-01 |
JPS6125673B2 true JPS6125673B2 (en) | 1986-06-17 |
Family
ID=13108536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5927180A Granted JPS56155064A (en) | 1980-05-02 | 1980-05-02 | Manufacture of hardened body made from coal ash as main raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56155064A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5982570U (en) * | 1982-11-22 | 1984-06-04 | 積水プラントシステム株式会社 | painting machine |
JPS5980925U (en) * | 1982-11-22 | 1984-05-31 | ナビタス株式会社 | Start/stop switch device |
JPS60191046A (en) * | 1984-03-12 | 1985-09-28 | 川崎重工業株式会社 | Manufacture of cured body comprising coal ash as main raw material |
JPS62143856A (en) * | 1985-12-16 | 1987-06-27 | 川崎重工業株式会社 | Manufacture of hardened body from fluidized bed burnt ash |
-
1980
- 1980-05-02 JP JP5927180A patent/JPS56155064A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56155064A (en) | 1981-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mallikarjuna Rao et al. | Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar | |
Singh et al. | Phosphogypsum—Fly ash cementitious binder—Its hydration and strength development | |
KR101085044B1 (en) | Inorgarnic binder for manufacturing secondary concrete product | |
Thaarrini et al. | RETRACTED: Feasibility Studies on Compressive Strength of Ground Coal Ash Geopolymer Mortar | |
CN110467368B (en) | Active excitant for inorganic solid waste building material and preparation method thereof | |
Chindaprasirt et al. | Fluidized bed coal-bark fly ash geopolymer with additives cured at ambient temperature | |
CN102643107B (en) | Calcination-free desulfurized gypsum-based ceramsite concrete perforated brick | |
Lin et al. | Investigation of Phosphogypsum-Based Cementitious Materials: The Effect of Lime Modification | |
JPS6125673B2 (en) | ||
CN114804807B (en) | Full-solid waste soft foundation sludge solidified powder and preparation method thereof | |
JPS641416B2 (en) | ||
JPS5924749B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPS641418B2 (en) | ||
JPS641417B2 (en) | ||
JPS641419B2 (en) | ||
JPS641421B2 (en) | ||
JPS641422B2 (en) | ||
JPS641423B2 (en) | ||
JPS5953228B2 (en) | Method for producing hardened material using coal ash as main raw material | |
JPS594395B2 (en) | Method for producing hardened material using coal ash as main raw material | |
Jena et al. | Parametric study on sustainable geopolymer concrete | |
JPS641420B2 (en) | ||
CN114735983B (en) | Coal ash brick containing fluidized bed sulfur fixation ash and preparation method thereof | |
JPS6324941B2 (en) | ||
JPH0138069B2 (en) |