JPS6412074B2 - - Google Patents

Info

Publication number
JPS6412074B2
JPS6412074B2 JP18649280A JP18649280A JPS6412074B2 JP S6412074 B2 JPS6412074 B2 JP S6412074B2 JP 18649280 A JP18649280 A JP 18649280A JP 18649280 A JP18649280 A JP 18649280A JP S6412074 B2 JPS6412074 B2 JP S6412074B2
Authority
JP
Japan
Prior art keywords
temperature heating
constant temperature
heating element
ceramic
metal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18649280A
Other languages
Japanese (ja)
Other versions
JPS57109284A (en
Inventor
Nobumasa Ooshima
Etsuro Habata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18649280A priority Critical patent/JPS57109284A/en
Publication of JPS57109284A publication Critical patent/JPS57109284A/en
Publication of JPS6412074B2 publication Critical patent/JPS6412074B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は、正のサーミスタ特性を有するセラミ
ツク定温発熱素子と金属放熱体とを組み合せてな
る定温発熱体の量産に適した製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method suitable for mass production of a constant temperature heating element which is a combination of a ceramic constant temperature heating element having positive thermistor characteristics and a metal heat sink.

正のサーミスタ特性を有するセラミツク定温発
熱素子を用いた各種ヒータが知られているが、こ
れは通常、チタン酸バリウムを主成分とした半導
体セラミツクスで構成され、所定の温度を越える
と急激に抵抗が上昇する性質をもつている。その
ため、ある温度以上には過熱することがなく、安
全なヒータを提供することができる。また、その
放熱を大きくすれば単位個数当りの入力電力が大
きくなり、発熱量の大きなヒータを提供すること
ができる。そして、その一つとしてセラミツク定
温発熱素子の使用数を節減するために、金属放熱
体をその片面または両面に固着して放熱効果をあ
げた第1図及び第2図に示すような構造のものが
ある。第1図はアルミニウムなどのブロツクを切
削、押出などによつて加工した放熱フイン1を用
いたものであり、第2図は小型部品に適するよう
にアルミ板の平板を凸凹波形に折曲加工したもの
を一体化した放熱体2を用いたもので、いずれも
セラミツク定温発熱素子3の両側に電極4,4′
を介して取付けられたものである。
Various types of heaters are known that use ceramic fixed-temperature heating elements with positive thermistor characteristics, but these are usually composed of semiconductor ceramics containing barium titanate as a main component, and their resistance suddenly decreases when the temperature exceeds a predetermined temperature. It has the property of rising. Therefore, it is possible to provide a safe heater without overheating above a certain temperature. Moreover, if the heat dissipation is increased, the input power per unit number increases, and a heater with a large amount of heat generation can be provided. One example of this is the structure shown in Figures 1 and 2, in which a metal heat radiator is fixed to one or both sides of the ceramic constant-temperature heating element to increase the heat radiation effect, in order to reduce the number of constant-temperature heating elements used. There is. Figure 1 shows a heat dissipation fin 1 made by cutting or extruding a block of aluminum or the like, and Figure 2 shows a heat dissipation fin 1 made by bending a flat aluminum plate into a corrugated shape suitable for small parts. Both devices use a heat dissipation body 2 that is integrated with a ceramic heat generating element 3, and electrodes 4, 4' are placed on both sides of a ceramic constant temperature heating element 3.
It was installed through the

このような構造を得る場合、その主要部である
定温発熱素子3は、BaTio3を主体として、これ
に所要添加物を加えて、1200〜1300℃で焼結した
セラミツク素子であり、その材料組成、製造条件
によつてスイツチング温度、抵抗値などの要求特
性を調整したものである。セラミツク焼結体であ
るから、均質なものが得られる大きさには制約が
あり、特に反りの生じない焼結体を得るには、そ
の厚さ、タテヨコ比などの関連で、あまり大きい
ものは得難くなる傾向は避けられない。具体的に
は、1〜2.5mm程度の厚さでは、タテヨコ比が2
〜3の場合、大きさが2×6cm程度のものが適当
で、タテヨコ比及び寸法が大きくなる程、歩留ま
りが低下するので、実用上、経済的な寸法が規定
される。一方、金属放熱体の場合は、第1図のよ
うなアルミニウムの切削か押出加工でも、第2図
のようなアルミニウム板の折曲加工によるもので
も、相当大きなものまで容易に得られ、小さいも
のよりもある程度大きい方が製造上効率的であ
る。
When obtaining such a structure, the constant temperature heating element 3, which is the main part, is a ceramic element made mainly of BaTio 3 with necessary additives and sintered at 1200 to 1300°C, and its material composition The required characteristics such as switching temperature and resistance value are adjusted according to manufacturing conditions. Since it is a ceramic sintered body, there are restrictions on the size at which a homogeneous one can be obtained.In particular, in order to obtain a sintered body that does not warp, it is necessary to avoid large objects due to its thickness, vertical and horizontal ratio, etc. The tendency for it to become more difficult to obtain is inevitable. Specifically, when the thickness is about 1 to 2.5 mm, the vertical and horizontal ratio is 2.
In the case of 3 to 3, a size of about 2 x 6 cm is appropriate; the larger the vertical/width ratio and dimensions, the lower the yield, so for practical purposes, economical dimensions are specified. On the other hand, in the case of metal heat sinks, large ones can be easily obtained, and small ones can be easily obtained by cutting or extruding aluminum as shown in Figure 1, or by bending aluminum plates as shown in Figure 2. It is more efficient for manufacturing to be larger than .

本発明は、このような両者の製造技術上の長短
を相補つて効率的に製造する方法を提供するもの
であつて、大きいものが得られ易い金属放熱体に
単位形状を有する複数個のセラミツク定温発熱素
子を並べて配置し、両者を固着したのち、必要数
量のセラミツク定温発熱素子に相当する位置で金
属放熱体を含めて切断分割するものである。セラ
ミツク定温発熱素子と金属放熱体との組み合せ
は、必要に応じて何段でも重ね合せて、アルミブ
レージング処理、耐熱接着剤、伝熱導電性接着剤
などを用いて固着することができる。また切断分
割する場合、アルミなどの金属放熱体の切断粉塵
が、セラミツク焼結体の切断面に残存混入して電
気的特性を損わないような切断の方式と条件の選
択が必要である。
The present invention provides an efficient manufacturing method that complements the merits and demerits of both manufacturing techniques. After the heat generating elements are arranged side by side and both are fixed, they are cut and divided including the metal heat radiator at positions corresponding to the required number of ceramic constant temperature heat generating elements. The combination of the ceramic fixed-temperature heating element and the metal heat radiator can be stacked in as many stages as necessary and fixed using aluminum brazing, heat-resistant adhesive, heat-transfer conductive adhesive, or the like. In addition, when cutting and dividing, it is necessary to select a cutting method and conditions so that cutting dust from a metal heat sink such as aluminum does not remain on the cut surface of the ceramic sintered body and impair its electrical characteristics.

このような煩雑な切断条件の設定を避ける方法
の一つとして、セラミツク定温発熱素子を固着す
る場合、切断代に相当する寸法だけ切断位置にお
いて間隔をあけておくことが有効である。この対
策によつてセラミツク定温発熱素子の断面に金属
粉が混入する惧れが全くなくなり製品の信頼性向
上に大いに貢献することが可能である。
As one method to avoid setting such complicated cutting conditions, when fixing ceramic constant temperature heating elements, it is effective to leave a gap at the cutting position by a dimension corresponding to the cutting allowance. By taking this measure, there is no possibility that metal powder will get mixed into the cross section of the ceramic constant temperature heating element, and it can greatly contribute to improving the reliability of the product.

以下、図示の実施例について本発明を詳述す
る。第3図は単位形状を有するセラミツク定温発
熱素子3ケを組合せて、その両面に放熱フインを
取付けて温風ヒータを構成する場合の一例であつ
て、2個の完成品に相当する幅を有し、奥行きは
数10ケに相当するアルミニウム放熱フイン10の
平板面上に多数のセラミツク定温発熱素子11を
図示の如く縦横に並べ、この上からもう1つの放
熱フイン10′を重ね、何れの間も耐熱シリコン
接着剤の薄層を介して加圧接着する。次にこれを
定温発熱体の製品寸法に応じて、図中点線の位置
で一括切断することによつて、第4図に示すよう
な寸法l×tの完成品ユニツトが複数個まとめて
得られる。この場合のセラミツク定温発熱素子1
1の並べ方を第5図に示し、多数のセラミツク定
温発熱素子11を間隔をおかずに縦横に配置して
いる。
The invention will now be described in detail with reference to the illustrated embodiments. Figure 3 shows an example of a hot air heater constructed by combining three fixed-temperature ceramic heating elements each having a unit shape and attaching radiation fins to both sides of the heater. However, a large number of ceramic constant temperature heating elements 11 are arranged vertically and horizontally as shown in the figure on the flat plate surface of an aluminum heat dissipation fin 10 whose depth corresponds to several tens of pieces, and another heat dissipation fin 10' is placed on top of this, and between the two It is also pressure bonded through a thin layer of heat-resistant silicone adhesive. Next, by cutting this at once at the position of the dotted line in the figure according to the product dimensions of the constant temperature heating element, multiple finished product units with dimensions l x t as shown in Fig. 4 can be obtained at once. . Ceramic constant temperature heating element 1 in this case
FIG. 5 shows how the heat generating elements 1 are arranged, in which a large number of ceramic constant temperature heating elements 11 are arranged vertically and horizontally with no gaps between them.

第6図は製品寸法に応じた必要数量毎にまとめ
てセラミツク定温発熱素子11を配置し、その周
辺部に切断代に相当する間隔12を設けておき、
その間隔12部分で矢示の如く一括切断する場合
の一例を示したものである。
In FIG. 6, ceramic constant temperature heating elements 11 are arranged in groups according to the required quantity according to the product dimensions, and a gap 12 corresponding to the cutting allowance is provided around the periphery.
This figure shows an example of a case where cutting is performed at once at 12 intervals as shown by the arrow.

なお第3図及び第4図は金属放熱体としてアル
ミニウム放熱ブロツクの例を示したが、第2図の
ようなアルミ放熱板による場合も全く同様であ
る。
Although FIGS. 3 and 4 show an example of an aluminum heat sink as the metal heat sink, the same applies to an aluminum heat sink as shown in FIG.

また、このような本発明の基本的な特徴が発揮
されれば、細部の差異はセラミツク定温発熱素子
11の電極構成が本発明のような上下両面にあ
り、金属放熱体と直接電気的、熱的に結合される
場合も、また電極がセラミツク定温発熱素子11
の側面に形成され、金属放熱体との短絡を避ける
ために、上下両面にアルミナ薄板などの絶縁板を
介した構造を有する場合など、これと類似のもの
は、何れも本発明の基本的な目的、効果が同一で
あれば同様に考えられ、これら実施例に限定され
るものでなく、類似の技術分野で有効に活用され
るもので、その量産における工数削減によるコス
トダウンと品質の安定化などの効果は大である。
In addition, if the basic features of the present invention are exhibited, the difference in detail is that the electrode structure of the ceramic constant temperature heating element 11 is on both the upper and lower surfaces as in the present invention, and it is directly electrically and thermally connected to the metal heat sink. Also, when the electrodes are connected to the ceramic constant temperature heating element 11,
Any similar structure, such as a structure formed on the side surface of a metal heat sink and having an insulating plate such as an alumina thin plate on both the upper and lower surfaces to avoid short circuit with the metal heat sink, is the basic principle of the present invention. If the purpose and effect are the same, they are considered to be the same, and are not limited to these examples, but can be effectively used in similar technical fields, reducing costs and stabilizing quality by reducing man-hours in mass production. The effects are great.

以上のように本発明の定温発熱体の製造方法に
よれば、単位形状のセラミツク定温発熱素子を作
成するだけで、必要な製品寸法の大きさが得ら
れ、そのため、種々の大きさの製品が必要な場合
でも、複雑な工程が必要なセラミツク定温発熱素
子は1種類だけ作成すれば良く、加工の簡単な金
属の加工だけで安価で簡単にそれに対応できる。
また、金属放熱体を固着しているため、セラミツ
ク定温発熱素子の入力電力が大きくなり、単位個
数当りの発熱量の大きな発熱体を提供できる。
As described above, according to the method for manufacturing a constant temperature heating element of the present invention, the necessary product dimensions can be obtained simply by manufacturing a unit-shaped ceramic constant temperature heating element, and therefore products of various sizes can be manufactured. Even if necessary, only one type of ceramic constant-temperature heating element, which requires complicated processes, needs to be produced, and it can be easily handled at low cost by simply processing metal, which is easy to process.
Furthermore, since the metal heat radiator is fixed, the input power to the ceramic fixed temperature heating element is increased, and a heating element with a large amount of heat generated per unit number can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例を示す斜視図、第3
図及び第4図は本発明の一実施例を示す斜視図、
第5図及び第6図はセラミツク定温発熱素子の配
置を示す説明図である。 10,10′はアルミニウム放熱フイン、11
はセラミツク定温発熱素子、12は間隔である。
Figures 1 and 2 are perspective views showing conventional examples;
FIG. 4 is a perspective view showing an embodiment of the present invention,
FIGS. 5 and 6 are explanatory diagrams showing the arrangement of ceramic constant temperature heating elements. 10, 10' are aluminum heat dissipation fins, 11
12 is a ceramic constant temperature heating element, and 12 is a spacing.

Claims (1)

【特許請求の範囲】[Claims] 1 正のサーミスタ特性を有するセラミツク定温
発熱素子と金属放熱体とを組み合せて成る定温発
熱体の製造に際し、数個で定温発熱体の1個分に
相当する大きさを有する単位形状のセラミツク定
温発熱体を必要数だけ並設し、この片面または両
面に定温発熱体の複数個分に相当する大きさの金
属放熱体を固着し、これを必要段数一体化した
後、定温発熱体の製品寸法に応じて一括切断して
複数個をまとめて得ることを特徴とする定温発熱
体の製造方法。
1. When manufacturing a constant temperature heating element made by combining a ceramic constant temperature heating element with positive thermistor characteristics and a metal heat radiator, a unit-shaped ceramic constant temperature heating element whose size is equivalent to one constant temperature heating element in several pieces is used. After arranging the required number of heat sinks in parallel and fixing a metal heat radiator of a size equivalent to multiple constant temperature heating elements on one or both sides of the metal heat radiating elements, and integrating the required number of stages, the product dimensions of the constant temperature heating elements are adjusted. A method for manufacturing a constant temperature heating element, characterized in that a plurality of pieces are obtained at once by cutting them at once according to the requirements.
JP18649280A 1980-12-26 1980-12-26 Method of producing constant temperature heater Granted JPS57109284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18649280A JPS57109284A (en) 1980-12-26 1980-12-26 Method of producing constant temperature heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18649280A JPS57109284A (en) 1980-12-26 1980-12-26 Method of producing constant temperature heater

Publications (2)

Publication Number Publication Date
JPS57109284A JPS57109284A (en) 1982-07-07
JPS6412074B2 true JPS6412074B2 (en) 1989-02-28

Family

ID=16189427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18649280A Granted JPS57109284A (en) 1980-12-26 1980-12-26 Method of producing constant temperature heater

Country Status (1)

Country Link
JP (1) JPS57109284A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226641A (en) * 1975-08-25 1977-02-28 Omron Tateisi Electronics Co Heating elements

Also Published As

Publication number Publication date
JPS57109284A (en) 1982-07-07

Similar Documents

Publication Publication Date Title
JP2636119B2 (en) Thermoelectric element sheet and manufacturing method thereof
JP6439149B2 (en) Chip resistor
JP2003124531A (en) Thermoelectric module
US20110220638A1 (en) Finned ceramic heater
KR102332126B1 (en) Heat conversion device
KR102652904B1 (en) Thermo electric element
KR102395226B1 (en) Flexible thermoelectric module
WO2012140652A1 (en) Anodized aluminum substrate
JPS6412074B2 (en)
JPS60127770A (en) Thermoelectric generating element
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
JPH04101472A (en) Cooler
KR102316222B1 (en) Heat conversion device
CN110164826A (en) A kind of power module and electronic equipment
JPH0724796Y2 (en) High temperature plate heater
JPS633163Y2 (en)
JPH11121149A (en) Flat heating device
JPH0715962B2 (en) Semiconductor device
JPH0646075Y2 (en) PTC thermistor heating device
JPS5910712Y2 (en) Heating element device using positive temperature coefficient thermistor
KR102623742B1 (en) Thermoelectric module
JP2004200270A (en) Thermoelectric module
JPS5864075A (en) Manufacture of thermopile
JPS5839042A (en) Semiconductor heater
JPH10321355A (en) Planar heating unit