JPH10321355A - Planar heating unit - Google Patents

Planar heating unit

Info

Publication number
JPH10321355A
JPH10321355A JP14847497A JP14847497A JPH10321355A JP H10321355 A JPH10321355 A JP H10321355A JP 14847497 A JP14847497 A JP 14847497A JP 14847497 A JP14847497 A JP 14847497A JP H10321355 A JPH10321355 A JP H10321355A
Authority
JP
Japan
Prior art keywords
heating
heat
base material
resistor
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14847497A
Other languages
Japanese (ja)
Inventor
Atsushi Murase
淳 村瀬
Hiroto Sato
弘人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP14847497A priority Critical patent/JPH10321355A/en
Publication of JPH10321355A publication Critical patent/JPH10321355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar heating unit capable of instantaneously transmitting heat generated in a heating resistor to a heating base material, heating the heating base material to the specified temperature in a short time to quicken a temperature rising speed, quickly changing a setting temperature, and uniformly heating substances to be heated. SOLUTION: The heating unit is formed by stacking three members of a heat transmitting base material 3 in which an insulating film 22 formed by curing resin containing at least alumina as inorganic powder is formed on its one surface and a heating resistor 4 is sintered on the insulating film 22, a substrate 1 in which the surface at least facing the heating resistor 4 has insulating capability, and a heating base material 5 arranged on the other surface, where the heating resistor 4 is not formed, of the heat transmitting base material 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、例えば半導体ウエ
ハや液晶基盤の加熱に用いられる面状加熱装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar heating device used for heating, for example, a semiconductor wafer or a liquid crystal substrate.

【0002】[0002]

【従来の技術】通常、半導体ウエハや液晶基盤の製造工
程では、ウエハや液晶基盤にパターンを焼き付け、洗浄
処理を行い、その後、このウエハや液晶基盤を所定の温
度に加熱して次工程に進むようになっている。この時に
使用される従来の加熱装置は、ウエハや液晶基盤のよう
に板状のものを加熱装置の加熱板の上に載置し、その裏
面から加熱するので、面状加熱装置と呼ばれることがあ
る。
2. Description of the Related Art Normally, in a process of manufacturing a semiconductor wafer or a liquid crystal substrate, a pattern is printed on the wafer or the liquid crystal substrate, a cleaning process is performed, and then the wafer or the liquid crystal substrate is heated to a predetermined temperature and the process proceeds to the next step. It has become. The conventional heating device used at this time is called a planar heating device because a plate-like object such as a wafer or a liquid crystal substrate is placed on a heating plate of the heating device and heated from the back surface. is there.

【0003】従来の面状加熱装置について図5を用いて
説明する。アルミニウムよりなる基体6の上面にはマイ
カヒータ7が形成され、このマイカヒータ7を挟むよう
にその上面に加熱板であるアルミニウム製の加熱基材8
が配置されている。そして、ウエハや液晶基盤等の非加
熱物が1枚ずつ加熱基材8上に載置されて、マイカヒー
タ7から発生する熱によって所定の温度に加熱される。
A conventional planar heating device will be described with reference to FIG. A mica heater 7 is formed on the upper surface of a base 6 made of aluminum, and an aluminum heating substrate 8 serving as a heating plate is formed on the upper surface so as to sandwich the mica heater 7.
Is arranged. Then, non-heated objects such as wafers and liquid crystal substrates are placed one by one on the heating base material 8 and heated to a predetermined temperature by the heat generated from the mica heater 7.

【0004】マイカヒータについて図6を用いて詳細に
説明する。マイカヒータは、マイカ板71の一方の面に
エッチングによって凹部が形成され、その凹部内にSU
S製の薄い金属箔でできた発熱抵抗体hが配置され、こ
の発熱抵抗体hを挟むように、その上から同一材質の別
のマイカ板72が配置されている。そして、発熱抵抗体
hから発生した熱が、上方のマイカ板72に伝わり、こ
の熱が更に上方の加熱基材8に伝わり、非加熱物を加熱
するものである。
[0004] The mica heater will be described in detail with reference to FIG. In the mica heater, a concave portion is formed on one surface of the mica plate 71 by etching, and the SU
A heating resistor h made of a thin metal foil made of S is arranged, and another mica plate 72 of the same material is arranged above the heating resistor h so as to sandwich the heating resistor h. Then, the heat generated from the heating resistor h is transmitted to the upper mica plate 72, and this heat is further transmitted to the upper heating base material 8 to heat the non-heated material.

【0005】一方、図7に示すように、面状加熱装置の
熱源として、マイカヒータに代えて、導電性発熱ペース
トを加熱板の非処理物が載置される側とは反対側の面に
直接焼成して発熱抵抗体を形成し、この発熱抵抗体を熱
源としたものがある。このような技術は、特開平8−2
27245号に示されている。
On the other hand, as shown in FIG. 7, instead of a mica heater, a conductive heat-generating paste is directly applied to the surface of the heating plate opposite to the side on which the non-processed material is placed as the heat source of the planar heating device. There is a type in which a heating resistor is formed by firing and this heating resistor is used as a heat source. Such a technique is disclosed in Japanese Unexamined Patent Application Publication No.
No. 27245.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
マイカヒータを熱源とする面状加熱装置の場合、以下の
ような問題があった。発熱抵抗体hを覆う板71,72
は高い絶縁性が要求されるので、マイカが使用されてい
るが、マイカは熱伝導率が極めて低く、具体的には0.
55〜0.79〔k×(W・m-1・K-1-1〕程度であ
るので、発熱抵抗体hに電流を流しても、直ぐにはマイ
カヒータ7の温度が上がらず、短時間では発熱抵抗体h
の熱が加熱基材8に伝わらない、という問題があった。
However, the conventional planar heating apparatus using a mica heater as a heat source has the following problems. Plates 71 and 72 covering heating resistor h
Since high insulation properties are required, mica is used. However, mica has a very low thermal conductivity.
Since it is about 55 to 0.79 [k × (W · m −1 · K −1 ) −1 ], even if a current flows through the heating resistor h, the temperature of the mica heater 7 does not immediately rise, and Then the heating resistor h
Is not transmitted to the heating base material 8.

【0007】また、加熱基材8は、複数の非加熱物を連
続して加熱する場合、大量の熱が奪われるので、加熱基
材8の厚みを厚くして熱容量を大きくし、大量の熱が奪
われても、加熱基材8の温度が極端に下がらないような
構造をとっていた。このような構造では、マイカヒータ
7の昇温スピードが遅い上に、さらに、加熱基材8の熱
容量が大きいので、発熱抵抗体hに電流を流しても、直
ぐには加熱基材8が所定の温度に到達しなかった。具体
的には、加熱基材8の表面積が450cm2 、発熱抵抗
体hが2.5(W/cm2 )の面状発熱装置では、加熱
基材8の温度が30℃から150℃に上昇するのに、約
30分かかっていた。
When a plurality of non-heated materials are successively heated, a large amount of heat is taken away from the heating substrate 8. Therefore, the heating substrate 8 is increased in thickness to increase the heat capacity, thereby increasing the amount of heat. , The temperature of the heating base material 8 does not drop extremely. In such a structure, the heating rate of the mica heater 7 is low, and the heat capacity of the heating base 8 is large. Did not reach. Specifically, in a planar heating device in which the surface area of the heating base 8 is 450 cm 2 and the heating resistor h is 2.5 (W / cm 2 ), the temperature of the heating base 8 rises from 30 ° C. to 150 ° C. It took about 30 minutes to do.

【0008】また、ウエハや液晶基盤等の非加熱物は、
加熱工程において種々の設定温度で加熱されるものであ
り、このような面状加熱装置では、マイカヒータ7の昇
温スピードが遅く、また、加熱基材8の熱容量が大きい
ので、ある一定温度から更に高い温度に設定しようとす
ると、迅速に加熱基材8の温度を上げることができなか
った。反対に、ある一定温度から低い温度に設定しよう
とすると、加熱基材8の熱容量が大きいので、加熱基材
8の放熱に時間がかかり、この場合においても、迅速に
加熱基材8の温度を下げることができなかった。つま
り、マイカヒータを熱源とした従来の面状加熱装置で
は、設定温度が異なる加熱工程に迅速に対応することが
できなった。
[0008] Non-heated objects such as wafers and liquid crystal substrates are:
Heating is performed at various set temperatures in the heating step. In such a planar heating device, the temperature rising speed of the mica heater 7 is slow, and the heat capacity of the heating base material 8 is large. When trying to set a high temperature, the temperature of the heating base material 8 could not be quickly raised. Conversely, if it is attempted to set the temperature from a certain temperature to a low temperature, the heat capacity of the heating base 8 is large, so that it takes time to radiate the heat from the heating base 8. I couldn't lower it. In other words, the conventional planar heating device using the mica heater as a heat source cannot quickly respond to a heating step having a different set temperature.

【0009】さらには、前述したようにマイカ板71,
72は熱伝導率が極めて低く、加熱基材8の熱容量が大
きいので、加熱基材8の非加熱物を載置する面の温度を
均一にすることは容易ではなかった。
Further, as described above, the mica plate 71,
No. 72 has a very low thermal conductivity and a large heat capacity of the heating base material 8, so that it is not easy to make the temperature of the surface of the heating base material 8 on which the non-heated material is placed uniform.

【0010】また、図7の導電性発熱ペーストを焼成し
て発熱抵抗体を形成し、これを熱源とする従来の面状加
熱装置の場合、以下のような問題があった。導電性発熱
ペーストは約450℃という高温で焼成されて発熱抵抗
体となるが、この焼成工程において、加熱板が高熱にな
り歪みが発生し、非加熱物を載置する面が湾曲し、非加
熱物をこの加熱板に載置した場合、非加熱物が加熱板に
接触する部分と接触しない部分ができてしまい、結果的
に、非加熱物を均一な温度に加熱することができなくな
る、という問題があった。
Further, in the case of a conventional planar heating device in which a heating resistor is formed by firing the conductive heating paste of FIG. 7 and this is used as a heat source, there are the following problems. The conductive heat-generating paste is fired at a high temperature of about 450 ° C. to become a heat-generating resistor. In this firing step, the heating plate becomes hot and distorted, and the surface on which the non-heated object is placed is curved, and the non-heated object is curved. When the heated object is placed on the heating plate, a portion where the non-heated object comes into contact with the portion that contacts the heating plate is formed, and as a result, the non-heated object cannot be heated to a uniform temperature. There was a problem.

【0011】本発明は、以上のような事情に基づいてな
されたものであって、その目的は、発熱抵抗体で発生し
た熱が瞬時に加熱板に伝わり、加熱板が短時間で所定の
温度に到達して昇温スピードを早めることができ、なお
かつ、設定温度を迅速に変更することができ、非加熱物
を均一に加熱することができる面状加熱装置を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to instantaneously transmit heat generated by a heating resistor to a heating plate, and to heat the heating plate to a predetermined temperature in a short time. The present invention is to provide a planar heating device which can speed up the temperature rising speed by reaching the temperature, and can quickly change the set temperature, and can uniformly heat the non-heated material.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の面状加熱装置は、一方の表面に無
機粉体として少なくともアルミナを含む樹脂を硬化して
なる絶縁膜が形成され、その絶縁膜上に発熱抵抗体が焼
成された伝熱基材と、少なくとも前記発熱抵抗体と対向
する表面が絶縁性をもった基体と、前記伝熱基材の発熱
抵抗体が形成されていない他方の表面に配置される加熱
基材と、よりなる3部材を重ね合わせて固定したことを
特徴とする。
According to a first aspect of the present invention, there is provided a planar heating apparatus comprising: an insulating film formed by curing a resin containing at least alumina as an inorganic powder on one surface; The heat transfer base is formed, and a heating resistor is fired on the insulating film, a base having at least a surface facing the heating resistor having an insulating property, and the heating resistor of the heat transfer base are formed. It is characterized in that a heating base material arranged on the other surface, which is not formed, and three members made of the same are overlapped and fixed.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は、本発明の面状加熱装置の斜視
図であり、図2は図1におけるX−X方向の断面図であ
る。本発明の面状加熱装置は、一方の表面に無機粉体と
して少なくともアルミナを含む樹脂を硬化してなる絶縁
膜22が形成され、その絶縁膜22上に発熱抵抗体4が
焼成された伝熱基材3と、この発熱抵抗体4と対向する
表面に絶縁膜21が形成された基体1と、伝熱基材3の
発熱抵抗体4が形成されていない他方の表面に配置され
る加熱基材5と、よりなる3部材を重ね合わせて固定し
た構造である。そして、加熱板である加熱基材5の表面
に、ウエハあるいは液晶基盤等の非加熱物を載置して、
加熱するものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the planar heating device of the present invention, and FIG. 2 is a cross-sectional view taken along the line XX in FIG. In the planar heating device of the present invention, an insulating film 22 formed by curing a resin containing at least alumina as an inorganic powder is formed on one surface, and a heat transfer element in which the heating resistor 4 is fired on the insulating film 22 is formed. A base member 3 having an insulating film 21 formed on a surface facing the heating resistor 4; and a heating substrate disposed on the other surface of the heat transfer base member 3 where the heating resistor 4 is not formed. This is a structure in which a member 5 and three members made of the material 5 are overlapped and fixed. Then, a non-heated object such as a wafer or a liquid crystal substrate is placed on the surface of the heating base material 5 which is a heating plate.
It is to be heated.

【0014】基体1は、面状加熱装置の基体となるもの
であり、本実施例では、厚さ1mmのSUS板であり、
発熱抵抗体4と接触する一方の表面に絶縁膜21が形成
されている。この絶縁膜21は発熱抵抗体4と基体1と
の絶縁性を確保するものであればよく、具体的には、厚
さ150μmの無機粉体としてアルミナを含むオルガノ
ポリシロキサン樹脂を硬化してなる膜である。なお、本
実施例では、基体1は金属製のSUS板を用いたが、少
なくとも発熱抵抗体4と接触する表面が絶縁物であれば
よく、基体1全体が絶縁性のセラミック板であっても良
い。
The substrate 1 is a substrate of the planar heating device. In this embodiment, the substrate 1 is a SUS plate having a thickness of 1 mm.
An insulating film 21 is formed on one surface in contact with the heating resistor 4. The insulating film 21 may be any as long as it secures insulation between the heating resistor 4 and the base 1, and is specifically formed by curing an organopolysiloxane resin containing alumina as an inorganic powder having a thickness of 150 μm. It is a membrane. In the present embodiment, the base 1 is made of a metal SUS plate. However, at least the surface in contact with the heating resistor 4 may be an insulator, and even if the entire base 1 is an insulating ceramic plate. good.

【0015】伝熱基材3は、一方の表面に絶縁膜22が
形成されており、この絶縁膜22の表面に発熱抵抗体4
が形成されている。この絶縁膜22は発熱抵抗体4と伝
熱基材3との絶縁性を確保するとともに、発熱抵抗体4
で発生した熱を良好に伝熱基材3に伝えるものであり、
具体的には、熱伝導率が21〔k×(W・m-1・K-1
-1〕の厚さ150μmの無機粉体としてアルミナを含む
オルガノポリシロキサン樹脂を硬化してなる膜である。
すなわち、絶縁膜22に分散されたアルミナがマイカと
比較して著しく熱伝導率が高いので、発熱抵抗体4で発
生した熱を良好に伝熱基材3に伝えるものである。ま
た、伝熱基材3は、発熱抵抗体4で発生した熱を良好に
上方の加熱基材5に伝えるものであり、具体的には、厚
さ0.5mmのSUS板である。
The heat transfer substrate 3 has an insulating film 22 formed on one surface thereof, and a heat generating resistor 4 on the surface of the insulating film 22.
Are formed. The insulating film 22 secures insulation between the heating resistor 4 and the heat transfer base 3, and also forms the heating resistor 4.
The heat generated by the heat transfer to the heat transfer base material 3,
Specifically, the thermal conductivity is 21 [k × (W · m −1 · K −1 )
[-1 ] is a film obtained by curing an organopolysiloxane resin containing alumina as an inorganic powder having a thickness of 150 μm.
That is, since the alumina dispersed in the insulating film 22 has a significantly higher thermal conductivity than mica, the heat generated in the heat generating resistor 4 is transmitted to the heat transfer base material 3 in a good manner. Further, the heat transfer base material 3 is a material that satisfactorily transmits the heat generated by the heat generating resistor 4 to the upper heating base material 5, and is specifically a SUS plate having a thickness of 0.5 mm.

【0016】この伝熱基材3の絶縁膜22上には、熱源
となる発熱抵抗体4が形成されている。発熱抵抗体4
は、発熱抵抗物質である銀−パラジウム合金を含む導電
性発熱ペーストを絶縁膜22上に焼成し、図3に示すよ
うに、任意の幅で螺旋状に形成されている。この発熱抵
抗体4は、温度に対する抵抗値の変化がほとんどなく、
通電開始時直後から所定の発熱が始まるものである。具
体的には、単位面積当たりの発熱量(W/cm2 )が
0.5〜5.0であり、本実施例では、単位面積当たり
の発熱量(W/cm2 )が2.2の発熱抵抗体である。
そして、図3に示すように、外縁部側の発熱抵抗体4a
は内部側の発熱抵抗体4bに比べ幅を広くしている。こ
れは、面状加熱装置の外縁部からの放熱を考慮して、こ
の部分の熱量を増やすためである。なお、外縁部側の発
熱抵抗体4aの発熱量を増やす方法は、幅を広くする以
外に、発熱率の異なる発熱抵抗体を用いても良い。
On the insulating film 22 of the heat transfer base 3, a heating resistor 4 serving as a heat source is formed. Heating resistor 4
Is formed by baking a conductive heat-generating paste containing a silver-palladium alloy as a heat-resisting substance on the insulating film 22 and forming a spiral with an arbitrary width as shown in FIG. This heating resistor 4 has almost no change in resistance value with respect to temperature.
Predetermined heat generation starts immediately after the start of energization. Specifically, the calorific value per unit area (W / cm 2 ) is 0.5 to 5.0, and in the present embodiment, the calorific value per unit area (W / cm 2 ) is 2.2 to 5.0. It is a heating resistor.
Then, as shown in FIG. 3, the heating resistor 4a on the outer edge portion side
Are wider than the internal heating resistor 4b. This is because the amount of heat in this portion is increased in consideration of heat radiation from the outer edge of the planar heating device. As a method of increasing the amount of heat generated by the heat generating resistor 4a on the outer edge portion, a heat generating resistor having a different heat generation rate may be used in addition to increasing the width.

【0017】なお、伝熱基材3は、伝熱基材3上に導電
性発熱ペーストを約450℃という高温で焼成して発熱
抵抗体4を形成しても歪みや湾曲が発生しにくいものが
望ましく、具体的には、SUS板やセラミック板であ
る。
The heat-transfer substrate 3 is such that even if a heat-generating resistor 4 is formed by baking a conductive heat-generating paste on the heat-transfer substrate 3 at a high temperature of about 450.degree. It is preferable to use a SUS plate or a ceramic plate.

【0018】加熱板である加熱基材5は、熱伝導率が高
く、非加熱物が載置される表面の平面度が高いものであ
り、具体的には、熱伝導率236〔k×(W・m-1・K
-1-1〕の厚さ2mmのアルミニウム板である。
The heating substrate 5 as a heating plate has a high thermal conductivity and a high flatness on a surface on which an unheated object is placed. Specifically, the thermal conductivity is 236 [k × ( W ・ m -1・ K
-1 ) -1 ] is an aluminum plate having a thickness of 2 mm.

【0019】そして、図4に示すように、基体1と伝熱
基材3が、基体1に形成された絶縁膜21と伝熱基材3
に形成された発熱抵抗体4が向き合うように配置され、
また、伝熱基材3の上方に加熱基材5が配置され、それ
ぞれを不図示の熱伝導率が高い接着剤あるいはネジ等で
固定して面状加熱装置となる。
Then, as shown in FIG. 4, the base 1 and the heat transfer base 3 are made of an insulating film 21 formed on the base 1 and the heat transfer base 3.
Are arranged so that the heating resistors 4 formed in
Further, the heating base material 5 is disposed above the heat transfer base material 3 and each is fixed with an adhesive or a screw or the like having a high thermal conductivity (not shown) to form a planar heating device.

【0020】本発明の面状加熱装置によれば、伝熱基材
3に形成された絶縁膜22は、絶縁膜22中にアルミナ
が分散しているので、従来のマイカヒータのマイカ板と
比較して熱伝導率が40倍も高く、発熱抵抗体4で発生
した熱が瞬時に伝熱基材3に伝わり、加熱基材5が伝熱
基材3と直接或いは熱伝導率の高い接着剤によって固定
されて配置されているので、伝熱基材3に伝わった熱が
瞬時に加熱基材5に伝わり、よって、発熱抵抗体4に電
流を流すと瞬時に加熱基材5に熱を伝えることができ
る。
According to the planar heating device of the present invention, since the insulating film 22 formed on the heat transfer base material 3 has alumina dispersed in the insulating film 22, it can be compared with the mica plate of the conventional mica heater. The heat conductivity is 40 times higher, and the heat generated by the heating resistor 4 is instantaneously transmitted to the heat transfer base 3, and the heat base 5 is directly connected to the heat transfer base 3 or by an adhesive having a high heat conductivity. Since it is fixedly arranged, the heat transmitted to the heat transfer base 3 is instantaneously transmitted to the heating base 5, and therefore, when the current flows through the heating resistor 4, the heat is immediately transmitted to the heating base 5. Can be.

【0021】また、発熱抵抗体4から発生する熱が瞬時
に加熱基材5に伝わり加熱することができるので、複数
の非加熱物を連続して加熱しても加熱基材5の温度低下
がなく、従来のように熱容量の大きな加熱基材を用いる
必要がなく、よって、短時間で加熱基材5が所定の温度
に到達し、昇温スピードを早めることができる。
Further, since the heat generated from the heating resistor 4 is instantaneously transmitted to the heating base 5 and can be heated, the temperature of the heating base 5 does not decrease even if a plurality of unheated objects are continuously heated. In addition, there is no need to use a heating base material having a large heat capacity as in the related art, and therefore, the heating base material 5 reaches a predetermined temperature in a short time, and the temperature rising speed can be increased.

【0022】具体的には、加熱基材5の表面積が450
cm2 、発熱抵抗体4の単位面積当たりの発熱量(W/
cm2 )が2.2の本実施例の面状発熱装置では、加熱
基材の温度が30℃から150℃に上昇するのに、約5
分となり、マイカヒータを熱源とする従来の面状加熱装
置と比べ、昇温スピードを25分も短縮することができ
た。
Specifically, the surface area of the heating substrate 5 is 450
cm 2 , the heating value per unit area of the heating resistor 4 (W /
cm 2 ) is 2.2, the temperature of the heating base material rises from 30 ° C. to 150 ° C., but about 5 ° C.
The heating speed was reduced by 25 minutes as compared with the conventional planar heating device using a mica heater as a heat source.

【0023】さらに、ウエハや液晶基盤等の非加熱物を
種々の設定温度で加熱する場合でも、上述したように、
発熱抵抗体4から発生する熱が瞬時に加熱基材5に伝わ
り昇温スピードが早く、また、加熱基材5の熱容量が小
さいので、ある一定温度から任意の設定温度に、迅速に
加熱基材3の温度を変更することがことができる。
Further, even when an unheated object such as a wafer or a liquid crystal substrate is heated at various set temperatures, as described above,
The heat generated from the heat generating resistor 4 is instantaneously transmitted to the heating base material 5 and the heating speed is fast, and the heat capacity of the heating base material 5 is small. 3 can be changed.

【0024】また、伝熱基材3は発熱抵抗体4で発生し
た熱を拡散して上方の加熱基材5に伝える作用を有する
ものであり、加熱基材5の温度を均一にすることができ
る。
The heat transfer base 3 has a function of diffusing the heat generated by the heat generating resistor 4 and transmitting it to the upper heating base 5, so that the temperature of the heating base 5 can be made uniform. it can.

【0025】また、発熱抵抗体4は加熱板である加熱基
材5に直接形成されておらず、伝熱基材3に焼成によっ
て形成され、その後、加熱基材5と伝熱基材3を重ね合
わせて面状加熱装置としているので、焼成時に加熱基材
5に歪みや湾曲が発生することがなく、さらに、発熱抵
抗体を形成するために導電性発熱ペーストを焼成すると
いう高温状況下では歪みや湾曲が発生してしまい従来で
は用いることのできなかった銅や真鍮を加熱基材5とし
て使用できるようになり、加熱基材5が熱伝導率の高い
ものとなり、発熱抵抗体4で発生した熱をさらに効率良
く非加熱物の加熱に利用できるようになった。
The heating resistor 4 is not formed directly on the heating base 5 which is a heating plate, but is formed on the heat transfer base 3 by firing. Since the sheet heating device is superposed, the heating base 5 is not distorted or curved at the time of firing, and further, under a high temperature condition in which the conductive heating paste is fired to form a heating resistor. Copper or brass, which could not be used in the past because of distortion and bending, can now be used as the heating base 5, and the heating base 5 has a high thermal conductivity and is generated by the heating resistor 4. The heat thus generated can be used more efficiently for heating non-heated materials.

【0026】[0026]

【発明の効果】本発明の面状加熱装置によれば、伝熱基
材上に形成された無機粉体としてアルミナを含む樹脂を
硬化してなる絶縁膜上に発熱抵抗体が形成されているの
で、発熱抵抗体で発生した熱が瞬時に伝熱基材に伝わ
り、また、加熱基材が伝熱基材上に配置されているので
伝熱基材に伝わった熱が瞬時に加熱基材に伝わる。さら
に、従来のように熱容量の大きな加熱基材を用いる必要
がないので、短時間で加熱基材が所定の温度に到達し、
昇温スピードを早めることができる。そして、非加熱部
材を種々の設定温度で加熱する場合でも、発熱抵抗体で
発生した熱が瞬時に加熱基材に伝わり、また、加熱基材
の熱容量が小さいので、ある一定温度から任意の設定温
度に迅速に加熱基材の温度を変更することができる。
According to the planar heating device of the present invention, a heating resistor is formed on an insulating film obtained by curing a resin containing alumina as an inorganic powder formed on a heat transfer substrate. Therefore, the heat generated by the heat generating resistor is instantaneously transmitted to the heat transfer base, and the heat transmitted to the heat transfer base is instantly It is transmitted to. Furthermore, since it is not necessary to use a heating base material having a large heat capacity as in the past, the heating base material reaches a predetermined temperature in a short time,
The heating speed can be increased. Even when the non-heated member is heated at various set temperatures, the heat generated by the heating resistor is instantaneously transmitted to the heating base material, and the heat capacity of the heating base material is small, so that a predetermined temperature can be set to a desired value. The temperature of the heating substrate can be quickly changed to the temperature.

【0027】また、伝熱基材は発熱抵抗体で発生した熱
を拡散する効果があり、この結果、金属基材の温度を均
一にすることができる。
Further, the heat transfer base material has an effect of diffusing the heat generated by the heating resistor, and as a result, the temperature of the metal base material can be made uniform.

【0028】さらに、発熱抵抗体が直接加熱基材に形成
されないので、加熱基材に歪み湾曲が発生せず、また、
加熱基材として、銅や真鍮などの熱伝導率の高い物質を
選択することができ効率良く非加熱物を加熱することが
できる。
Further, since the heating resistor is not formed directly on the heating base, no distortion and bending occur in the heating base.
As the heating base material, a substance having a high thermal conductivity such as copper or brass can be selected, and the non-heated material can be efficiently heated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の面状加熱装置の斜視図である。FIG. 1 is a perspective view of a planar heating device according to the present invention.

【図2】図1におけるX−X方向の断面図である。FIG. 2 is a sectional view taken along the line XX in FIG.

【図3】本発明の面状加熱装置の発熱抵抗体の説明図で
ある。
FIG. 3 is an explanatory diagram of a heating resistor of the planar heating device of the present invention.

【図4】本発明の面状加熱装置の基体と伝熱基材と加熱
基材との関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship among a substrate, a heat transfer substrate, and a heating substrate of the planar heating device of the present invention.

【図5】従来の面状加熱装置の断面図である。FIG. 5 is a cross-sectional view of a conventional planar heating device.

【図6】従来の面状加熱装置のマイカヒータの説明図で
ある。
FIG. 6 is an explanatory view of a mica heater of a conventional planar heating device.

【図7】熱源として発熱抵抗体を用いた従来の面状加熱
装置の説明図である。
FIG. 7 is an explanatory view of a conventional planar heating device using a heating resistor as a heat source.

【符号の説明】[Explanation of symbols]

1 基体 21 絶縁膜 22 絶縁膜 3 伝熱基材 4 発熱抵抗体 5 加熱基材 DESCRIPTION OF SYMBOLS 1 Base 21 Insulating film 22 Insulating film 3 Heat transfer base 4 Heating resistor 5 Heating base

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の表面に無機粉体として少なくとも
アルミナを含む樹脂を硬化してなる絶縁膜が形成され、
その絶縁膜上に発熱抵抗体が焼成された伝熱基材と、 少なくとも前記発熱抵抗体と対向する表面が絶縁性をも
った基体と、 前記伝熱基材の発熱抵抗体が形成されていない他方の表
面に配置される加熱基材と、 よりなる3部材を重ね合わせて固定したことを特徴とす
る面状加熱装置。
An insulating film formed by curing a resin containing at least alumina as an inorganic powder on one surface;
A heat transfer substrate having a heating resistor fired on the insulating film; a substrate having at least a surface facing the heating resistor having an insulating property; and a heating resistor of the heat transfer substrate not being formed. A planar heating device comprising: a heating base material disposed on the other surface;
JP14847497A 1997-05-23 1997-05-23 Planar heating unit Pending JPH10321355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14847497A JPH10321355A (en) 1997-05-23 1997-05-23 Planar heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14847497A JPH10321355A (en) 1997-05-23 1997-05-23 Planar heating unit

Publications (1)

Publication Number Publication Date
JPH10321355A true JPH10321355A (en) 1998-12-04

Family

ID=15453568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14847497A Pending JPH10321355A (en) 1997-05-23 1997-05-23 Planar heating unit

Country Status (1)

Country Link
JP (1) JPH10321355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250313A (en) * 2006-03-15 2007-09-27 Sumitomo Electric Ind Ltd Heater unit for manufacturing and inspecting semiconductor and flat display panel, and device equipped with it
JP2011187257A (en) * 2010-03-08 2011-09-22 Sumitomo Electric Ind Ltd Heater device and heater-mounted device
JP2011222257A (en) * 2010-04-08 2011-11-04 Sumitomo Electric Ind Ltd Wafer heating heater unit and semiconductor manufacturing apparatus mounted with the same
JP2011222256A (en) * 2010-04-08 2011-11-04 Sumitomo Electric Ind Ltd Wafer heating heater unit and semiconductor manufacturing apparatus mounted with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250313A (en) * 2006-03-15 2007-09-27 Sumitomo Electric Ind Ltd Heater unit for manufacturing and inspecting semiconductor and flat display panel, and device equipped with it
JP2011187257A (en) * 2010-03-08 2011-09-22 Sumitomo Electric Ind Ltd Heater device and heater-mounted device
JP2011222257A (en) * 2010-04-08 2011-11-04 Sumitomo Electric Ind Ltd Wafer heating heater unit and semiconductor manufacturing apparatus mounted with the same
JP2011222256A (en) * 2010-04-08 2011-11-04 Sumitomo Electric Ind Ltd Wafer heating heater unit and semiconductor manufacturing apparatus mounted with the same

Similar Documents

Publication Publication Date Title
KR20140089419A (en) Heater, and fixing device and drying device provided with same
JPH0855673A (en) Positive temperature coefficient thermister heat generating device
US3495328A (en) Electric heating unit
WO2001019139A1 (en) Ceramic heater
JPH10214675A (en) Ceramic heater
JPH11121149A (en) Flat heating device
JPH10321355A (en) Planar heating unit
JPH07282961A (en) Heater
CN107615879B (en) Heater, fixing device provided with same, image forming apparatus, and heating device
JP3935017B2 (en) Ceramic heater
JP2001297977A (en) Quick heating and cooling plate
RU2074520C1 (en) Electric heater and resistive layer material for this heater
RU2051474C1 (en) Plate-type electric heater
JP2011096464A (en) Ceramic heater, heating device, and image forming apparatus
JPH09320743A (en) Ceramic heater
JPH06282188A (en) Heater device
JP2005183272A (en) Film-like heater and manufacturing method thereof
JP3119620B2 (en) Heater unit and heat treatment furnace
CN113383616A (en) Aluminum nitride heater and manufacturing method thereof
JP2959629B2 (en) Positive-characteristic thermistor heating element and method of manufacturing positive-characteristic thermistor heating element
JP3067396B2 (en) Rapid heating type PTC thermistor heating device
JPH1032081A (en) Surface heater
JP3183196B2 (en) Positive characteristic thermistor heating element
JP4384473B2 (en) Manufacturing method of thermal head
JPH02155188A (en) Positive temperature coefficient thermistor heating element