JPS6410469B2 - - Google Patents

Info

Publication number
JPS6410469B2
JPS6410469B2 JP57197066A JP19706682A JPS6410469B2 JP S6410469 B2 JPS6410469 B2 JP S6410469B2 JP 57197066 A JP57197066 A JP 57197066A JP 19706682 A JP19706682 A JP 19706682A JP S6410469 B2 JPS6410469 B2 JP S6410469B2
Authority
JP
Japan
Prior art keywords
refractory
weight
lightweight
content
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57197066A
Other languages
Japanese (ja)
Other versions
JPS5988378A (en
Inventor
Hitoshi Nagata
Yoshio Sasaki
Atsuhisa Ijiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP57197066A priority Critical patent/JPS5988378A/en
Publication of JPS5988378A publication Critical patent/JPS5988378A/en
Publication of JPS6410469B2 publication Critical patent/JPS6410469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種焼成炉の炉体構造用あるいは焼成
用道具材として用いられる軽量耐火物及びその製
造方法に関する。 各種焼成炉の炉体構造用あるいは焼成用道具材
として用いられる耐火物は自動化、省力化等を目
的として軽量化が指向されている。 ところで、従来、上述したような耐火物は一般
に以下のような方法により製造されている。ま
ず、天然原料あるいは人工原料の粒度調整を行な
い、これらの原料に水及び有機質又は無機質の結
合剤等を加えて混練する。次に、この混練物をプ
レス加工、鋳込成形等で所定形状に成形する。つ
づいて、この成形体を焼成(不焼成の場合もあ
る)することにより耐火物を製造する。 しかし、こうした方法で製造される耐火物製品
は、原料及び製造工程の選択を行なつても軽量化
には限界があり、一般にはカサ比重を約1.0以下
とすることは困難であると考えられる。 そこで、中空状原料を主原料として使用した
り、原料の一部に乾燥工程又は焼成工程で気化又
は炭化し消滅する原料を使用することにより耐火
物中の空隙部分を増加させた軽量耐火物や、原料
に発泡材を添加し、原料混合時、乾燥時あるいは
焼成時に発泡させた軽量耐火物が知られている。 しかし、上述したような軽量耐火物は、耐火物
構成粒子間の結合力が弱いため強度が低い。特
に、焼成用道具材耐火物として高温下で使用する
際、耐火物自体に変形や亀裂が発生し、こうした
変形等に起因して被焼成物に変形が生じたり、空
隙部が多いことから耐火物表面に凹凸があり、被
焼成物の表面に傷がつく等の欠点がある。 本発明は上記事情に鑑みてなされたものであ
り、高強度化を達成し得る軽量耐火物及びそうし
た軽量耐火物を簡便に製造でき、かつその表面の
平滑度を高め得る軽量耐火物の製造方法を提供し
ようとするものである。 すなわち、本願第1の発明は耐火材原料粉末と
耐火材繊維とを無定形シリカによつて結合し、か
つ耐火材原料粉末の含有率が90〜50wt%耐火材
繊維の含有率が10〜50wt%であり、無定形シリ
カの含有量が耐火材原料粉末及び耐火材繊維100
重量部に対して0.5〜10重量部であることを特徴
とする軽量耐火物である。 本発明において用いられる耐火材原料粉末とし
てはアルミナ質、アルミナムライト質、ムライト
質等のものを挙げることができる。 また、本発明において用いられる耐火材繊維と
してはアルミナ質、アルミナムライト質、ムライ
ト質等のものを挙げることができる。 これらの含有率を上記範囲に限定したのは、耐
火材原料粉末の含有率が90wt%を超え、耐火材
繊維の含有率が10wt%未満であると、軽量化の
効果が小さいためであり、また耐火材原料粉末の
含有率が50wt%未満であり、耐火材繊維の含有
率が50wt%を超えると、強度を向上させること
ができないためである。 本発明において無定形シリカの含有量を耐火材
原料粉末及び耐火材繊維100重量部に対して0.5〜
10重量部としたのは、0.5重量部未満であると両
者を結合させる力が弱く、成形できないためであ
る。また、10重量部を超えると、無定形シリカの
再結晶化により組織の脆弱化を招き、特に高温時
に強度の低下を招くうえに、軽量化できないため
である。 また、本願第2の発明は90〜50wt%の耐火材
原料粉末、10〜50wt%の耐火材繊維及びこれら
100重量部に対して0.5〜10重量部の無定形シリカ
を水に分散させて泥漿を得る工程と、該泥漿を吸
引過法により所定形状に成形する工程と、該成
形体を1450〜1600℃で焼成する工程とを具備した
ことを特徴とする軽量耐火物の製造方法である。 本発明の如く、泥漿を吸引過法によつて成形
すれば、他のプレス成形法等に比べて外圧の影響
が非常に少なく、カサ比重を小さくして、軽量化
することができ、また、軽量耐火物の表面を平滑
にすることができる。 また、本発明において成形体の焼成温度を上記
範囲に限定したのは、1450℃未満であると焼結不
足により強度を向上することができないためであ
り、1600℃を超えると耐火材繊維の脆弱化を招
き、やはり強度を向上することができないためで
ある。 以下、本発明の実施例を製造方法を併記して説
明する。 実施例1〜8及び比較例1〜8 耐火材繊維としてアルミナ質繊維(実施例1〜
6及び比較例1〜4、7、8)及びムライト質繊
維(実施例7、8及び比較例5、6)を用い、そ
れぞれ下記表に示す重量部の各耐火材繊維に、結
合剤としてそれぞれ下記表に示す重量部の無定形
シリカを添加し、水中で撹拌して耐火材繊維を分
散(解綿)させた。次に、上記水中に耐火材原料
粉末としてそれぞれ下記表に示す重量部の焼結ア
ルミナを添加混合し、泥漿化した。各泥漿中の
SiO2及びAl2O3の組成を下記表に併記する。つづ
いて、前記各泥漿をブフナーロート状の型に投入
し、吸引過法により脱水し、成形した。つづい
て、各成形体を下記表に示す温度で焼成し、耐火
材繊維含有耐火物を得た。 得られた各耐火物の見掛気孔率、カサ比重及び
室温と1300℃における曲げ強さをそれぞれ下記表
に併記する。 なお、下記表中参照例1、2は従来の軽量耐火
物であり、参照例1はアルミナ中空粒耐火材原料
を使用したもの、参照例2は粘土質軽量骨材を使
用したものである。
The present invention relates to a lightweight refractory used for the body structure of various firing furnaces or as a firing tool material, and a method for manufacturing the same. BACKGROUND OF THE INVENTION Refractories used for the body structure of various firing furnaces or as firing tools are being made lighter for the purpose of automation, labor saving, etc. By the way, conventionally, the above-mentioned refractories have generally been manufactured by the following method. First, the particle size of natural or artificial raw materials is adjusted, and water and an organic or inorganic binder are added to these raw materials and kneaded. Next, this kneaded material is formed into a predetermined shape by press working, casting molding, or the like. Subsequently, a refractory is manufactured by firing (or unfired in some cases) this molded body. However, there is a limit to the weight reduction of refractory products manufactured using these methods, even if the raw materials and manufacturing process are selected, and it is generally considered difficult to reduce the bulk specific gravity to less than approximately 1.0. . Therefore, we have developed lightweight refractories with increased voids by using hollow raw materials as the main raw material or by using raw materials that vaporize or carbonize and disappear during the drying or firing process. Lightweight refractories are known in which a foaming material is added to raw materials and foamed during mixing, drying, or firing of the raw materials. However, the above-mentioned lightweight refractories have low strength because the bonding force between the constituent particles of the refractories is weak. In particular, when used as a refractory for firing tools at high temperatures, deformation and cracks occur in the refractory itself, and due to these deformations, the object to be fired may be deformed, and there are many voids, making it difficult to refract. There are disadvantages such as unevenness on the surface of the object and scratches on the surface of the object to be fired. The present invention has been made in view of the above circumstances, and provides a lightweight refractory that can achieve high strength, and a method for manufacturing a lightweight refractory that can easily manufacture such a lightweight refractory and that can improve the smoothness of its surface. This is what we are trying to provide. That is, the first invention of the present application combines a refractory raw material powder and a refractory fiber with amorphous silica, and the content of the refractory raw material powder is 90 to 50 wt%, and the content of the refractory fiber is 10 to 50 wt. %, and the content of amorphous silica is 100% of the refractory material raw material powder and refractory material fiber.
It is a lightweight refractory characterized by having a content of 0.5 to 10 parts by weight. Examples of the refractory raw material powder used in the present invention include alumina, aluminumrite, and mullite. Furthermore, the refractory fibers used in the present invention include alumina, aluminumrite, mullite, and the like. The reason why these contents are limited to the above range is that if the content of the refractory raw material powder exceeds 90wt% and the content of the refractory fiber is less than 10wt%, the weight reduction effect will be small. Further, if the content of the refractory raw material powder is less than 50 wt% and the content of the refractory fiber exceeds 50 wt%, the strength cannot be improved. In the present invention, the content of amorphous silica is 0.5 to 100 parts by weight of refractory material raw material powder and refractory material fiber.
The reason why the amount is 10 parts by weight is because if it is less than 0.5 parts by weight, the force that binds the two will be weak and molding will not be possible. Moreover, if it exceeds 10 parts by weight, recrystallization of the amorphous silica will lead to weakening of the structure, resulting in a decrease in strength, especially at high temperatures, and it will not be possible to reduce the weight. In addition, the second invention of the present application includes 90 to 50 wt% refractory material raw material powder, 10 to 50 wt% refractory material fiber, and
A step of dispersing 0.5 to 10 parts by weight of amorphous silica per 100 parts by weight in water to obtain a slurry, a step of molding the slurry into a predetermined shape by a suction method, and a step of heating the molded body at 1450 to 1600°C. This is a method for producing a lightweight refractory, characterized by comprising a step of firing the material. As in the present invention, if the slurry is molded by the suction method, the influence of external pressure is very small compared to other press molding methods, the bulk specific gravity can be reduced, and the weight can be reduced. The surface of lightweight refractories can be made smooth. In addition, in the present invention, the firing temperature of the molded body is limited to the above range because if it is less than 1450°C, the strength cannot be improved due to insufficient sintering, and if it exceeds 1600°C, the refractory fiber becomes brittle. This is because, as a result, the strength cannot be improved. Examples of the present invention will be described below along with manufacturing methods. Examples 1 to 8 and Comparative Examples 1 to 8 Alumina fibers (Examples 1 to 8) were used as refractory fibers.
6 and Comparative Examples 1 to 4, 7, 8) and mullite fibers (Examples 7, 8 and Comparative Examples 5, 6), each of the refractory fibers was added as a binder in the weight parts shown in the table below. Amorphous silica in the weight parts shown in the table below was added, and the refractory fibers were dispersed (popped) by stirring in water. Next, sintered alumina in the weight parts shown in the table below was added and mixed as a refractory material raw material powder into the above water to form a slurry. in each slurry
The compositions of SiO 2 and Al 2 O 3 are also listed in the table below. Subsequently, each of the slurries described above was put into a Buchner funnel-shaped mold, dehydrated by a suction filtration method, and molded. Subsequently, each molded body was fired at the temperature shown in the table below to obtain a refractory containing refractory material fiber. The apparent porosity, bulk specific gravity, and bending strength at room temperature and 1300°C of each refractory obtained are also listed in the table below. Note that Reference Examples 1 and 2 in the table below are conventional lightweight refractories; Reference Example 1 uses an alumina hollow grain refractory material raw material; Reference Example 2 uses a clay lightweight aggregate.

【表】 上記表から明らかなように比較例1、2の耐火
物はアルミナ質繊維の含有率が少なく、焼結アル
ミナ含有率が多いので従来の軽量耐火物(参照例
1、2、以下同様)に比べて強度は向上したもの
のカサ比重が大きく軽量化できない。また、比較
例5、6の軽量耐火物は無定形シリカの添加量が
本発明の範囲外であるので、いずれもカサ比重が
大きい。また、比較例3、4の軽量耐火物は焼成
温度が本発明の範囲外であるので、いずれも強度
が向上していない。更に、比較例7、8の軽量耐
火物はアルミナ質繊維の含有率が多く、焼結アル
ミナの含有率が少ないのでかなりカサ比重は小さ
いけれども強度はほとんど向上していない。これ
に対して実施例1〜8の軽量耐火物は従来の軽量
耐火物と比較すると、いずれも軽量化及び高強度
化を達成することができた。また、実施例1〜8
の軽量耐火物の表面は平滑であり、焼成用道具材
として用いても被焼成物に傷をつけないことが確
認された。 以上詳述した如く本発明によれば、高強度化を
達成し得る軽量耐火物及びそうした軽量耐火物を
簡便に製造でき、かつその表面の平滑度を高め得
る軽量耐火物の製造方法を提供できるものであ
る。
[Table] As is clear from the table above, the refractories of Comparative Examples 1 and 2 have a low content of alumina fibers and a high content of sintered alumina, so they are similar to conventional lightweight refractories (Reference Examples 1 and 2, the same applies hereafter). Although the strength is improved compared to ), the bulk specific gravity is large and weight cannot be reduced. Furthermore, since the lightweight refractories of Comparative Examples 5 and 6 had amorphous silica added in an amount outside the range of the present invention, both had large bulk specific gravity. Moreover, since the lightweight refractories of Comparative Examples 3 and 4 had firing temperatures outside the range of the present invention, the strength of neither of them was improved. Further, the lightweight refractories of Comparative Examples 7 and 8 have a high content of alumina fibers and a low content of sintered alumina, so although the bulk specific gravity is quite small, the strength is hardly improved. On the other hand, the lightweight refractories of Examples 1 to 8 were all able to achieve lighter weight and higher strength when compared with conventional lightweight refractories. In addition, Examples 1 to 8
It was confirmed that the surface of the lightweight refractory was smooth and would not damage the object to be fired even when used as a firing tool material. As detailed above, according to the present invention, it is possible to provide a lightweight refractory that can achieve high strength and a method for manufacturing a lightweight refractory that can easily manufacture such a lightweight refractory and that can improve the smoothness of its surface. It is something.

Claims (1)

【特許請求の範囲】 1 耐火材原料粉末と耐火材繊維とを無定形シリ
カによつて結合し、かつ耐火材原料粉末の含有率
が90〜50wt%、耐火材繊維の含有率が10〜50wt
%であり、無定形シリカの含有量が耐火材原料粉
末及び耐火材繊維100重量部に対して0.5〜10重量
部であることを特徴とする軽量耐火物。 2 耐火材原料粉末90〜50wt%及び耐火材繊維
10〜50wt%からなる骨材100重量部に対して無定
形シリカを0.5〜10重量部添加し、これらを水に
分散させて泥漿を得る工程と、該泥漿を吸引過
法により所定形状に成形する工程と、該成形体を
1450〜1600℃で焼成する工程とを具備したことを
特徴とする軽量耐火物の製造方法。
[Scope of Claims] 1. A refractory raw material powder and a refractory fiber are combined by amorphous silica, and the content of the refractory raw material powder is 90 to 50 wt% and the content of the refractory fiber is 10 to 50 wt%.
%, and the content of amorphous silica is 0.5 to 10 parts by weight based on 100 parts by weight of refractory material raw material powder and refractory material fiber. 2 90-50wt% refractory material raw material powder and refractory material fiber
A process of adding 0.5 to 10 parts by weight of amorphous silica to 100 parts by weight of aggregate consisting of 10 to 50 wt% and dispersing them in water to obtain a slurry, and forming the slurry into a predetermined shape by a suction method. The process of
A method for producing a lightweight refractory, comprising a step of firing at 1450 to 1600°C.
JP57197066A 1982-11-10 1982-11-10 Lightweight refractories and manufacture Granted JPS5988378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197066A JPS5988378A (en) 1982-11-10 1982-11-10 Lightweight refractories and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197066A JPS5988378A (en) 1982-11-10 1982-11-10 Lightweight refractories and manufacture

Publications (2)

Publication Number Publication Date
JPS5988378A JPS5988378A (en) 1984-05-22
JPS6410469B2 true JPS6410469B2 (en) 1989-02-21

Family

ID=16368145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197066A Granted JPS5988378A (en) 1982-11-10 1982-11-10 Lightweight refractories and manufacture

Country Status (1)

Country Link
JP (1) JPS5988378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352226U (en) * 1989-09-28 1991-05-21

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718661B2 (en) * 1985-03-05 1995-03-06 イビデン株式会社 Method for manufacturing lightweight heat-resistant tray for firing ceramics
JPS6237683A (en) * 1985-08-09 1987-02-18 東芝セラミツクス株式会社 Tool for baking ceramic
JPH0781789B2 (en) * 1986-02-10 1995-09-06 東芝セラミックス株式会社 Super lightweight setter
JPH0796469B2 (en) * 1986-10-30 1995-10-18 イビデン株式会社 Heat resistant inorganic fiber molding
JPH0796468B2 (en) * 1986-10-30 1995-10-18 イビデン株式会社 Method for producing heat-resistant inorganic fiber molded body
JPS63206367A (en) * 1987-02-18 1988-08-25 ニチアス株式会社 Lightweight refractories and manufacture
JPH02102171A (en) * 1988-10-11 1990-04-13 Nichias Corp Refractory for ceramic calcination
GB8906916D0 (en) * 1989-03-28 1989-05-10 Foseco Int Refractory supports
JP5080736B2 (en) * 2005-12-01 2012-11-21 日本碍子株式会社 Refractory manufacturing method and refractory obtained thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE849867A (en) * 1976-01-07 1977-06-24 INSULATING REFRACTORY COMPOSITIONS
JPS6047232B2 (en) * 1976-06-28 1985-10-21 イビデン株式会社 Manufacturing method of highly refractory ceramic fiber composite molded body
JPS5659665A (en) * 1979-10-22 1981-05-23 Ibigawa Electric Ind Co Ltd Inorganic fiber formed body and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352226U (en) * 1989-09-28 1991-05-21

Also Published As

Publication number Publication date
JPS5988378A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US9150456B2 (en) Manufacture of articles from fly ash
WO1997006117A1 (en) Synthetic clay for ceramics and process for preparing the same
CN106145976B (en) Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof
JPS6410469B2 (en)
US3008842A (en) Basic refractory insulating shapes
JP3094148B2 (en) Manufacturing method of lightweight refractory
EP0410601B1 (en) Composite ceramic material
JPH0572341B2 (en)
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JP3451568B2 (en) Method for producing fiber molded body
JPH07237958A (en) High-strength porcelain and production thereof
US3679441A (en) Ceramic product from fly ash and method of making same
JP3111741B2 (en) High strength porcelain and its manufacturing method
JP3094147B2 (en) Firing jig
CN110818396B (en) High-temperature-resistant material and preparation method thereof
JPH02289473A (en) High heat resistant lightweight tray and production thereof
US2764494A (en) Methods of preparing highly-refractory blocks or other masses
JP3117180B2 (en) Amorphous refractory molded body and method of manufacturing the same
RU2153482C2 (en) Method of manufacturing aluminosilicate and corundum refractory products
JP3280017B2 (en) Calcium silicate sintered body
JPH11171671A (en) Production of plate silicon carbide-silicon composite ceramic
JPH0674178B2 (en) Porous refractory
JPH03177383A (en) Refractory having zirconia coated layer
RU2539519C1 (en) Mix for production of refractory with forsterite bond
JPS6027647A (en) Low expansion ceramics and manufacture