JPS641416B2 - - Google Patents

Info

Publication number
JPS641416B2
JPS641416B2 JP55053212A JP5321280A JPS641416B2 JP S641416 B2 JPS641416 B2 JP S641416B2 JP 55053212 A JP55053212 A JP 55053212A JP 5321280 A JP5321280 A JP 5321280A JP S641416 B2 JPS641416 B2 JP S641416B2
Authority
JP
Japan
Prior art keywords
coal ash
gypsum
parts
coal
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55053212A
Other languages
Japanese (ja)
Other versions
JPS56149365A (en
Inventor
Hiroyuki Matsumura
Tatsusaburo Nakamura
Taisuke Shibata
Tomoaki Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5321280A priority Critical patent/JPS56149365A/en
Publication of JPS56149365A publication Critical patent/JPS56149365A/en
Publication of JPS641416B2 publication Critical patent/JPS641416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、石炭燃焼時に排出される石炭灰を主
原料として硬化体を製造する方法、詳しくは石炭
灰に消石灰および半水石こうを添加してなる混合
粉体を原料として成形体を作製し、この成形体を
水蒸気で処理することにより、機械的強度の大き
い水和硬化体を製造する方法に関するものであ
る。 〔従来の技術〕 近年我国においては、1978年の石油危機以来の
国際的な石油供給不安によつて多大なる石油輸入
量の確保が難しくなり、石油依存度を小さくする
ための石油代替エネルギの開発が国家的な課題と
なつており、石油と同じ化石燃料である石炭が1
つの柱として見直されている。石炭の大量消費に
必要な石炭利用技術の実用化には種々の課題があ
るが、なかでも石炭燃焼時に発生する多量の石炭
灰の処理が重要な問題としてクローズアツプされ
ている。 石炭燃焼時には通常、石炭使用量のほぼ15〜20
重量%の石炭灰が発生する。従来我国において
は、石炭灰の約10〜20重量%はフライアツシユと
してセメント混和材、セメント原料などに再利用
されており、残りは埋立地に廃棄されていた。し
かしながら、フライアツシユとして現在の方式に
よりセメント原料に利用する方法に関しては、将
来の石炭灰の大量発生に対応するだけの需要量は
期待できず、また埋立地への廃棄は海面埋立およ
び陸上埋立においても環境保全の立場から、灰捨
地の用地の確保が難しくなりつつある。このため
石炭火力発電所などにおける本格的な石炭利用の
際には、きわめて多量の石炭灰が発生することを
考慮すると、現状の石炭灰の処理方式にて全ての
石炭灰を処理することはきわめて困難であり、石
炭灰の処理技術および有効利用技術が、石炭エネ
ルギ利用の規模に大きな影響を及ぼすと考えられ
る。また石炭灰の大量処理方式の確立には、資源
としての有効再利用が必須である。これはまず第
1に国産資源に乏しい我国においては、単なる廃
棄ではない再利用が省資源・省エネルギに直接結
びつくこと、第2に環境破壊がきわめて少ないこ
とに基づくものである。 従来、特公昭43−21667号公報には、重油焚火
力発電所において石灰石粉末を用いて排ガス中の
SO2を除去した後のダストと、排出石炭灰とを用
いてコンクリートを製造する方法が開示されてい
る。 また特開昭53−1222号公報には、無水石こうに
水酸化カルシウムもしくは酸化カルシウムを加え
て混合したものを第1の原料とし、石炭灰に希硫
酸を加えて混合し乾燥したものを第2の原料とし
て、第1の原料と第2の原料とを混合してセメン
トを製造する方法が開示されている。 〔発明が解決しようとする問題点〕 前記の特公昭43−21667号公報記載の方法にお
いては、混合粉体の割合範囲は示されていない
が、公報第2頁の第1表に示されるように、アツ
シユの割合は配合Aの場合が58.1%{465÷(335
+465)×100}、配合Bの場合が33.3%{306÷
(306+306+306)×100}で、アツシユの割合が比
較的少なく、石炭燃焼時に多量に排出される石炭
灰を処理するのには適していない。また水蒸気で
処理する場合、180℃、10気圧という比較的高温、
高圧の水蒸気を用いている(公報第2頁左欄第17
行)。このようにこの公報記載の方法は、重油焚
火力発電所において脱硫処理した石灰石粉末を有
効利用することを目的としているので、比較的高
温、高圧の水蒸気を使用しても、圧縮強度は40
Kg/cm2、70Kg/cm2(第2頁第2表参照)ときわめ
て低い値にしかならない。 この公報記載の方法においては、上記のよう
に、180℃、10気圧の比較的高温、高圧の蒸気で
養生するものであるから、製造設備としてオート
クレーブが必要であり(公報第2頁左欄17行参
照)、設備が過大となり、連続処理ができないの
でバツチ処理を行わねばならず、石炭灰の大量処
理に不適であり、しかも180℃に維持するための
加熱用エネルギコストが多大となる。 また前記の特開昭53−1222号公報記載の方法に
おいても、混合粉体の割合範囲は示されていない
が、公報第3頁左上欄の実施例に粗粒石炭灰14.9
%、水酸化カルシウム5.0%、無水石こう79.5%
の場合について示され、無水石こうの割合がきわ
めて大きく、石炭灰の割合が少なくなつている。
したがつて石炭燃焼時に多量に排出される石炭灰
を処理するには好ましい方法とは言えない。すな
わち、この公報記載の方法は、無水石こう、水酸
化カルシウム(または酸化カルシウム)、石炭灰、
硫酸を原料とするもので、水和硬化後の2水石こ
うが強度メンバーとなり、石炭灰を硫酸との反応
生成物であるNa2SO4、K2SO4が無水石こうの凝
結促進剤となり、無水石こうが主原料である。一
方、本発明は、石炭灰、消石灰、半水石こうを原
料とするもので、これらの反応生成物(エトリン
ガイト)が強度メンバーとなり、石炭灰が主原料
である。このようにこの公報記載の方法と、本発
明とは強度発現メカニズムが異なつている。また
この公報には成形体を80〜100℃の比較的低温の
常圧水蒸気で処理するという技術的思想は何ら示
唆されていない。 本発明は上記の諸点に鑑みなされたもので、石
炭灰を土木・建築分野にて資源として大量に活用
すべく、石炭灰を主原料として機械的強度の大き
い水和硬化体を製造する方法を提供することを目
的とするものである。 〔問題点を解決するための手段および作用〕 上記の目的を達成するために、本発明の石炭灰
を主原料とする硬化体の製造方法は、石炭燃焼時
に排出される石炭灰60〜85重量%、消石灰10〜25
重量%、半水石こう7〜25重量%からなる混合粉
体に、水を添加して混練した後、この混練物を型
枠または成形容器を用いて成形し、ついでこの成
形体を80〜100℃の常圧水蒸気で処理するように
したものである。 本発明の方法において、混水量(粉体100重量
%に対して添加する水の重量%)は、10〜60%、
望ましくは30〜50%である。 以下、本発明の構成を詳細に説明する。一般
に、石炭灰の代表的性状である成分、組成および
粒度分布は、石炭の産地および燃焼時の履歴に大
きく依存する。まず第1に、石炭の産出地によつ
てSiO2、Al2O3、CaO、Fe2O3、Na2O、K2Oなど
の成分の配合割合が異なり、第2に我国にて現在
発生する石炭灰は微粉炭燃焼灰が主であり、発生
場所および採取方式によつて電気集じん機(EP)
灰(原粉、細粉、粗粉)、クリンカアツシユ、シ
ンダアツシユと区別されそれぞれ粒度分布が異な
る。このため石炭灰、消石灰、半水石こうを原料
として水蒸気処理によつて高強度の水和硬化体を
作製する際には、原料として使用する石炭灰の組
成および粒度分布によつて、水和硬化体の適正製
造条件は微妙に異なる。製造条件として寄与率の
大きい要因は、石炭灰の前処理(主として粉砕)、
石炭灰、消石灰、半水石こうの配合割合、および
水蒸気処理条件(温度、時間)などである。なお
水蒸気は、処理装置の強度などの関係で常圧水蒸
気を用いる。 石炭灰、消石灰、半水石こうからなる原料粉体
における製造条件と水和硬化体の性状との関係は
概略つぎの通りである。水蒸気処理により生成す
る水和硬化体の主成分は、エトリンガイト
(3CaO・Al2O3・3CaSO4・32H2O)、種々の形態
のケイ酸カルシウム水和物(XCaO・YSiO2
ZH2O)であるが、強度メンバーとして最も寄与
するものはエトリンガイトである。まず原料混合
粉体中の半水石こう含有量が少ない際には、カル
シウムモノサルフオアルミネート水和物
(3CaO・Al2O3・CaSO4・12H2O)が主成分とな
り水和硬化体の強度は小さいが、半水石こう含有
量が大きくなるにしたがつて強度メンバーとなる
エトリンガイト量が多くなり強度が大きくなる。
さらに半水石こう添加量が多くなると、水蒸気処
理時に反応にあずからない遊離の石こうが生じて
水和硬化体の強度は低下する。したがつて半水石
こう量は7〜25重量%に限定される。 また原料混合粉体中の消石灰含有量が少ない際
には、カルシウムモノサルフオアルミネート水和
物が主成分となり水和硬化体の強度は小さく、消
石灰の添加量が多くなるにしたがつて、エトリン
ガイトの生成量が大きくなり強度も大きくなる。
消石灰の添加量がさらに大きくなると、エトリン
ガイトの生成反応にあずからない消石灰が多くな
つて強度が低下する。すなわち消石灰の配合割合
が30重量%を越えると、水蒸気処理後に多くの消
石灰が残り、乾燥雰囲気下では消石灰が炭酸カル
シウムになり、その際の反応膨張によりヘアクラ
ツク(ミクロクラツク)が多数発生し、製品性が
劣化する。これらのことから消石灰量は10〜25重
量%に限定される。 石炭灰の粒度分布も水和硬化体の性状に大きな
影響を及ぼす。一般に石炭灰の粒度が小さくなる
にしたがつて、すなわち比表面積が大きくなるに
したがつて、短い処理時間で水和硬化体は所定の
強度を呈する傾向にある。これは石炭灰、消石
灰、半水石こうを原料とし水蒸気処理によるエト
リンガイトの生成反応はスルーソルーシヨンリア
クシヨン(through solution reaction)であり、
Al2O3の溶解度は消石灰、石こうに較べて著しく
小さく、エトリンガイトの生成速度がAl2O3の溶
解速度に依存するためと推定できる。 水蒸気処理条件は処理温度および処理時間が主
な要因であり、水蒸気条件の適正領域は上述の如
く石炭灰の粒度分布によつても異なる。一般に水
蒸気処理時間が短い際には、水和硬化体はカルシ
ウムモノサルフオアルミネート水和物、2水石こ
う、エトリンガイトの混合物からなり強度は小さ
く、水蒸気処理時間が長くなるにしたがつて、エ
トリンガイトの生成量が多くなり強度も大きくな
る。水蒸気処理を長時間にわたり実施しエトリン
ガイトの生成が終結した後も水蒸気処理を施す
と、エトリンガイトは耐熱性に欠けるため無水石
こうとカルシウムアルミネート水和物とに分解
し、水和硬化体の強度は低下する。 なお水和硬化体を、相対湿度70〜100%の雰囲
気中で1〜30日間養生すれば、エトリンガイト等
の反応が進行し、強度向上を図ることができる。 上述の如く水和硬化体の製造条件は、原料とな
る石炭灰の性状に依存するところが大きく、石炭
の成分、組成および粒度分布に対応した最も好適
な石炭灰の前処理(粉砕)条件、消石灰および半
水石こうの添加量、ならびに水蒸気処理条件(処
理温度、処理時間)を選定することが望ましい。 本発明において使用する半水石こうはα型半水
石こう、B型半水石こうのいずれでもよい。半水
石こうを使用することにより、原料粉体と水とを
混練し型枠中へ流し込むことにより形づくられる
水蒸気処理前の成形体の成形性が優れ、またその
強度が短時間の常温養生で大きくなるため脱型ま
での時間が大幅に短縮できるとともに、取扱いお
よび搬送などの際に破壊し難いという利点が生じ
る。半水石こうは通常、2水石こうを原料として
湿式または乾式の種々の方法で製造されるもので
あり、この原料2水石こうとしては、天然石こう
およびリン酸石こう、製塩石こう、湿式排煙脱硫
石こうなどの化学石こうを使用することができ
る。石炭燃焼時に発生する硫黄酸化物の除去の際
に生じる湿式排煙脱硫石こうを連続的に半水石こ
うに転換するプラントを建設すれば、石炭燃焼時
の排出物である石炭灰と硫黄酸化物の両者を、同
一発生個所にてかつ同時に処理できることも本発
明の利点の1つである。 本発明の方法において、常圧水蒸気の温度が80
℃未満の場合は、エトリンガイト生成速度が遅い
ため、生成量が少なく、かつ生成結晶が太くな
り、高強度を発見しないという不都合があり、一
方、100℃を越える場合は、エトリンガイトの成
長よりも分解の方が起こりやすいため、生成した
エトリンガイトの分解が起こり、高強度を発現し
ないという不都合がある。 また石灰のうち、消石灰に硬化体を多孔化して
カサ密度を小さくし、生石灰は硬化体を緻密化し
てカサ密度を大きくする作用・効果を有してい
る。 さらに石こうのうち、半水石こうは溶解度が
0.58(β型)、0.45(α型)(g無水物/100g溶液
at50℃)で、混練物は速やかに硬化が進行する。
なお溶液は、石こう飽和水溶液である2水石こう
は溶解度が0.26(g無水物/100g溶液at50℃)で、
混練物は硬化しない。型無水石こうは溶解度が
0.21(g無水物/100g溶液at50℃)で、本発明の
ように、硬化促進剤がない場合は硬化せず、硬化
促進剤が存在する場合は、溶解度が高くなり徐々
に硬化するという作用・効果を有している。した
がつて、石こうの種類により、脱型時の成形体の
強度が異なる。 上記のように、石灰、石こうの作用・効果の違
いにより、石炭灰−石灰−石こう混練物の硬化速
度、硬化体のカサ密度、強度が異なる。このた
め、用途によつて異なる要求品質に対応して、石
灰および石こうを使い分ける。 たとえば、硬化体の圧縮強度に着目すれば、石
こうの溶解度との関係が密接であり、生石灰系で
は、同一石炭灰を用いた場合の硬化体の圧縮強度
は、半水石こう系>2水石こう系>型無水石こ
う系となり、消石灰系では、同一石炭灰を用いた
場合の硬化体の圧縮強度は、半水石こう系>2水
石こう系>型無水石こう系となる。 〔実施例〕 つぎに実施例および比較例について説明する。
まず実施例および比較例における原料石炭灰の性
状を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing a hardened material using coal ash discharged during coal combustion as a main raw material, and more specifically, a method for producing a hardened material using coal ash as a main raw material. The present invention relates to a method for producing a hydrated and hardened body with high mechanical strength by preparing a molded body as a molded body and treating this molded body with steam. [Conventional technology] In recent years, it has become difficult for Japan to secure a large amount of oil imports due to the international oil supply instability since the oil crisis of 1978, and efforts have been made to develop alternative energies to oil in order to reduce the country's dependence on oil. has become a national issue, and coal, a fossil fuel like oil, has become a national issue.
It has been reconsidered as one pillar. There are various issues to overcome in the practical application of coal utilization technology, which is necessary for mass consumption of coal, and among them, the treatment of large amounts of coal ash generated during coal combustion has been highlighted as an important issue. When burning coal, usually almost 15-20 of the coal usage
% coal ash is generated. Previously in Japan, approximately 10 to 20% by weight of coal ash was reused as fly ash for cement admixtures, cement raw materials, etc., and the rest was disposed of in landfills. However, with regard to the current method of using fly ash as a raw material for cement, it is not expected that the demand will be sufficient to meet the large amount of coal ash generated in the future, and disposal in landfills is not possible either in sea-surface or land-based landfills. From the standpoint of environmental conservation, it is becoming difficult to secure land for ash dumping. Therefore, considering that an extremely large amount of coal ash is generated when full-scale coal is used in coal-fired power plants, etc., it is extremely difficult to process all of the coal ash using current coal ash processing methods. Coal ash processing technology and effective utilization technology are thought to have a major impact on the scale of coal energy use. In addition, effective reuse as a resource is essential for establishing a mass processing method for coal ash. This is based, firstly, on the fact that in our country, which lacks domestic resources, reuse rather than mere disposal directly leads to resource and energy conservation, and secondly, there is extremely little environmental destruction. Previously, Japanese Patent Publication No. 43-21667 describes how limestone powder is used to reduce exhaust gas in heavy oil-fired power plants.
A method of producing concrete using dust after removing SO 2 and exhaust coal ash is disclosed. Furthermore, in JP-A-53-1222, the first raw material is a mixture of anhydrous gypsum and calcium hydroxide or calcium oxide, and the second raw material is a mixture of coal ash and dilute sulfuric acid. A method for producing cement by mixing a first raw material and a second raw material is disclosed. [Problems to be solved by the invention] In the method described in the above-mentioned Japanese Patent Publication No. 43-21667, the ratio range of the mixed powder is not indicated, but as shown in Table 1 on page 2 of the publication, In addition, the ratio of thickness is 58.1% for combination A {465 ÷ (335
+465)×100}, 33.3% for combination B {306÷
(306 + 306 + 306) x 100}, the ratio of ash is relatively small, and it is not suitable for processing coal ash, which is emitted in large quantities during coal combustion. In addition, when processing with steam, the temperature is relatively high at 180℃ and 10 atm.
High-pressure steam is used (No. 17, left column, page 2 of the bulletin)
line). As described above, the method described in this publication aims to effectively utilize desulfurized limestone powder in heavy oil-fired power plants, so even if relatively high temperature and high pressure steam is used, the compressive strength is 40%.
Kg/cm 2 , 70Kg/cm 2 (see Table 2 on page 2), which is an extremely low value. In the method described in this publication, as mentioned above, the curing is performed using relatively high-temperature, high-pressure steam at 180°C and 10 atm, so an autoclave is required as manufacturing equipment (page 2, left column 17 of the publication). (see row), the equipment is too large and continuous processing is not possible, so batch processing must be performed, making it unsuitable for processing large amounts of coal ash, and furthermore, the cost of heating energy to maintain the temperature at 180°C is significant. Further, in the method described in the above-mentioned Japanese Patent Application Laid-open No. 53-1222, the ratio range of the mixed powder is not indicated, but the example in the upper left column of page 3 of the publication shows coarse coal ash 14.9
%, calcium hydroxide 5.0%, anhydrous gypsum 79.5%
The case is shown in which the proportion of anhydrite is extremely large and the proportion of coal ash is small.
Therefore, it cannot be said to be a preferable method for treating coal ash that is emitted in large quantities during coal combustion. That is, the method described in this publication uses anhydrous gypsum, calcium hydroxide (or calcium oxide), coal ash,
It uses sulfuric acid as a raw material, and dihydrate gypsum after hydration hardening becomes the strength member, and Na 2 SO 4 and K 2 SO 4 , which are the reaction products of coal ash with sulfuric acid, serve as setting accelerators for anhydrous gypsum. Anhydrous gypsum is the main raw material. On the other hand, the present invention uses coal ash, slaked lime, and hemihydrate gypsum as raw materials, and the reaction product (ettringite) of these becomes a strength member, and coal ash is the main raw material. As described above, the method described in this publication and the present invention differ in the strength development mechanism. Moreover, this publication does not suggest any technical concept of treating the molded body with normal pressure steam at a relatively low temperature of 80 to 100°C. The present invention was made in view of the above points, and in order to utilize coal ash in large quantities as a resource in the civil engineering and construction fields, the present invention provides a method for producing a hydrated material with high mechanical strength using coal ash as the main raw material. The purpose is to provide [Means and effects for solving the problems] In order to achieve the above object, the method for producing a hardened body using coal ash as a main raw material of the present invention is to reduce the amount of coal ash discharged during coal combustion by 60 to 85% by weight. %, slaked lime 10-25
After adding water and kneading a mixed powder consisting of 7-25% by weight of hemihydrate gypsum, this kneaded product is molded using a mold or a molding container, and then this molded body is heated to 80-100% by weight. It is designed to be treated with normal pressure steam at ℃. In the method of the present invention, the amount of mixed water (wt% of water added to 100 wt% of powder) is 10 to 60%,
Desirably it is 30-50%. Hereinafter, the configuration of the present invention will be explained in detail. In general, the typical properties of coal ash, such as components, composition, and particle size distribution, greatly depend on the coal's production area and combustion history. First of all, the proportions of ingredients such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O, K 2 O, etc. differ depending on the place where coal is produced. The coal ash generated is mainly pulverized coal combustion ash, and depending on the location and collection method, electrostatic precipitator (EP)
It is distinguished into ash (raw powder, fine powder, coarse powder), clinker ash, and cinder ash, each with a different particle size distribution. Therefore, when producing a high-strength hydration hardened material by steam treatment using coal ash, slaked lime, and hemihydrate gypsum as raw materials, hydration hardening depends on the composition and particle size distribution of the coal ash used as the raw material. The proper manufacturing conditions for each body are slightly different. Factors that have a large contribution rate as production conditions are pre-treatment of coal ash (mainly crushing),
These include the blending ratio of coal ash, slaked lime, and hemihydrate gypsum, and steam treatment conditions (temperature, time), etc. Note that atmospheric pressure steam is used as the steam due to the strength of the processing equipment. The relationship between the manufacturing conditions for the raw material powder consisting of coal ash, slaked lime, and hemihydrate gypsum and the properties of the hydrated product is roughly as follows. The main components of the hydrated hardened product produced by steam treatment are ettringite (3CaO・Al 2 O 3・3CaSO 4・32H 2 O) and various forms of calcium silicate hydrate (XCaO・YSiO 2
ZH 2 O), but the one that contributes the most as a strength member is ettringite. First, when the content of hemihydrate gypsum in the raw material mixed powder is low, calcium monosulfur aluminate hydrate (3CaO・Al 2 O 3・CaSO 4・12H 2 O) becomes the main component and becomes a hydrated hardened product. The strength is small, but as the content of hemihydrate gypsum increases, the amount of ettringite, which is a strength member, increases and the strength increases.
Furthermore, when the amount of hemihydrate gypsum added increases, free gypsum that does not participate in the reaction occurs during steam treatment, resulting in a decrease in the strength of the hydrated hardened product. The amount of hemihydrate gypsum is therefore limited to 7-25% by weight. In addition, when the slaked lime content in the raw material mixed powder is low, calcium monosulfo aluminate hydrate becomes the main component, and the strength of the hydrated hardened product is small, and as the amount of slaked lime added increases, The amount of ettringite produced increases and the strength also increases.
If the amount of slaked lime added is further increased, more slaked lime does not take part in the ettringite production reaction, resulting in a decrease in strength. In other words, if the blending ratio of slaked lime exceeds 30% by weight, a large amount of slaked lime will remain after steam treatment, and in a dry atmosphere, the slaked lime will turn into calcium carbonate, and the reaction expansion will generate many hair cracks (microcracks), resulting in poor product quality. deteriorates. For these reasons, the amount of slaked lime is limited to 10 to 25% by weight. The particle size distribution of coal ash also has a large effect on the properties of the hydrated hardened material. Generally, as the particle size of coal ash becomes smaller, that is, as the specific surface area becomes larger, the hydrated and hardened material tends to exhibit a predetermined strength in a shorter treatment time. This reaction uses coal ash, slaked lime, and hemihydrate gypsum as raw materials, and the reaction that produces ettringite through steam treatment is a through solution reaction.
The solubility of Al 2 O 3 is significantly lower than that of slaked lime and gypsum, and it can be assumed that this is because the rate of formation of ettringite depends on the rate of dissolution of Al 2 O 3 . The steam treatment conditions are mainly determined by the treatment temperature and treatment time, and the appropriate range of the steam conditions also differs depending on the particle size distribution of the coal ash as described above. Generally, when the steam treatment time is short, the hydrated hardened product consists of a mixture of calcium monosulfo aluminate hydrate, dihydrate gypsum, and ettringite, and its strength is low; The amount of produced increases and the strength also increases. If steam treatment is carried out for a long time and steam treatment is continued even after the formation of ettringite has been completed, ettringite lacks heat resistance and decomposes into anhydrous gypsum and calcium aluminate hydrate, and the strength of the hydrated hardened product decreases. descend. Note that if the hydrated hardened product is cured for 1 to 30 days in an atmosphere with a relative humidity of 70 to 100%, the reaction of ettringite and the like will proceed and the strength can be improved. As mentioned above, the manufacturing conditions for the hydrated hardened material largely depend on the properties of the coal ash used as the raw material, and the most suitable coal ash pretreatment (pulverization) conditions and slaked lime that correspond to the components, composition, and particle size distribution of the coal. It is desirable to select the amount of hemihydrate gypsum added and the steam treatment conditions (treatment temperature, treatment time). The hemihydrate gypsum used in the present invention may be either α-type hemihydrate gypsum or B-type hemihydrate gypsum. By using hemihydrous gypsum, the molded product, which is formed by kneading the raw material powder and water and pouring it into the mold, has excellent moldability before steam treatment, and its strength can be increased even after curing at room temperature for a short time. Therefore, the time required for demolding can be significantly shortened, and there is an advantage that it is difficult to break during handling and transportation. Hemihydrate gypsum is usually manufactured using dihydrate gypsum as a raw material using various wet or dry methods.This raw material dihydrate gypsum includes natural gypsum, phosphate gypsum, salt-produced gypsum, and wet flue gas desulfurization gypsum. Chemical gypsum such as can be used. If we construct a plant that continuously converts wet flue gas desulfurization gypsum produced during the removal of sulfur oxides generated during coal combustion into hemihydrate gypsum, it will eliminate coal ash and sulfur oxides, which are emissions from coal combustion. Another advantage of the present invention is that both can be treated at the same location and at the same time. In the method of the present invention, the temperature of atmospheric pressure steam is 80°C.
If the temperature is below 100℃, the formation rate of ettringite is slow, resulting in a small amount of formed crystals and thick crystals, making it impossible to find high strength.On the other hand, if the temperature exceeds 100℃, the decomposition of ettringite is more likely than the growth of ettringite. Since this is more likely to occur, the generated ettringite will be decomposed and high strength will not be developed. Furthermore, among limes, slaked lime has the effect of making the hardened body porous and reducing the bulk density, and quicklime has the effect of making the hardened body dense and increasing the bulk density. Furthermore, among gypsum, hemihydrate gypsum has a low solubility.
0.58 (β type), 0.45 (α type) (g anhydride/100g solution
at 50°C), the kneaded material rapidly hardens.
The solution is dihydrate gypsum, which is a saturated gypsum aqueous solution, with a solubility of 0.26 (g anhydride/100g solution at 50°C).
The kneaded material does not harden. The solubility of type anhydrous gypsum is
0.21 (g anhydride/100g solution at 50°C), as in the present invention, if there is no curing accelerator, no curing will occur, but if a curing accelerator is present, the solubility will increase and the curing will occur gradually. It has an effect. Therefore, the strength of the molded product upon demolding varies depending on the type of gypsum. As mentioned above, the curing speed of the coal ash-lime-gypsum mixture, the bulk density, and the strength of the cured product differ due to the differences in the actions and effects of lime and gypsum. For this reason, lime and gypsum are used depending on the quality required depending on the application. For example, if we focus on the compressive strength of a hardened product, there is a close relationship with the solubility of gypsum; in a quicklime system, the compressive strength of a hardened product using the same coal ash is For slaked lime systems, the compressive strength of the hardened material when using the same coal ash is as follows: hemihydrate gypsum system > dihydrate gypsum system > type anhydrous gypsum system. [Example] Next, Examples and Comparative Examples will be described.
First, Table 1 shows the properties of the raw material coal ash in Examples and Comparative Examples.

【表】 原料石炭灰の化学的成分としては、X線回折分
析によれば大量の石英(α−SiO2)、中量のムラ
イト(3Al2O3、2SiO2)、少量のマグネタイト
(Fe3O4)が認められた。原料石炭灰の前処理と
しての粉砕にはボールミル(いすず製作所製 無
段変速機付 UB−11型)を使用した。 石炭灰および水和硬化体の試験方法をつぎに示
す。ブレーン比表面積測定は、島津製作所製の粉
体比表面積測定器SS−100形を使用し、空気透過
法によつた。曲げ強度試験は、試験片として20×
20×80(mm)のものを使用し、試験装置として丸
菱科学製作所製のMKS改良型万能強度試験機を
使用した。試験方法は3点曲げ法によつた。圧縮
強度試験は、試験片として20×20×20(mm)のも
のを使用し、試験装置としてインストロン社製の
万能試験機(最大荷重10トン)を使用した。試験
方法は定たわみ速度法によつた。 なお実施例および比較例においては、水蒸気は
常圧水蒸気を使用した。 実施例 1 石炭灰70部(粗粉56部、微粉14部からなる)、
消石灰20部、半水石こう10部、水50部を混合して
スラリーとし、このスラリーを型枠中に注入して
成形体を得た。この成形体を脱型して密閉容器内
に収納し、98℃の水蒸気と15時間接触させて水和
硬化体を得た。水和硬化体の特性は第2表の如く
であつた。 比較例 1 石炭灰71部(粗粉57部、微粉14部)、半水石こ
う4部とし、他は実施例1と同様の実験を行つ
た。水和硬化体の特性は第2表の如くであつた。 比較例 2 石炭灰80部(粗粉64部、微粉16部)、半水石こ
う0部(添加なし)とし、他は実施例1と同様の
実験を行つた。水和硬化体の特性は第2表の如く
であつた。
[Table] According to X-ray diffraction analysis, the chemical components of raw coal ash include a large amount of quartz (α-SiO 2 ), a medium amount of mullite (3Al 2 O 3 , 2SiO 2 ), and a small amount of magnetite (Fe 3 O4 ) was observed. A ball mill (model UB-11 with a continuously variable transmission manufactured by Isuzu Seisakusho) was used to pre-process and crush the raw material coal ash. The test methods for coal ash and hydrated hardened material are shown below. The Blaine specific surface area was measured using a powder specific surface area measuring instrument SS-100 manufactured by Shimadzu Corporation, using the air permeation method. The bending strength test uses 20× as a test piece.
A 20 x 80 (mm) piece was used, and the MKS improved universal strength testing machine manufactured by Marubishi Kagaku Seisakusho was used as the testing device. The test method was a three-point bending method. In the compressive strength test, a 20 x 20 x 20 (mm) test piece was used, and an Instron universal testing machine (maximum load: 10 tons) was used as the testing device. The test method was based on the constant deflection rate method. Note that in the Examples and Comparative Examples, atmospheric pressure steam was used as the steam. Example 1 70 parts of coal ash (consisting of 56 parts of coarse powder and 14 parts of fine powder),
20 parts of slaked lime, 10 parts of hemihydrate gypsum, and 50 parts of water were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was demolded, stored in a closed container, and brought into contact with steam at 98° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 1 The same experiment as in Example 1 was conducted except that 71 parts of coal ash (57 parts of coarse powder, 14 parts of fine powder) and 4 parts of hemihydrate gypsum were used. The properties of the hydrated and cured product were as shown in Table 2. Comparative Example 2 The same experiment as in Example 1 was conducted except that 80 parts of coal ash (64 parts of coarse powder, 16 parts of fine powder) and 0 parts of hemihydrate gypsum (no addition) were used. The properties of the hydrated and cured product were as shown in Table 2.

【表】 実施例 2 石炭灰70部(粗粉56部、微粉14部からなる)、
消石灰20部、半水石こう10部、水50部を混合して
スラリーとし、このスラリーを型枠中に注入して
成形体を得た。(以上の操作は実施例1と同様)。
この成形体を脱型して密閉容器内に収納し、97℃
の水蒸気と15時間接触させて水和硬化体を得た。
水和硬化体の特性は第3表の如くであつた。 比較例 3 石炭灰81部(粗粉65部、微粉16部)、消石灰9
部とし、他は実施例2と同様の実験を行つた。水
和硬化体の特性は第3表の如くであつた。 比較例 4 石炭灰85部(粗粉68部、微粉17部)、消石灰5
部とし、他は実施例2と同様の実験を行つた。水
和硬化体の特性は第3表の如くであつた。 比較例 5 石炭灰90部(粗粉72部、微粉18部)、消石灰0
部(添加なし)とし、他は実施例2と同様の実験
を行つた。水和硬化体の特性は第3表の如くであ
つた。
[Table] Example 2 70 parts of coal ash (consisting of 56 parts of coarse powder and 14 parts of fine powder),
20 parts of slaked lime, 10 parts of hemihydrate gypsum, and 50 parts of water were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. (The above operations are the same as in Example 1).
This molded body was demolded and stored in a sealed container at 97°C.
A hydrated hardened product was obtained by contacting with water vapor for 15 hours.
The properties of the hydrated and cured product were as shown in Table 3. Comparative example 3 81 parts of coal ash (65 parts of coarse powder, 16 parts of fine powder), 9 parts of slaked lime
The experiment was carried out in the same manner as in Example 2, except for the following. The properties of the hydrated and cured product were as shown in Table 3. Comparative example 4 85 parts of coal ash (68 parts of coarse powder, 17 parts of fine powder), 5 parts of slaked lime
The experiment was carried out in the same manner as in Example 2, except for the following. The properties of the hydrated and cured product were as shown in Table 3. Comparative Example 5 90 parts of coal ash (72 parts of coarse powder, 18 parts of fine powder), 0 slaked lime
% (no addition), and the same experiment as in Example 2 was conducted with the other exceptions. The properties of the hydrated and cured product were as shown in Table 3.

【表】【table】

【表】 実施例 3 石炭灰70部(粗粉50%、微粉50%からなる)、
消石灰20部、半水石こう10部、水50部を混合して
スラリーとし、このスラリーを型枠中に注入して
成形体を得た。この成形体を脱型して密閉容器内
に収納し、90℃の水蒸気と15時間接触させて水和
硬化体を得た。水和硬化体の特性は第4表の如く
であつた。 実施例 4 実施例3において得た成形体を97℃の水蒸気と
15時間接触させた。水和硬化体の特性は第4表の
如くであつた。 比較例 6 実施例3において得た成形体を75℃の水蒸気と
15時間接触させた。水和硬化体の特性は第4表の
如くであつた。 比較例 7 実施例3において得た成形体を110℃の水蒸気
と15時間接触させた。水和硬化体の特性は第4表
の如くであつた。
[Table] Example 3 70 parts of coal ash (consisting of 50% coarse powder and 50% fine powder),
20 parts of slaked lime, 10 parts of hemihydrate gypsum, and 50 parts of water were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was demolded, stored in a closed container, and brought into contact with steam at 90° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 4. Example 4 The molded product obtained in Example 3 was heated with steam at 97°C.
Contact was made for 15 hours. The properties of the hydrated and cured product were as shown in Table 4. Comparative Example 6 The molded product obtained in Example 3 was heated with water vapor at 75°C.
Contact was made for 15 hours. The properties of the hydrated and cured product were as shown in Table 4. Comparative Example 7 The molded article obtained in Example 3 was brought into contact with steam at 110°C for 15 hours. The properties of the hydrated and cured product were as shown in Table 4.

【表】 実施例 5 第5表に示す性状の原料石炭灰(市販フライア
ツシユ)70部、消石灰20部、半水石こう10部、水
45部を混合してスラリーとし、このスラリーを型
枠中に注入して成形体を得た。この成形体を脱型
して密閉容器内に収納し、96℃の水蒸気と15時間
接触させて水和硬化体を得た。水和硬化体の特性
は第6表の如くであつた。
[Table] Example 5 70 parts of raw coal ash (commercially available fly ash) with properties shown in Table 5, 20 parts of slaked lime, 10 parts of hemihydrate gypsum, water
45 parts were mixed to form a slurry, and this slurry was poured into a mold to obtain a molded body. This molded body was demolded, stored in a closed container, and brought into contact with steam at 96° C. for 15 hours to obtain a hydrated and cured body. The properties of the hydrated and cured product were as shown in Table 6.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法において
は、原料中の石炭灰配合割合が60〜85重量%と大
きいため、石炭灰を大量に処理することができ、
また80〜100℃の比較的低温の常圧水蒸気養生で
あるので、オープン構造が可能(加圧密閉構造が
不要)で製造設備が簡素化され、連続養生が可能
で石炭灰の大量処理に適しており、しかも蒸気温
度が100℃以下のため、廃蒸気などの低温蒸気が
使用でき、エネルギコストを低減することができ
る。 そして本発明の方法によれば、石炭燃焼時の排
出物である石炭灰に安価な原料である消石灰およ
び半水石こうを添加し水蒸気処理を施すことによ
り、高強度の硬化体を容易にかつ安価に製造する
ことが可能であり、本発明の方法は石炭灰を有効
利用して土木・建築の分野における各種建材およ
び構造材の製造に寄与する技術としてきわめて有
益である。
As explained above, in the method of the present invention, since the coal ash blending ratio in the raw material is as high as 60 to 85% by weight, a large amount of coal ash can be processed.
In addition, because it uses normal pressure steam curing at a relatively low temperature of 80 to 100°C, an open structure is possible (no pressurized and sealed structure is required), simplifying manufacturing equipment, and continuous curing is possible, making it suitable for large-scale processing of coal ash. Furthermore, since the steam temperature is below 100°C, low-temperature steam such as waste steam can be used, reducing energy costs. According to the method of the present invention, by adding slaked lime and hemihydrate gypsum, which are inexpensive raw materials, to coal ash, which is an exhaust product during coal combustion, and subjecting it to steam treatment, a high-strength hardened body can be easily and inexpensively produced. The method of the present invention is extremely useful as a technology that contributes to the production of various building materials and structural materials in the fields of civil engineering and architecture by effectively utilizing coal ash.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭燃焼時に排出される石炭灰60〜85重量
%、消石灰10〜25重量%、半水石こう7〜25重量
%からなる混合粉体に、水を添加して混練した
後、この混練物を型枠または成形容器を用いて成
形し、ついでこの成形体を80〜100℃の常圧水蒸
気で処理することを特徴とする石炭灰を主原料と
する硬化体の製造方法。
1 After adding water and kneading a mixed powder consisting of 60 to 85% by weight of coal ash, 10 to 25% by weight of slaked lime, and 7 to 25% by weight of hemihydrate gypsum discharged during coal combustion, this kneaded product is A method for producing a hardened body using coal ash as a main raw material, which comprises forming the body using a mold or a molding container, and then treating the formed body with atmospheric pressure steam at 80 to 100°C.
JP5321280A 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash Granted JPS56149365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321280A JPS56149365A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321280A JPS56149365A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Publications (2)

Publication Number Publication Date
JPS56149365A JPS56149365A (en) 1981-11-19
JPS641416B2 true JPS641416B2 (en) 1989-01-11

Family

ID=12936529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321280A Granted JPS56149365A (en) 1980-04-21 1980-04-21 Manufacture of hardened body chiefly based on coal ash

Country Status (1)

Country Link
JP (1) JPS56149365A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969464A (en) * 1982-10-06 1984-04-19 川崎重工業株式会社 Manufacture of hardened body from coal ash
JPS5980956U (en) * 1982-11-22 1984-05-31 株式会社島津製作所 ion gun
JPS59232957A (en) * 1983-06-13 1984-12-27 川崎重工業株式会社 Manufacture of granular hardened body from coal ash as main raw material
JPS59232958A (en) * 1983-06-13 1984-12-27 川崎重工業株式会社 Manufacture of granular hardened body form coal ash as main raw material
JPS6121957A (en) * 1984-07-10 1986-01-30 豊田瓦工業株式会社 Manufacture of ceramics

Also Published As

Publication number Publication date
JPS56149365A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
Singh et al. Phosphogypsum—Fly ash cementitious binder—Its hydration and strength development
KR20180017837A (en) Composition agent
CN102643107B (en) Calcination-free desulfurized gypsum-based ceramsite concrete perforated brick
CN105541150A (en) An active admixture prepared by utilizing semi-dry process desulfurized fly ash
CN105384375A (en) Active admixture for building materials
JPS641416B2 (en)
CN114804807B (en) Full-solid waste soft foundation sludge solidified powder and preparation method thereof
JPS641418B2 (en)
JPS641417B2 (en)
JPS641419B2 (en)
JPS6125673B2 (en)
JPS641423B2 (en)
JPS641421B2 (en)
JPS641422B2 (en)
JPS641420B2 (en)
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
Zheng et al. A review: Enhanced performance of recycled cement and CO2 emission reduction effects through thermal activation and nanosilica incorporation
CN115304296B (en) Recyclable cement and preparation method thereof
JPS594395B2 (en) Method for producing hardened material using coal ash as main raw material
CN111423138B (en) Method for preparing curing agent by using gas making slag-slag as raw material
JPH0138069B2 (en)
JPS6324941B2 (en)
JPS5953228B2 (en) Method for producing hardened material using coal ash as main raw material
JPH0629159B2 (en) Method for producing a cured body using fluidized bed combustion ash as a raw material
Li et al. Effect of reductant on property and CO 2 sequestration for belite cement from phosphogypsum