JP5128152B2 - Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof - Google Patents
Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof Download PDFInfo
- Publication number
- JP5128152B2 JP5128152B2 JP2007065665A JP2007065665A JP5128152B2 JP 5128152 B2 JP5128152 B2 JP 5128152B2 JP 2007065665 A JP2007065665 A JP 2007065665A JP 2007065665 A JP2007065665 A JP 2007065665A JP 5128152 B2 JP5128152 B2 JP 5128152B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- copper alloy
- layer
- bare
- lead frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
半導体素子を形成するリードフレームのインナーリード部に、めっきを施すことなくワイヤボンディング用のリード線(ボンディングワイヤ)を直接接合するベアボンディング性に優れる銅合金及びその製造方法に関する。 The present invention relates to a copper alloy excellent in bare bonding property in which a lead wire for wire bonding (bonding wire) is directly bonded to an inner lead portion of a lead frame forming a semiconductor element without plating, and a manufacturing method thereof.
従来、半導体素子の製造は、銅又は銅合金製、或いはFe−Ni合金製条を、プレス打抜き又はエッチングにより所定の形状のリードフレームに成形した後、半導体チップとリードフレームを金線などのボンディングワイヤを用いてボンディングするためにリードフレームの所定部分へめっきを施す。次に半導体チップをリードフレームのダイパット部にダイボンディングし、半導体チップとリードフレームをボンディングワイヤでボンディングした後、封止して半導体素子製品としている。 Conventionally, a semiconductor element is manufactured by forming a strip made of copper, a copper alloy, or a Fe—Ni alloy into a lead frame having a predetermined shape by press punching or etching, and then bonding the semiconductor chip and the lead frame to a gold wire or the like. Plating is applied to a predetermined portion of the lead frame for bonding using a wire. Next, the semiconductor chip is die bonded to the die pad portion of the lead frame, the semiconductor chip and the lead frame are bonded with a bonding wire, and then sealed to obtain a semiconductor element product.
これから分かるように、リードフレームと半導体チップ、及びリードフレームとボンディングワイヤとの接合にはめっきが不可欠である。
ところが、めっき作業はリードフレームの微小箇所への作業となるため、非常に高い精度を必要とし、めっきの良否がダイボンディング及びワイヤボンディングに大きな影響を与えている。場合によっては半導体素子の不良率を高めてしまう原因ともなっている。
As can be seen, plating is indispensable for joining the lead frame and the semiconductor chip and between the lead frame and the bonding wire.
However, since the plating operation is an operation on a minute portion of the lead frame, very high accuracy is required, and the quality of the plating has a great influence on the die bonding and wire bonding. In some cases, the defect rate of the semiconductor element is increased.
更に、このリードフレームへのめっきは、半導体チップやボンディングワイヤとリードフレームとの材質関係、耐久性及び電気伝導性の観点から、金めっき或いは銀めっきが用いられており、半導体素子のコスト高の一つの原因ともなっている。
このような現状に対し、リードフレームへのめっきを省略し、リードフレームとボンディングワイヤとを直接接合する方法、即ちベアボンディングについて多くの提案がなされている(特許文献1乃至特許文献4を参照)。
Furthermore, the plating on the lead frame uses gold plating or silver plating from the viewpoint of the material relationship between the semiconductor chip or bonding wire and the lead frame, durability, and electrical conductivity. It is also a cause.
In response to this situation, many proposals have been made on a method of directly bonding a lead frame and a bonding wire, ie, bare bonding, without plating on the lead frame (see Patent Documents 1 to 4). .
特許文献1乃至特許文献3では、ベアボンディング性には表面粗さを適切にすることが述べられている。又、特許文献3及び特許文献4では表層に存在する酸化皮膜の厚みを規定することもベアボンディング性を良好とすることが述べられている。更に、析出物或いは介在物の大きさ(特許文献1)、表面硬さ(特許文献2)や結晶粒の大きさ(特許文献4)などもベアボンディング性に寄与することが述べられている。 Patent Documents 1 to 3 describe that surface roughness is appropriate for bare bonding properties. Further, Patent Document 3 and Patent Document 4 describe that the thickness of the oxide film existing on the surface layer is also defined to improve the bare bonding property. Furthermore, it is stated that the size of the precipitates or inclusions (Patent Document 1), the surface hardness (Patent Document 2), the size of crystal grains (Patent Document 4), and the like also contribute to the bare bonding property.
しかしながら、前記従来技術を以ってしても、数百箇所以上のワイヤボンディングを行うと、ボンディングの信頼性を表す指標であるワイヤ破断率(ボンディング後のワイヤに垂直方向への引っ張り力を与える試験において、ボンディング箇所でなくワイヤ部分で破断する率)は95%程度にしか向上せず、実用上十分な信頼性を有しているとは言い難かった。
本発明は、前記問題点を解決し、リードフレームのインナーリード部にめっきを施すことなくボンディングワイヤを直接接合するベアボンディング性に優れた銅合金を提供すると共に、このようなベアボンディング性に優れる銅合金の製造方法を提供することを目的としている。
However, even with the above-described conventional technique, when several hundred or more wire bondings are performed, the wire breaking rate (which gives an indication of bonding reliability) In the test, the rate of breakage at the wire portion, not at the bonding portion) was improved only to about 95%, and it was difficult to say that it had practically sufficient reliability.
The present invention solves the above-mentioned problems and provides a copper alloy excellent in bare bondability for directly bonding bonding wires without plating the inner lead portion of the lead frame, and is excellent in such bare bondability. It aims at providing the manufacturing method of a copper alloy.
本発明によれば、以下の手段が提供される:
(1)半導体素子のワイヤボンディングの温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素群を総質量で0.1mass%を超えて1mass%未満含み、残部Cu及び不可避的不純物とからなる銅合金であって、前記元素群としてFeを0.03mass%から0.8mass%及びPを0.001mass%から0.1mass%含み、前記銅合金の表層の加工変質層の厚みを0.2μm以下(0μmを含む)とし、ワイヤ破断率が99%以上であってベアボンディング性に優れるリードフレーム用銅合金。
(2)半導体素子のワイヤボンディングの温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素群を総質量で0.1mass%を超えて1mass%未満含み、残部Cu及び不可避的不純物とからなる銅合金であって、前記元素群としてFeを0.03mass%から0.8mass%、Pを0.001mass%から0.1mass%、並びに0.1mass%から0.4mass%のZn及び0.05mass%から0.4mass%のSnのうち1種又は2種含み、前記銅合金の表層の加工変質層の厚みを0.2μm以下(0μmを含む)とし、ワイヤ破断率が99%以上であってベアボンディング性に優れるリードフレーム用銅合金。
(3)半導体素子のワイヤボンディングの温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素群を総質量で0.1mass%を超えて1mass%未満含み、残部Cu及び不可避的不純物とからなる銅合金であって、前記元素群としてCrを0.1mass%から0.4mass%及びZrを0.05mass%から0.4mass%含み、前記銅合金の表層の加工変質層の厚みを0.2μm以下(0μmを含む)とし、ワイヤ破断率が99%以上であってベアボンディング性に優れるリードフレーム用銅合金。
(4)半導体素子のワイヤボンディングの温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素群を総質量で0.1mass%を超えて1mass%未満含み、残部Cu及び不可避的不純物とからなる銅合金であって、前記元素群としてCrを0.1mass%から0.4mass%、Zrを0.05mass%から0.4mass%、並びに0.01mass%から0.3mass%のSi及び0.1mass%から0.4mass%のZnのうち1種又は2種含み、前記銅合金の表層の加工変質層の厚みを0.2μm以下(0μmを含む)とし、ワイヤ破断率が99%以上であってベアボンディング性に優れるリードフレーム用銅合金。
According to the present invention, the following means are provided:
(1) free energy of oxide formation at 300 ° C. from 0.99 ° C. which is a temperature range of wire bonding of the semiconductor element unrealized less than 1 mass% beyond 0.1mass% by total weight of the lower element group than Cu, the balance A copper alloy comprising Cu and unavoidable impurities , comprising 0.03 mass% to 0.8 mass% Fe as the element group and 0.001 mass% to 0.1 mass% P as the element group, and processing the surface layer of the copper alloy A lead frame copper alloy having a deteriorated layer thickness of 0.2 μm or less (including 0 μm), a wire breakage ratio of 99% or more and excellent bare bondability.
(2) An element group in which the free energy of formation of oxide at 150 ° C. to 300 ° C., which is a temperature range for wire bonding of a semiconductor element, is lower than Cu element is included in a total mass of more than 0.1 mass% and less than 1 mass%, and the balance Cu And an inevitable impurity copper alloy, wherein the element group includes Fe of 0.03 mass% to 0.8 mass%, P of 0.001 mass% to 0.1 mass%, and 0.1 mass% to 0.4 mass. % Of Zn and 0.05 mass% to 0.4 mass% of Sn or 2 kinds, the thickness of the work-affected layer on the surface layer of the copper alloy is 0.2 μm or less (including 0 μm), and the wire breaking rate Is a copper alloy for lead frames that has 99% or more and excellent bare bondability.
(3) The element formation free energy of the oxide at 150 ° C. to 300 ° C. which is the temperature range of wire bonding of the semiconductor element is lower than the Cu element, and the total mass is more than 0.1 mass% and less than 1 mass%, and the remaining Cu And an inevitable impurity copper alloy containing 0.1 mass% to 0.4 mass% of Cr and 0.05 mass% to 0.4 mass% of Zr as the element group, and processing alteration of the surface layer of the copper alloy A copper alloy for lead frames having a layer thickness of 0.2 μm or less (including 0 μm), a wire breakage rate of 99% or more and excellent bare bondability.
(4) An element group in which the free energy of formation of an oxide at 150 ° C. to 300 ° C., which is a temperature range for wire bonding of a semiconductor element, is lower than Cu element is included in a total mass of more than 0.1 mass% and less than 1 mass%, and the balance Cu And 0.1 mass% to 0.4 mass%, Zr from 0.05 mass% to 0.4 mass%, and 0.01 mass% to 0.3 mass as the element group. % Of Si and 0.1 mass% to 0.4 mass% of Zn, or 2 or more kinds of Zn, the thickness of the work-affected layer on the surface of the copper alloy is 0.2 μm or less (including 0 μm), and the wire breaking rate Is a copper alloy for lead frames that has 99% or more and excellent bare bondability.
(5)前記(1)から(4)のいずれか1項に記載のリードフレーム用銅合金からなる条材を成形して形成されるベアボンディング用リードフレーム。
(5) A lead frame for bare bonding formed by molding a strip made of the copper alloy for lead frames according to any one of ( 1 ) to (4) .
(6)半導体素子のワイヤボンディングの温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素群を総質量で0.1mass%を超えて1mass%未満含む(1)から(4)のいずれか1項に記載の組成を有してなる銅合金に対して、加工変質層厚み制御により表層の加工変質層の厚みを0.2μm以下(0μmを含む)とする(1)から(4)のいずれか1項に記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(6) An element group in which the free energy of formation of oxide at 150 ° C. to 300 ° C., which is a temperature range for wire bonding of a semiconductor element, is lower than Cu element is included in a total mass of more than 0.1 mass% and less than 1 mass% (1) consisting essentially has a composition according to any one of (4) with respect to the copper alloy, and damaged layer by the thickness control below 0.2μm thickness of the surface layer of the work-affected layer (including 0 .mu.m) ( producing how the lead frame copper alloy having excellent bare bondability according to any one of 1) (4).
(7)前記加工変質層厚み制御が少なくとも化学的溶解処理を含む方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(7) the process-induced degradation layer thickness control is a process comprising at least a chemical dissolution treatment (6) producing how the lead frame copper alloy having excellent bare bondability according.
(8)前記加工変質層厚み制御が少なくとも電気化学的溶解処理を含む方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(8) the process-induced degradation layer thickness control is a process comprising at least electrochemical dissolution process (6) producing how the lead frame copper alloy having excellent bare bondability according.
(9)前記加工変質層厚み制御が少なくとも非酸化性雰囲気下での熱処理を含む方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(9) the process-induced degradation layer thickness control is a method including a heat treatment under at least a non-oxidizing atmosphere (6) producing how the lead frame copper alloy having excellent bare bondability according.
(10)前記加工変質層厚み制御が化学的溶解処理であり、この後に、加工変質層を形成しない仕上圧延を施す方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(10) the process-induced degradation layer thickness control is chemical dissolution treatment, after this, the damaged layer is a method of applying a non finish rolling form (6) of the bare bondability to excellent leadframe copper alloy according production how.
(11)前記加工変質層厚み制御が電気化学的溶解処理であり、この後に、加工変質層を形成しない仕上圧延を施す方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(11) the process-induced degradation layer thickness control is electrochemical dissolution process, after this, a method of applying a finish rolling that does not form a damaged layer (6), wherein the bare bonding property to the excellent lead frame for Copper Alloy of production how.
(12)前記加工変質層厚み制御が非酸化性雰囲気下での熱処理であり、この後に、加工変質層を形成しない仕上圧延を施す方法である(6)記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(13)(1)から(4)のいずれか1項に記載の組成を有してなる銅合金材料から鋳造してなる鋳塊に、熱間及び冷間による粗圧延、時効焼鈍、バフ研磨、前記加工変質層厚み制御、加工変質層を形成しない仕上冷間圧延、並びに低温焼鈍の各工程をこの順で行う(6)から(12)のいずれか1項に記載のベアボンディング性に優れるリードフレーム用銅合金の製造方法。
(12) the process-induced degradation layer thickness control is a heat treatment under a non-oxidizing atmosphere, after this, a method of applying a finish rolling that does not form a damaged layer (6) lead frame excellent bare bondability according production how to use copper alloy.
(13) Hot and cold rough rolling, aging annealing, buff polishing on an ingot cast from a copper alloy material having the composition described in any one of (1) to (4) The bare bonding property according to any one of (6) to (12), wherein the steps of thickness change of the work-affected layer, finish cold rolling without forming the work-affected layer, and low-temperature annealing are performed in this order. A method for producing a copper alloy for a lead frame.
本発明のベアボンディング性に優れるリードフレーム用銅合金は、銅合金の表層に存在する不均一且つ微細な加工変質層の厚みを0.2μm以下に抑えることにより、ベアボンディングにおける接続信頼性に優れるものである。更に本発明による銅合金を用いベアボンディングを行ったリードフレームは、ボンディング不良に起因する不具合が発生しないため歩留まりがよく、高い信頼性をもたらしている。 The copper alloy for lead frames excellent in bare bonding property of the present invention has excellent connection reliability in bare bonding by suppressing the thickness of the non-uniform and fine work-affected layer existing in the surface layer of the copper alloy to 0.2 μm or less. Is. Furthermore, the lead frame that is bare-bonded using the copper alloy according to the present invention does not cause a defect due to bonding failure, and thus has a high yield and high reliability.
銅合金は一般に、鋳造、圧延、バフ研磨、焼鈍などの工程を適宜組み合わせて製造される。その製造過程において様々な塑性加工を受け、その結果、銅合金の表層には図1に示されるような銅合金内部よりも微細な組織を呈する加工変質層1と塑性変形層2とが形成される。 In general, a copper alloy is produced by appropriately combining processes such as casting, rolling, buffing, and annealing. As a result of the various plastic workings during the manufacturing process, as a result, a work-affected layer 1 and a plastically deformed layer 2 having a finer structure than the inside of the copper alloy as shown in FIG. 1 are formed on the surface of the copper alloy. The
ここで、「加工変質層」とは、前記様々な塑性加工の結果、銅合金の表層に生じるベイルビー層(上層)と呼ばれる非晶質組織と、極微細な結晶集合組織である微細結晶層(下層)とからなる不均一な微細組織である。
「塑性変形層」は、結晶粒が微細結晶層より粗大であり、表層から離れる従い、銅合金内部の結晶粒の大きさに近づく結晶集合組織である。
前記塑性変形層および銅合金内部の結晶粒の大きさは、銅合金の組成、製造条件などにより様々に変化するために一概には限定されないが、例えば、塑性変形層の結晶粒の大きさは0.2〜3.0μm程度、銅合金内部の結晶粒の大きさは3.0μm〜10μm程度であり、前記加工変質層とは容易に識別することができる。
Here, the “work-affected layer” means an amorphous structure called a Bailby layer (upper layer) generated in the surface layer of a copper alloy as a result of the various plastic workings, and a fine crystalline layer ( A non-uniform microstructure comprising a lower layer).
The “plastic deformation layer” is a crystal texture in which the crystal grains are coarser than the fine crystal layer and move away from the surface layer, and approach the size of the crystal grains inside the copper alloy.
The size of the crystal grains in the plastic deformation layer and the copper alloy is not limited because it varies depending on the composition of the copper alloy, the manufacturing conditions, etc., but for example, the size of the crystal grains in the plastic deformation layer is About 0.2 to 3.0 μm, and the size of crystal grains inside the copper alloy is about 3.0 μm to 10 μm, and can be easily distinguished from the work-affected layer.
このような表層構造において、不均一な微細組織である加工変質層上にワイヤボンディングが行われた場合、ワイヤと表層との結合力が弱い部分で結合面の破壊が生じ、その接続信頼性を低下させてしまう。
そのため、加工変質層の厚みは0.2μm以下が望ましく、0.05μm以下とすることがより好ましい。0.2μmを超えて加工変質層が厚くなるとワイヤボンディングの接続信頼性が低下してしまう。
In such a surface layer structure, when wire bonding is performed on a work-affected layer that is a non-uniform microstructure, the bonding surface is broken at the portion where the bonding force between the wire and the surface layer is weak, and the connection reliability is reduced. It will decrease.
Therefore, the thickness of the work-affected layer is preferably 0.2 μm or less, and more preferably 0.05 μm or less. If the work-affected layer is thicker than 0.2 μm, the connection reliability of wire bonding decreases.
次に、銅合金が鋳造、圧延、バフ研磨、焼鈍などの工程を適宜組み合わせて製造される場合、その表面には、通常、1〜5nm程度の酸化皮膜が形成されている。銅合金表面の酸化皮膜が厚くなるとボンディング不良を招き接続信頼性が低下することは広く知られているが、ワイヤボンディング工程は150〜300℃、10vol%H2−N2に代表される還元雰囲気で行われるため、前記酸化皮膜の厚みであればワイヤボンディング時に、前記酸化皮膜は還元除去され、接続信頼性を損なう恐れはないが、酸化物の生成自由エネルギーがCu元素より低い元素を含んだ酸化皮膜は、前記酸化皮膜の還元除去時に還元され難く、酸化物として銅合金表層に残存して、ボンディング不良の原因となる。 Next, when a copper alloy is manufactured by appropriately combining processes such as casting, rolling, buffing, and annealing, an oxide film of about 1 to 5 nm is usually formed on the surface. Although it is well known that when the oxide film on the surface of the copper alloy is thick, bonding failure is caused and connection reliability is lowered, the wire bonding process is performed in a reducing atmosphere represented by 150 to 300 ° C. and 10 vol% H 2 -N 2. Therefore, when the thickness of the oxide film, the oxide film is reduced and removed at the time of wire bonding, and there is no risk of impairing connection reliability. However, the oxide generation free energy contains an element lower than the Cu element. The oxide film is difficult to be reduced during the reduction and removal of the oxide film, and remains as an oxide on the surface of the copper alloy, causing bonding failure.
従って、ワイヤボンディング工程の温度範囲である150℃から300℃における酸化物の生成自由エネルギーがCu元素より低い元素であるSi、P、Cr、Fe、Zn、Zr、Snは、その含有における総質量を、1mass%未満とする。
一方、これらの元素の多くは銅合金の強度を向上する目的で含有されることが多く、含有量が極端に少ないと材料強度の低下を招き、リードフレーム用銅合金として不適になってしまうことから、前記元素の総質量は、0.1mass%を超えて含む。
これらの条件を満たす銅合金としては、Cu−Cr−Zr系、Cu−Fe−P系がある。
Thus, S i free energy of formation Ru lower element der than Cu element of the oxide at 300 ° C. from 0.99 ° C. which is the temperature range of the wire bonding process, P, C r, F e , Z n, Zr, S n is the total mass of the content, that be less than 1 mass%.
On the other hand, many of these elements are often contained for the purpose of improving the strength of the copper alloy, and if the content is extremely small, the material strength is lowered, which makes it unsuitable as a copper alloy for lead frames. from the total mass of the element, including beyond 0.1mass%.
These conditions are satisfied copper alloy, C u-Cr-Zr-based, there is a Cu-Fe-P system.
Cu−Fe−P系合金において、FeはCu中に固溶して強度を高めると共にPとの化合物を形成して析出し、導電性を損なわずに強度を高める働きをするもので、0.03mass%未満ではその効果が小さく、0.8mass%を超えての含有は導電性の低下を招いてしまうためである。
PはFeと析出物を形成し、強度を高める働きをするもので、0.001mass%未満ではその効果がなく、0.1mass%を超えては製造性を低下させてしまう。
更に必要に応じて0.1mass%から0.4mass%のZn、0.05mass%から0.4mass%のSnの一方若しくは両者を含有しても良い。Zn、Sn共に固溶してその強度を大きく向上させる働きを示し、ZnはSnを含む半田との接合性を良好にする働きを示す。
In the Cu-Fe-P alloy, Fe is dissolved in Cu to increase the strength and forms a compound with P to precipitate, and acts to increase the strength without impairing the conductivity. If the content is less than 03 mass%, the effect is small, and if the content exceeds 0.8 mass%, the conductivity is lowered.
P forms a precipitate with Fe and works to increase the strength, and if it is less than 0.001 mass%, there is no effect, and if it exceeds 0.1 mass%, the productivity is lowered.
Further, if necessary, one or both of Zn of 0.1 mass% to 0.4 mass% and Sn of 0.05 mass% to 0.4 mass% may be contained. Both Zn and Sn are dissolved to show a function of greatly improving their strength, and Zn shows a function of improving the bonding property with solder containing Sn.
Cu−Zr−Cr系合金は、リードフレームとして良好な強度と導電性を得るための成分組成は下記範囲であることが望ましい。
Crは、銅中に析出することにより導電性を損なわずに強度を大きく高める働きをするもので、0.1mass%より少ないとその効果が小さく、0.4mass%を超えるとその効果が飽和すると共に酸化物が生成しやすくなりベアボンディング性に悪影響を及ぼすことから0.1mass%から0.4mass%としている。
Zrも、Crと同様に銅中に析出することにより導電性を損なわずに強度を大きく高める働きをするもので、0.05mass%より少ないとその効果が小さく、0.4mass%を超えるとその効果が飽和すると共に、粗大晶出物の生成や酸化物が生成しやすくなりベアボンディング性に悪影響を及ぼすことから0.05mass%から0.4mass%としている。
As for a Cu-Zr-Cr type alloy, it is desirable that the component composition for obtaining good strength and conductivity as a lead frame is in the following range.
Cr acts to greatly increase the strength by precipitating in copper without losing conductivity, and its effect is small when it is less than 0.1 mass%, and the effect is saturated when it exceeds 0.4 mass%. At the same time, an oxide is easily generated and adversely affects the bare bonding property. Therefore, the content is set to 0.1 mass% to 0.4 mass%.
Zr also functions to greatly increase the strength without deteriorating the conductivity by precipitating in copper like Cr, and its effect is small when it is less than 0.05 mass%, and it exceeds 0.4 mass%. The effect is saturated, and coarse crystallized substances and oxides are easily generated, which adversely affects the bare bonding property. From 0.05 mass% to 0.4 mass%.
更に、0.01mass%から0.3mass%のSiを含んでも良い。Siは、CrとCr−Si析出物を形成し、CrとCr−Siの複合析出により銅合金の強度を高める働きをする。0.01mass%未満ではその効果が見られず、0.3mass%を超えての含有では導電性を損なう。
これらのCu−Zr−Cr系合金は、更に必要に応じて、0.1mass%から0.4mass%のZnを含有する。Znの含有は、固溶硬化及び冷間加工により強度を高める働きをすると共に、Snを含む半田との接合性を良好にする。
Furthermore, 0.01 mass% to 0.3 mass% Si may be included. Si forms Cr and Cr—Si precipitates, and functions to increase the strength of the copper alloy by composite precipitation of Cr and Cr—Si. If it is less than 0.01 mass%, the effect is not observed, and if it exceeds 0.3 mass%, the conductivity is impaired.
These Cu—Zr—Cr alloys further contain 0.1 mass% to 0.4 mass% of Zn as required. The inclusion of Zn serves to increase the strength by solid solution hardening and cold working, and also improves the bondability with the solder containing Sn.
加工変質層の厚みの制御は、製造工程中に適時加工変質層を除去することで、その厚みの制御を行うことができ、特に最終工程に加工変質層の除去を行うことが、最も確実に加工変質層の厚みを制御できる。
しかしながら、板厚などの寸法精度を出すことが難しくなるため、仕上圧延の直前に加工変質層の制御、通常はその除去処理を行い、その後、できる限り加工変質層を形成しないように仕上圧延を行い所定の板厚にする方法が望ましい。
The thickness of the work-affected layer can be controlled by removing the work-affected layer in a timely manner during the manufacturing process, and the removal of the work-affected layer in the final process is the most reliable. The thickness of the work-affected layer can be controlled.
However, since it becomes difficult to obtain dimensional accuracy such as the thickness of the sheet, control of the work-affected layer, usually the removal process, is performed immediately before finish rolling, and then finish rolling is performed so as not to form the work-affected layer as much as possible. A method of performing a predetermined plate thickness is desirable.
前記加工変質層を除去する方法としては、第一に化学的な溶解処理、第二に電気化学的な溶解処理、第三にスパッタリングなどの物理的処理、第四に非酸化性雰囲気で熱処理を施して非晶質や微細な結晶組織の結晶性を回復させて塑性変形層または銅合金内部の結晶組織と同様の組織とすることにより、加工変質層を消失させる方法がある。
これらの方法の中で、前記スパッタリングなどの物理的処理の場合、適用できる寸法或いは処理時間の面で制約があるため、工業的な方法としては、化学的溶解処理、電気化学的溶解処理、及び熱処理による除去方法を採用するのが望ましい。
As the method for removing the work-affected layer, the first is chemical dissolution treatment, the second is electrochemical dissolution treatment, the third is physical treatment such as sputtering, and the fourth is heat treatment in a non-oxidizing atmosphere. There is a method in which the work-affected layer is lost by applying it to recover the crystallinity of the amorphous or fine crystal structure so as to have the same structure as the crystal structure of the plastic deformation layer or the copper alloy.
Among these methods, in the case of physical processing such as sputtering, since there are restrictions in terms of applicable dimensions or processing time, industrial methods include chemical dissolution processing, electrochemical dissolution processing, and It is desirable to adopt a removal method by heat treatment.
前記化学的溶解処理は、酸及び酸化剤を組み合わせた酸溶解液を用いて加工変質層を溶解する方法であり、硫酸、硝酸、塩酸、フッ酸、リン酸などの酸と過酸化水素、クロム酸塩、過硫酸塩などの酸化剤とを組み合わせ用いるが、溶解速度、環境面及び作業性への配慮から、硫酸と過酸化水素の組み合わせが好適である。 The chemical dissolution treatment is a method of dissolving a work-affected layer using an acid solution in which an acid and an oxidant are combined. An acid such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, hydrogen peroxide, chromium An oxidizing agent such as acid salt or persulfate is used in combination, but a combination of sulfuric acid and hydrogen peroxide is preferable from the viewpoint of dissolution rate, environmental aspect and workability.
前記電気化学的溶解処理は、酸性溶液中におけるアノード電解法がある。電解液にはリン酸、硫酸などの酸にクロム酸のような無機酸を添加した物を用いるが、銅合金に対しては、長い実績と優れた研磨効果のあるリン酸系の電解液が好適である。 The electrochemical dissolution treatment includes an anodic electrolysis method in an acidic solution. The electrolyte used is an acid such as phosphoric acid or sulfuric acid with an inorganic acid such as chromic acid added. However, for copper alloys, phosphoric acid electrolytes with a long track record and excellent polishing effect are available. Is preferred.
前記熱処理による方法は、還元性雰囲気や不活性雰囲気などの非酸化性雰囲気の加熱炉中での加熱処理がある。雰囲気と加熱温度及び加熱時間を適宜組み合わせることにより焼鈍炉でのバッチ式加熱や走間焼鈍炉での走間加熱なども適用できるが、加工変質層の除去処理中における表層の酸化を防止するには水素などの還元性雰囲気中での加熱が望ましく、熱処理中の酸素濃度の安定性面からはベル型炉などでのバッチ式加熱が好適である。 The heat treatment method includes heat treatment in a heating furnace in a non-oxidizing atmosphere such as a reducing atmosphere or an inert atmosphere. By combining the atmosphere, heating temperature and heating time as appropriate, batch-type heating in an annealing furnace and running heating in a running annealing furnace can also be applied, but to prevent oxidation of the surface layer during removal processing of the work-affected layer. Is preferably heated in a reducing atmosphere such as hydrogen, and batch-type heating in a bell furnace or the like is preferable from the viewpoint of stability of oxygen concentration during heat treatment.
前記加工変質層の観察は、図1及び図2に示すように板厚方向の断面における表層部を観察することにより行う。組織観察は、組織を明確に識別するために、電子顕微鏡を用いて10000倍程度に拡大して行うことが望ましく、SIMやFE−SEMなどの観察装置を併せて用いることで、より詳細に観察が可能となる。更に、観察試料の作製では、断面加工において加工変質層を形成させない方法が望ましく、FIBなどの装置を用いると良い。 The work-affected layer is observed by observing the surface layer portion in the cross section in the plate thickness direction as shown in FIGS. In order to clearly identify the tissue, the tissue observation is preferably performed by magnifying it about 10,000 times using an electron microscope, and the observation device such as SIM or FE-SEM is used together for more detailed observation. Is possible. Furthermore, in the preparation of the observation sample, a method in which a work-affected layer is not formed in cross-section processing is desirable, and an apparatus such as FIB may be used.
図1及び2を用いて本発明に係る銅合金の断面構造について説明する。
図1は、SIM観察による銅合金の断面写真である。図2は、加工変質層1及び塑性変形層2からなる銅合金の断面の模式説明図である。
図2から明らかなように、加工変質層1はベイルビー層1a(上層)と微細結晶層1b(下層)とからなり、ベイルビー層1aは非晶質組織であり、微細結晶層1bは極微細な結晶集合組織となっている。加工変質層1の更に下部に存在する塑性変形層2は結晶粒が微細結晶層より粗大であり、図1に示すように加工変質層1と塑性変形層2とは結晶組織が明瞭に異なるため、その境界部(破線部)は明瞭であり、両者は容易に識別することができる。
The cross-sectional structure of the copper alloy according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional photograph of a copper alloy by SIM observation. FIG. 2 is a schematic explanatory view of a cross section of a copper alloy composed of a work-affected layer 1 and a plastically deformable layer 2.
As apparent from FIG. 2, the work-affected layer 1 is composed of a Bailby layer 1a (upper layer) and a fine crystal layer 1b (lower layer). The Bailby layer 1a has an amorphous structure, and the fine crystal layer 1b has an extremely fine structure. It is a crystal texture. The plastic deformation layer 2 existing further below the work-affected layer 1 has crystal grains that are coarser than the fine crystal layer, and the work-affected layer 1 and the plastic deformation layer 2 are clearly different in crystal structure as shown in FIG. The boundary portion (broken line portion) is clear and both can be easily identified.
加工変質層1は塑性加工の程度により形成量が変化するため、電子顕微鏡観察による拡大観察を行った視野内あるいは複数の観察箇所の比較においてその厚みが変化する場合がある。そこで、拡大観察の視野内において加工変質層が最も厚い位置の厚みを計測し、このような厚みを5ヶ所観察し、その計測値の平均を加工変質層の厚みと定義している。 Since the formation amount of the work-affected layer 1 changes depending on the degree of plastic working, the thickness may change in the field of view or the comparison of a plurality of observation places in which the enlarged observation is performed by electron microscope observation. Therefore, the thickness at the position where the work-affected layer is the thickest is measured in the field of magnification observation, such thickness is observed at five places, and the average of the measured values is defined as the thickness of the work-affected layer.
以下に、実施例を用いて詳細に本発明を説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
〔実施例1〕
表1に示す成分組成を含み、残部Cu及び不可避的不純物からなる銅合金を、鋳造、熱間及び冷間による粗圧延、時効焼鈍、バフ研磨、化学的溶解処理、仕上圧延、低温焼鈍の順で行い、厚み0.15mmの銅合金条を作製する。
前記化学的溶解処理は、硫酸を100g/l、過酸化水素を15g/l含む室温と同温度の水溶液中に時間を変えて浸漬することで行い、最終的な加工変質層の厚みが、0.05、0.2、0.3、0.5、1.0μmとなるよう調整している。
[Example 1]
A copper alloy comprising the component composition shown in Table 1 and comprising the remainder Cu and inevitable impurities is cast, followed by hot and cold rough rolling, aging annealing, buffing, chemical dissolution treatment, finish rolling, and low temperature annealing. To produce a copper alloy strip having a thickness of 0.15 mm.
The chemical dissolution treatment is performed by immersing in an aqueous solution containing sulfuric acid 100 g / l and hydrogen peroxide 15 g / l at the same temperature as the room temperature, and the final work-affected layer thickness is 0 It is adjusted to be 0.05, 0.2, 0.3, 0.5, and 1.0 μm.
作製した試料の表面粗さ及び酸化皮膜の厚みを測定したところ、表面最大高さ(Rmax)は0.6〜1.0μm、中心線表面平均粗さ(Ra)は0.07〜0.12μm、酸化皮膜厚さは1〜5nmで、現在一般に流通しているリードフレーム用銅合金とほぼ同様の値であることを確認している。
表面粗さは、万能表面粗さ測定器を用いて測定し、酸化皮膜の厚みは、0.1N−KCl溶液中におけるカソード電解の還元電気量から算出している。
When the surface roughness of the prepared sample and the thickness of the oxide film were measured, the maximum surface height (Rmax) was 0.6 to 1.0 μm, and the centerline surface average roughness (Ra) was 0.07 to 0.12 μm. The thickness of the oxide film is 1 to 5 nm, and it has been confirmed that it is almost the same value as the copper alloy for lead frames currently in general distribution.
The surface roughness was measured using a universal surface roughness measuring instrument, and the thickness of the oxide film was calculated from the amount of reduced electricity of cathode electrolysis in a 0.1N-KCl solution.
ベアボンディング性の評価は、このようにして作製した試料を用い、表2に示すボンディング条件でベアボンディングを行い、プルテストによりワイヤ破断率(%)を次式、ワイヤ破断率(%)=(ワイヤで破断した数/全試験数)×100、で求めている。その結果を表3に記す。 For the evaluation of the bare bonding property, using the sample prepared as described above, bare bonding was performed under the bonding conditions shown in Table 2, and the wire breaking rate (%) was calculated by the pull test and the wire breaking rate (%) = (wire The number of ruptured by the number of all tests) × 100. The results are shown in Table 3.
表3から明らかなように、本発明例3aから本発明例4cでは、加工変質層の厚みが0.2μm以下となり、そのワイヤ破断率も全て99%以上であり、優れた接続信頼性を示している(表3中の例はすべてワイヤ破断率が99.4%以上である)。
特に加工変質層の厚みが0.05μm以下である場合には、ワイヤ破断率が99.9%以上となり、特に優れているのがわかる。一方、比較例23aから比較例24b、比較例26b、比較例27b及び比較例28bでは、加工変質層の厚みが0.2μmより厚いためにワイヤ破断率が97%未満となり接続信頼性に劣っているのがわかる。又、比較例26a、比較例27a及び比較例28aでは、250℃における酸化物の生成自由エネルギーがCuより低い元素の総質量が1.0mass%よりも多いため、加工変質層が存在しない場合においてもワイヤ破断率は81%未満であり大きく接続信頼性に劣っているのが見られる。
As apparent from Table 3, in the present invention example 4 c from the present invention Example 3 a, the thickness of the damaged layer becomes 0.2μm or less, at the wire breakage rate every 99%, excellent connection reliability (All examples in Table 3 have a wire breakage rate of 99.4% or more).
In particular, when the thickness of the work-affected layer is 0.05 μm or less, the wire breakage rate is 99.9% or more, which is particularly excellent. On the other hand, Comparative Example 2 4 b from Comparative Example 2 3 a, Comparative Example 26b, Comparative Example 2 7 b and Comparative Example 2, 8 b, the wire breakage rate the thickness of the damaged layer is for thicker than 0.2μm 97% It can be seen that the connection reliability is inferior. Further, in Comparative Example 26a, Comparative Example 27a, and Comparative Example 28a, the total mass of the elements whose oxide free energy of formation at 250 ° C. is lower than Cu is larger than 1.0 mass%. However, it can be seen that the wire breakage rate is less than 81% and is greatly inferior in connection reliability.
〔実施例2〕
次に、前記加工変質層厚みの制御を電気化学的溶解で行った他は、実施例1と同様の方法により試料を作製し、同じ条件でベアボンディングを行い、プルテストによりワイヤ破断率を求め、その結果を表4に記す。
ここで用いた電気化学的溶解処理は、リン酸を700g/l含む水溶液中において室温で電流密度10A/dm2の条件でアノード電解し、通電時間を変えることで最終的な加工変質層の厚みが0、0.05、0.2、0.3、0.5、1.0μmとなるよう調整している。
作製した試料の表面最大高さ(Rmax)は0.6〜1.0μm、中心線表面平均粗さ(Ra)は0.07〜0.12μm、酸化皮膜厚さは1〜5nmである。
[Example 2]
Next, except that the thickness of the work-affected layer was controlled by electrochemical dissolution, a sample was prepared by the same method as in Example 1, bare bonding was performed under the same conditions, and the wire breaking rate was obtained by a pull test, The results are shown in Table 4.
The electrochemical dissolution treatment used here is anodic electrolysis in an aqueous solution containing 700 g / l phosphoric acid at room temperature and a current density of 10 A / dm 2 , and the final processing-affected layer thickness is changed by changing the energization time. Is adjusted to be 0, 0.05, 0.2, 0.3, 0.5, and 1.0 μm.
The prepared sample has a maximum surface height (Rmax) of 0.6 to 1.0 μm, a center line surface average roughness (Ra) of 0.07 to 0.12 μm, and an oxide film thickness of 1 to 5 nm.
表4から明らかなように、加工変質層の厚みが0.2μm以下である本発明例8aから本発明例9cでは、ワイヤ破断率が99%以上となり、優れた接続信頼性を示している(表4中の例はすべてワイヤ破断率が99.5%以上である)。
特に加工変質層の厚みが0.05μm以下である場合においては、ワイヤ破断率が99.9%以上となり、特に接続信頼性に優れているのがわかる。一方、加工変質層の厚みが0.2μmより厚い比較例32aから比較例33b、比較例35b、比較例36b及び比較例37bでは、ワイヤ破断率が96%未満となり接続信頼性に劣っているのが見て取れる。
又、比較例35a、比較例36a及び比較例37aでは、合金中の250℃における酸化物の生成自由エネルギーがCuより低い元素の総質量が1.0mass%よりも多いため、加工変質層が存在しない場合においてもワイヤ破断率は82%未満を示し、その接続信頼性が大きく劣っているのがわかる。
As is clear from Table 4, invention sample 9 c thickness of the damaged layer from the present invention Example 8 a which is 0.2μm or less, wire breakage rate becomes 99% or more, shows excellent connection reliability it is (examples in Table 4 are all wire breakage rate 99.5% or higher).
In particular, when the thickness of the work-affected layer is 0.05 μm or less, the wire breakage rate is 99.9% or more, indicating that the connection reliability is particularly excellent. On the other hand, processing thick Comparative Example thickness than 0.2μm deteriorated layer 3 Comparative Example from 2 a 3 3 b, Comparative Example 35b, Comparative Examples 36b and Comparative Example 37b, the connection reliability wire breakage rate is less than 96% You can see that it is inferior.
Further, in Comparative Example 35a, Comparative Example 36a, and Comparative Example 37a, the total mass of elements whose oxide formation free energy at 250 ° C. in the alloy is lower than Cu is larger than 1.0 mass%, so that a work-affected layer exists. Even when not, the wire breakage rate is less than 82%, indicating that the connection reliability is greatly inferior.
〔実施例3〕
前記加工変質層厚みの制御を熱処理を用いて行った以外は、先の実施例1と同様の条件で試料を作製し、表2に示す条件でベアボンディングを行い、プルテストにおけるワイヤ破断率を求め、その結果を表5に記す。
前記熱処理は、水素還元雰囲気の加熱炉において熱処理し、処理時間を変えることで最終的な加工変質層の厚みが、0、0.05、0.2、0.3、0.5、1.0μmとなるよう調整している。
作製した試料の表面最大高さ(Rmax)は0.6〜1.0μm、中心線表面平均粗さ(Ra)は0.07〜0.12μm、酸化皮膜厚みは1〜5nmである。
Example 3
A sample was prepared under the same conditions as in Example 1 except that the work-affected layer thickness was controlled using heat treatment, bare bonding was performed under the conditions shown in Table 2, and the wire breakage rate in the pull test was obtained. The results are shown in Table 5.
The heat treatment is performed in a heating furnace in a hydrogen reduction atmosphere, and the final work-affected layer thickness is changed to 0, 0.05, 0.2, 0.3, 0.5, 1. Adjustment is made to be 0 μm.
The prepared sample has a maximum surface height (Rmax) of 0.6 to 1.0 μm, a centerline surface average roughness (Ra) of 0.07 to 0.12 μm, and an oxide film thickness of 1 to 5 nm.
加工変質層の厚みが0.2μm以下である本発明例13aから14cでは、ワイヤ破断率が99%以上となり接続信頼性に優れているのがわかる(表5中の本発明例は、全てワイヤ破断率が99.4%以上を示している)。
特に加工変質層の厚みが0.05μm以下の場合には、ワイヤ破断率が99.9%以上を示し、一段と優れる接続信頼性を示している。
一方、加工変質層の厚みが0.2μmより厚い比較例42aから比較例43b及び比較例45b、比較例46b、比較例47bにおいては、ワイヤ破断率が96%未満となり接続信頼性に劣っている。又、比較例45a、比較例46a及び比較例47aでは、合金中の250℃における酸化物の生成自由エネルギーがCuより低い元素の総質量が1.0mass%を超えているために、加工変質層が存在しない場合においても81%未満のワイヤ破断率を示し、接続信頼性が大きく劣っているのがわかる。
In Invention Examples 1 3 a to 1 4 c in which the thickness of the work-affected layer is 0.2 μm or less, it can be seen that the wire breakage ratio is 99% or more and the connection reliability is excellent (invention examples in Table 5). All show a wire breakage rate of 99.4% or more).
In particular, when the thickness of the work-affected layer is 0.05 μm or less, the wire breakage rate is 99.9% or more, and the connection reliability is further improved.
On the other hand, process-induced degradation layer of a thickness comparison of thick Comparative Example 4 2 a than 0.2μm Example 4 3 b and Comparative Examples 45b, Comparative Example 46b, in Comparative Example 47b is connected reliability wire breakage rate is less than 96% It is inferior to. In Comparative Example 45a, Comparative Example 46a, and Comparative Example 47a, the total mass of elements whose oxide free formation energy at 250 ° C. in the alloy is lower than Cu exceeds 1.0 mass%. Even in the absence of the wire, it shows a wire breakage rate of less than 81%, indicating that the connection reliability is greatly inferior.
1 加工変質層
1a ベイルビー層
1b 微細結晶層
2 塑性変形層
1 Work-affected layer 1a Bailby layer 1b Microcrystalline layer 2 Plastic deformation layer
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007065665A JP5128152B2 (en) | 2007-03-14 | 2007-03-14 | Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007065665A JP5128152B2 (en) | 2007-03-14 | 2007-03-14 | Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008223106A JP2008223106A (en) | 2008-09-25 |
JP5128152B2 true JP5128152B2 (en) | 2013-01-23 |
Family
ID=39842060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007065665A Expired - Fee Related JP5128152B2 (en) | 2007-03-14 | 2007-03-14 | Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5128152B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4629154B1 (en) * | 2010-03-23 | 2011-02-09 | Jx日鉱日石金属株式会社 | Copper alloy for electronic materials and manufacturing method thereof |
JP5755892B2 (en) * | 2011-01-26 | 2015-07-29 | 株式会社Shカッパープロダクツ | Method for producing copper alloy sheet |
JP6230087B2 (en) * | 2011-12-09 | 2017-11-15 | 株式会社神戸製鋼所 | Copper alloy for lead frames with excellent bare bondability |
JP5668814B1 (en) * | 2013-08-12 | 2015-02-12 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04165055A (en) * | 1990-10-29 | 1992-06-10 | Hitachi Cable Ltd | Lead frame material for semiconducting device |
JP2007039804A (en) * | 2005-07-05 | 2007-02-15 | Furukawa Electric Co Ltd:The | Copper alloy for electronic apparatus and method of producing the same |
-
2007
- 2007-03-14 JP JP2007065665A patent/JP5128152B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008223106A (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2388349B1 (en) | Copper alloy sheet for electric and electronic parts | |
KR101136265B1 (en) | Copper alloy sheets for electrical/electronic part | |
KR101336495B1 (en) | Method of Producing a Precipitate -type Copper Alloy Material for Electronic Machinery and Tools | |
JP4677505B1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4761586B1 (en) | High-strength titanium copper plate and manufacturing method thereof | |
JP5312920B2 (en) | Copper alloy plate or strip for electronic materials | |
KR102009755B1 (en) | Copper alloy wire material and manufacturing method thereof | |
JP4118832B2 (en) | Copper alloy and manufacturing method thereof | |
JP5468423B2 (en) | High strength and high heat resistance copper alloy material | |
JP5225787B2 (en) | Cu-Ni-Si alloy plate or strip for electronic materials | |
KR101338710B1 (en) | Ni-si-co copper alloy and manufacturing method therefor | |
JP4168077B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion | |
JP4197718B2 (en) | High strength copper alloy sheet with excellent oxide film adhesion | |
CN111383935A (en) | Bonding wire for semiconductor device | |
JP2007039804A (en) | Copper alloy for electronic apparatus and method of producing the same | |
JP2013122070A (en) | High-strength copper alloy plate excellent in oxide film adhesiveness | |
JP5128152B2 (en) | Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof | |
JP5479002B2 (en) | Copper alloy foil | |
JP4642119B2 (en) | Copper alloy and method for producing the same | |
JP4459067B2 (en) | High strength and high conductivity copper alloy | |
JP5291494B2 (en) | High strength high heat resistance copper alloy sheet | |
JP5098096B2 (en) | Copper alloy, terminal or bus bar, and method for producing copper alloy | |
JP4708497B1 (en) | Cu-Co-Si alloy plate and method for producing the same | |
JP2005133185A (en) | Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof | |
JP2018076588A (en) | Copper alloy sheet material and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120130 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120130 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121031 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5128152 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |