【発明の詳細な説明】[Detailed description of the invention]
産業分野
この発明は、リードフレーム等に使用するFe
―Ni系封着合金に係り、打抜性、切断加工性及
び耐応力腐食割れ性にすぐれたFe―Ni系封着合
金に関する。
背景技術
一般に、38〜55wt%Ni―Fe合金は、ガラス,
セラミツクスの熱膨張特性と近似していることか
ら、薄板や細線に加工したのち、所要形状に打抜
きあるいはエツチング加工されて、ICや表示素
子等のリードフレーム、また、IC,トランジス
タ,リードスイツチのリード等に多用されてお
り、製造に際しては、連続して大量に生産されて
いる。
上記のリードフレームやリードなどは非常に微
細なパターンで極めて高い寸法精度が要求されて
いるため、高速プレスによる打抜加工では、従来
のFe―Ni系封着合金は打抜加工性が悪く、成形
金型の摩耗が激しく、プレス金型の修正や研摩等
の頻度が甚しく、生産能率の低下によつて製品コ
ストの高騰をもたらす問題があつた。
また、従来のFe―Ni系封着合金は、塩素イオ
ン環境下で応力腐食割れを起し易いことが知られ
ており、I・Cのリードフレームの製造工程では
酸洗,めつきされるので、このような環境下での
耐食性の向上が望まれていた。
発明の目的
この発明は、プレス打抜性や切断加工性を改善
し、耐応力腐食割れ性のすぐれたFe―Ni系封着
合金を目的としている。
発明の構成と効果
この発明は、Fe―Ni系封着合金の打抜性や切
断加工性及び耐応力腐食割れ性の改善を目的に合
金組成等を種々検討した結果、合金の成分組成を
特定し、かつ組織内に均一に分散するMn,Si,
Mo及びAl,Zr,Ca,Mg,R・Eの窒化物、炭
化物、酸化物、硫化物等の非金属介在物の大きさ
を特定することにより、Fe―Ni系封着合金の打
抜性,切断加工性及び耐応力腐食割れ性が著しく
向上することを知見したものである。
すなわち、この発明は、Ni 38〜55wt%、
Si 0.05〜0.50wt%、
C 0.05wt%以下、
Mn 0.05〜1.00wt%、
Mo 0.05〜0.50wt%、
S 0.003〜0.025wt%、但し、Mn/S≧10、
O 100ppm以下、N 50ppm以下、を含有し、
あるいはさらに、Al,Zr,Ca,Mg,R・Eの
うち少なくとも1種を0.0005〜0.10wt%を含有
し、
残部はFe及び不可避的不純物からなり、
Si,Mn,Mo及びAl,Zr,Ca,Mg,R・E
の酸化物、窒化物、炭化物、硫化物等の3μm以下
の微細非金属介在物が、組織内に均一に分散する
ことを特徴とする打抜性及び耐応力腐食割れ性の
良好なるFe―Ni系封着合金である。
一般に、Fe―Ni系封着合金をダイス,ポンチ
により打抜,切断した場合の切断面状況は、第1
図に示す如く、被打抜材の平面部1より連続した
ダレ面2、剪断面3、破断面4、そしてカエリ面
5とからなつており、この場合のポンチの移動距
離であるポンチストロークlと切断に要する力で
ある剪断抵抗Rとの関係は、第2図のごとき曲線
となることが知られている。
第2図において、最大剪断抵抗が小さく、かつ
破断までのポンチストロークが小さいほど、切断
に要するエネルギーが小さく、金型に加わる負荷
が小さくなり、金型寿命が長くなるが、この最大
剪断抵抗は、被打抜材の引張強さ、硬度等の機械
的強度により決定され、また、切断までのポンチ
ストロークと、(剪断面厚み/板厚)はほぼ正比
例する。
また、(剪断面厚み/板厚)は、材料の機械的
強度のみならず、微量含有元素や析出物,介在物
量などの材料の内質に大きく左右されると考えら
れ、この発明の如く、組成を限定しかつ非金属介
在物の大きさを特定することにより、(剪断面厚
み/板厚)を小さくでき、切断までのポンチスト
ロークが小さくなり、金型寿命を延長できる。
組成の限定理由
Niは、本系合金の基本成分であり、38wt%未
満では、熱膨張係数の変移点が低くなりすぎ、
55wt%を越えると熱膨張係数が大きくなりすぎ、
いずれもガラス,セラミツクスの熱膨張係数との
偏差が大きくなるので好ましくなく、38wt%〜
55wt%に限定する。
Siは、鋳塊中の気泡発生を防止する脱酸元素で
あり、またガラス封着時に重要な表面酸化被膜の
密着性を改善する効果があるが、0.05wt%未満で
はその効果がなく、また、0.50wt%を越えると材
質的に硬化して冷間加工性が劣化するため好まし
くなく、0.05wt%〜0.50wt%%に限定する。
Cは、ガラスあるいはセラミツクスとの密着時
の加熱過程において、表面からガスとして発生し
て封着界面に内包され、封着強度を低下させるの
で、0.05wt%以下に限定する。
Mnは、熱間加工性を改善する効果があるが、
0.05wt%未満ではその効果がなく、1.00wt%を越
えると熱膨張係数が大きくなりすぎ、ガラス,セ
ラミツクスとの封着性を阻害するため、0.05wt%
〜1.00wt%に限定する。
Moは、O,S,C,Nと結びつき、酸化物、
炭化物、窒化物、硫化物を生成し、合金内に分散
し、プレス加工性を改善する効果があり、さら
に、Fe―Ni合金の耐食性を向上させるため含有
するが、0.05wt%未満では、プレス性及び耐食性
改善効果がなく、0.50wt%を越えると冷間加工性
が阻害されるため、0.05wt%〜0.50wt%に限定す
る。
Sは、合金内のMn及びMoと結合して微細な
硫化物を生成し、これが組織内に均一に分散して
プレス加工性を改善するが、0.003wt%未満では
改善効果が少なく、0.025wt%を越えると、巨大
なMn硫化物を生成し易くなり、薄板等に加工す
る際に表面剥離,割れ等の欠陥が発生し易くなる
ため、0.003wt%〜0.025wt%に限定する。
Mn及びMoとSの含有比、Mn+Mo/Sは、
組織内にMn,Moと含有しないSが残存して熱
間加工性を低下させ、かつ割れ疵等の欠陥が発生
し易くなるのを防止するために限定する必要があ
り、Mn+Mo/S≧10とする必要がある。しか
し、その上限は、300以下が好ましく、好ましい
Mn+Mo/S範囲としては、35〜200が望まし
い。
O,Nは、プレス打抜性の観点から、Si,Mn,
Al,Zr,Ca,Mg,R・E(希土類元素)の酸化
物,窒化物として、組織内に微小介在物が均一に
分散分布していることが望ましく、かつ、熱間加
工性及び冷間加工性改善の観点より、Oは
100ppm以下、Nは50ppm以下にする必要がある。
Al,Zr,Ca,Mg,R・E(希土類元素)は、
Ni,FeよりもS,C,N,Oとの親和力が強い
ため、酸化物,炭化物,窒化物、硫化物を生成
し、プレス加工性を改善する効果があるため、上
記元素のうち少なくとも1種を添加するが、
0.0005wt%未満では上記効果がなく、0.10wt%を
越えると熱間加工性,冷間加工性を劣化させるの
で好ましくなく、0.0005wt%〜0.10wt%の含有と
する。
また、上記のR・E(希土類元素)は、少なく
とも1種の希土類元素であればよく、コストの面
からLa,Ce及びミツシユメタルが好ましい。
Feは、本系合金の基本組成であり、上記の各
元素を含有した残余の範囲とする。
Si,Mn,Mo,Al,Zr,Ca,Mg,R・Eの
酸化物,炭化物,窒化物,硫化物等の非金属介在
物の組織内での大きさを限定した理由は、非金属
介在物の大きさが3μmを越えると、打抜加工、切
断加工時のカエリが多くなり、薄板の曲げ加工、
絞り加工時に亀裂,割れ発生の起点となるためで
あり、上記非金属介在物の大きさは3μm以下で、
かつ組織内に均一に分散,含有されていることが
重要である。
また、この発明において、合金組成内の非金属
介在物の大きさを3μm以下に且つ均一に分散分布
させるためには、溶製条件、造塊条件及び脱酸剤
の添加時期,添加量を適宜選定する必要がある。
また、この発明合金の好ましい組成範囲は、
Ni 38〜55wt%、
Si 0.10〜0.30wt%、
C 0.03wt%以下、
Mn 0.35〜0.85wt%、
Mo 0.03〜0.20wt%、
S 0.003〜0.015wt%、
但し、Mn+Mo/S=35〜200、
O 100ppm以下、N 50ppm以下、を含有し、
あるいはさらに、Al,Zr,Ca,Mg,R・Eの
うち少なくとも1種を0.0005〜0.05wt%を含有
し、
残部はFe及び不可避的不純物からなり、
3μm以下の微細な非金属介在物が60ppm以上存
在し、かつ均一に分散するものである。
実施例
第1表に示すような、本発明範囲ならびに本発
明範囲外の各種組成範囲のFe―Ni系封着合金を、
同一条件で製造して、厚み0.25mmの薄板に仕上げ
た。この薄板より幅8mm×長さ50mmの試料を採取
し、第3図の如く、圧縮試験機を用いて、ダイ7
に載置した試料6を、幅7mm×長さ10mm寸法のポ
ンチ8によるプレス打ち抜きを行ない、該試験機
の可動アームの移動距離により、ポンチストロー
クlを測定し、剪断抵抗Rはロードセルにより測
定した。
これより第2図の如く剪断抵抗Rとポンチスト
ロークlの関係図を求め、切断までのポンチスト
ロークを実測した。
また、打抜後の試料の切断断面を光学顕微鏡に
より観察し、剪断面厚み及び板厚を測定して(剪
断面厚み/板厚)を算出した。
各種合金の介在物量は、定電位電解法によつて
金属のみ溶解し、溶解液中の酸化物,炭化物,窒
化物,硫化物等の非金属介在物残渣を、ミクロフ
イルターで、3.0μm以下のものと、3.0μmを越え
るものとに分離抽出して測定した。
また、第4図に示す如く、ポリフリオルエチレ
ン製の治具9に、0.25mm×5mm×100mm寸法の試
料6を湾曲させて挿入し、治具9と共に、35wt
%のCuCl2水溶液中に、25℃に保持して30分間放
置した後、該試料6を取出し、その断面に発生し
た割れ深さを光学顕微鏡(倍率400倍)で測定し、
耐応力腐食割れ性を評価した。
上記の各測定結果は、試料の機械的強度及び熱
膨張特性と共に第1表に示す。
第1表から明らかなように、この発明による
Fe―Ni系封着合金は、切断までのポンチストロ
ーク及び(剪断面厚み/板厚)が、比較例の従来
合金に比べてさらに小さく、所要の熱膨張特性お
よび機械的強度を損うことなく、打抜,切断加工
性が改善されたことが明白で、金型寿命の延長に
多大の効果を有し、かつ、耐応力腐食割れ性にも
すぐれていることが分る。
Industrial Field This invention is an Fe used for lead frames etc.
-Related to Ni-based sealing alloys, and relates to Fe-Ni-based sealing alloys that have excellent punchability, cutting workability, and stress corrosion cracking resistance. Background technology Generally, 38~55wt%Ni-Fe alloys are used in glass,
Because its thermal expansion characteristics are similar to those of ceramics, it is processed into thin plates or thin wires, then punched or etched into the desired shape to form lead frames for ICs and display elements, as well as leads for ICs, transistors, and reed switches. It is widely used for manufacturing, etc., and is produced continuously in large quantities. The lead frames and leads mentioned above have very fine patterns and require extremely high dimensional accuracy, so conventional Fe-Ni sealing alloys have poor punching properties when punched using a high-speed press. There was a problem in that the molding molds were severely worn, the press molds had to be repaired and polished frequently, and the production efficiency was lowered, leading to a rise in product costs. Furthermore, it is known that conventional Fe-Ni sealing alloys are prone to stress corrosion cracking in chlorine ion environments, and because they are pickled and plated in the manufacturing process of I/C lead frames. , it has been desired to improve corrosion resistance under such environments. Purpose of the Invention The object of the present invention is to provide an Fe--Ni sealing alloy that has improved press punchability and cutting workability and has excellent stress corrosion cracking resistance. Structure and Effects of the Invention The present invention has identified the composition of alloys as a result of various studies on alloy compositions for the purpose of improving punchability, cutting workability, and stress corrosion cracking resistance of Fe-Ni sealing alloys. and Mn, Si, which are uniformly dispersed within the structure.
By specifying the size of Mo and non-metallic inclusions such as nitrides, carbides, oxides, and sulfides of Al, Zr, Ca, Mg, and R/E, we can improve the punchability of Fe-Ni sealing alloys. It was discovered that cutting workability and stress corrosion cracking resistance were significantly improved. That is, this invention includes Ni 38 to 55 wt%, Si 0.05 to 0.50 wt%, C 0.05 wt% or less, Mn 0.05 to 1.00 wt%, Mo 0.05 to 0.50 wt%, S 0.003 to 0.025 wt%, provided that Mn/ Contains S≧10, O 100ppm or less, N 50ppm or less, or further contains 0.0005 to 0.10wt% of at least one of Al, Zr, Ca, Mg, and R・E, the remainder being Fe and unavoidable Si, Mn, Mo and Al, Zr, Ca, Mg, R・E
Fe-Ni has good punchability and stress corrosion cracking resistance, characterized by fine nonmetallic inclusions of 3 μm or less such as oxides, nitrides, carbides, and sulfides that are uniformly dispersed within the structure. It is a series sealing alloy. In general, when Fe-Ni sealing alloy is punched and cut using a die or punch, the cut surface condition is as follows:
As shown in the figure, it consists of a sagging surface 2, a sheared surface 3, a fractured surface 4, and a burred surface 5 that are continuous from the flat surface 1 of the material to be punched, and in this case, the punch stroke l is the moving distance of the punch. It is known that the relationship between R and the shearing resistance R, which is the force required for cutting, is a curve as shown in FIG. In Figure 2, the smaller the maximum shear resistance and the smaller the punch stroke until breakage, the smaller the energy required for cutting, the less the load on the mold, and the longer the mold life. , is determined by the mechanical strength such as tensile strength and hardness of the material to be punched, and the punch stroke until cutting and (sheared surface thickness/plate thickness) are almost directly proportional. In addition, (thickness of sheared surface/plate thickness) is considered to be greatly influenced not only by the mechanical strength of the material but also by the internal properties of the material such as the amount of trace elements, precipitates, and inclusions. By limiting the composition and specifying the size of the nonmetallic inclusions, (sheared surface thickness/plate thickness) can be reduced, the punch stroke until cutting can be reduced, and the life of the mold can be extended. Reasons for limiting the composition Ni is the basic component of this alloy, and if it is less than 38wt%, the transition point of the coefficient of thermal expansion will be too low.
If it exceeds 55wt%, the coefficient of thermal expansion will become too large,
Both are undesirable because the deviation from the coefficient of thermal expansion of glass and ceramics becomes large, and 38 wt% or more.
Limited to 55wt%. Si is a deoxidizing element that prevents the generation of bubbles in the ingot, and also has the effect of improving the adhesion of the surface oxide film, which is important when sealing glass, but if it is less than 0.05 wt%, it has no effect. If the content exceeds 0.50wt%, the material hardens and cold workability deteriorates, which is not preferable, and the content is limited to 0.05wt% to 0.50wt%. C is limited to 0.05 wt % or less because it is generated as a gas from the surface during the heating process during close contact with glass or ceramics and is included in the sealing interface, reducing the sealing strength. Mn has the effect of improving hot workability, but
If it is less than 0.05wt%, there is no effect, and if it exceeds 1.00wt%, the coefficient of thermal expansion becomes too large, which impairs the sealing properties with glass and ceramics, so 0.05wt%
Limited to ~1.00wt%. Mo combines with O, S, C, and N, forming oxides,
It produces carbides, nitrides, and sulfides, which are dispersed within the alloy and have the effect of improving press workability.Furthermore, it is included to improve the corrosion resistance of Fe-Ni alloys, but if it is less than 0.05wt%, pressability is improved. It has no effect on improving properties and corrosion resistance, and if it exceeds 0.50wt%, cold workability is inhibited, so it is limited to 0.05wt% to 0.50wt%. S combines with Mn and Mo in the alloy to produce fine sulfides, which are uniformly dispersed within the structure and improve press workability, but if it is less than 0.003wt%, the improvement effect is small; If it exceeds 0.0%, giant Mn sulfides are likely to be produced and defects such as surface peeling and cracking are likely to occur when processing into thin plates, etc., so the content is limited to 0.003wt% to 0.025wt%. The content ratio of Mn, Mo and S, Mn+Mo/S is,
It is necessary to limit Mn+Mo/S≧10 in order to prevent Mn, Mo and uncontained S from remaining in the structure, reducing hot workability and making defects such as cracks more likely to occur. It is necessary to do so. However, the upper limit is preferably 300 or less, and preferably
The Mn+Mo/S range is preferably 35 to 200. From the viewpoint of press punchability, O and N are Si, Mn,
As oxides and nitrides of Al, Zr, Ca, Mg, and R/E (rare earth elements), it is desirable that minute inclusions are uniformly distributed within the structure, and the hot workability and cold workability are improved. From the viewpoint of improving workability, O is
It is necessary to keep it below 100ppm, and N needs to be below 50ppm. Al, Zr, Ca, Mg, R・E (rare earth elements) are
Because it has a stronger affinity with S, C, N, and O than Ni and Fe, it produces oxides, carbides, nitrides, and sulfides, and has the effect of improving press workability, so at least one of the above elements Add seeds,
If it is less than 0.0005 wt%, the above effect will not be obtained, and if it exceeds 0.10 wt%, hot workability and cold workability will deteriorate, which is not preferable, so the content should be 0.0005 wt% to 0.10 wt%. Further, the above-mentioned R/E (rare earth element) may be at least one kind of rare earth element, and from the viewpoint of cost, La, Ce, and Mitsushi metal are preferable. Fe is the basic composition of the present alloy, and is the residual range containing each of the above elements. The reason for limiting the size of nonmetallic inclusions such as oxides, carbides, nitrides, and sulfides of Si, Mn, Mo, Al, Zr, Ca, Mg, and R/E in the structure is that nonmetallic inclusions If the size of the object exceeds 3μm, there will be more burrs during punching and cutting, and bending of thin plates,
This is because it becomes a starting point for cracks and fractures during drawing, and the size of the nonmetallic inclusions is 3 μm or less.
It is also important that it is uniformly dispersed and contained within the tissue. In addition, in this invention, in order to reduce the size of nonmetallic inclusions in the alloy composition to 3 μm or less and to uniformly disperse and distribute them, melting conditions, agglomeration conditions, and the timing and amount of addition of the deoxidizing agent are appropriately adjusted. It is necessary to select. Further, the preferred composition range of the alloy of the present invention is as follows: Ni 38 to 55 wt%, Si 0.10 to 0.30 wt%, C 0.03 wt% or less, Mn 0.35 to 0.85 wt%, Mo 0.03 to 0.20 wt%, S 0.003 to 0.015 wt%. , However, it contains Mn + Mo / S = 35 to 200, O 100 ppm or less, N 50 ppm or less, or further contains 0.0005 to 0.05 wt% of at least one of Al, Zr, Ca, Mg, R・E However, the remainder consists of Fe and unavoidable impurities, and fine nonmetallic inclusions of 3 μm or less are present at 60 ppm or more and are uniformly dispersed. Examples As shown in Table 1, Fe--Ni sealing alloys having various composition ranges within the scope of the present invention and outside the scope of the present invention were
It was manufactured under the same conditions and finished into a thin plate with a thickness of 0.25 mm. A sample of width 8 mm x length 50 mm was taken from this thin plate, and as shown in Figure 3, using a compression tester, die 7
The sample 6 placed on the test piece was punched out using a punch 8 with dimensions of 7 mm wide x 10 mm long, the punch stroke l was measured by the moving distance of the movable arm of the testing machine, and the shear resistance R was measured by a load cell. . From this, a relationship diagram between shear resistance R and punch stroke l was obtained as shown in FIG. 2, and the punch stroke up to cutting was actually measured. In addition, the cut section of the sample after punching was observed with an optical microscope, the sheared surface thickness and plate thickness were measured, and (sheared surface thickness/plate thickness) was calculated. The amount of inclusions in various alloys can be determined by dissolving only metals using constant potential electrolysis, and removing non-metallic inclusions such as oxides, carbides, nitrides, and sulfides from the solution using a microfilter with a size of 3.0 μm or less. The particles were separated and measured into those larger than 3.0 μm and those larger than 3.0 μm. In addition, as shown in FIG. 4, a sample 6 with dimensions of 0.25 mm x 5 mm x 100 mm was inserted in a curved manner into a jig 9 made of polyfurioethylene, and together with the jig 9, a 35 wt.
% CuCl 2 aqueous solution for 30 minutes at 25°C, the sample 6 was taken out, and the depth of cracks that occurred in its cross section was measured using an optical microscope (400x magnification).
The stress corrosion cracking resistance was evaluated. The above measurement results are shown in Table 1 along with the mechanical strength and thermal expansion properties of the samples. As is clear from Table 1, according to this invention
The Fe-Ni sealing alloy has a smaller punch stroke and (shear surface thickness/plate thickness) until cutting than the conventional alloy used in the comparative example, without compromising the required thermal expansion characteristics and mechanical strength. It is clear that the punching and cutting workability has been improved, and it has a great effect on extending the life of the mold, and also has excellent stress corrosion cracking resistance.
【表】【table】
【表】【table】
【図面の簡単な説明】[Brief explanation of drawings]
第1図はFe―Ni系封着合金の切断断面図を示
す斜視図であり、第2図はポンチストロークlと
剪断抵抗Rとの関係を示すグラフである。第3図
は実施例のプレス打ち抜きを示す説明図、第4図
は応力腐食割れ試験の治具の斜視図である。
1…平面部、2…ダレ面、3…剪断面、4…破
断面、5…カエリ面、6…試料、7…ダイ、8…
ポンチ、9…治具。
FIG. 1 is a perspective view showing a cross-sectional view of a Fe--Ni sealing alloy, and FIG. 2 is a graph showing the relationship between punch stroke l and shear resistance R. FIG. 3 is an explanatory view showing press punching of the example, and FIG. 4 is a perspective view of a jig for stress corrosion cracking testing. DESCRIPTION OF SYMBOLS 1... Flat part, 2... Sagging surface, 3... Sheared surface, 4... Fractured surface, 5... Burr surface, 6... Sample, 7... Die, 8...
Punch, 9... jig.