JP3117180B2 - Amorphous refractory molded body and method of manufacturing the same - Google Patents

Amorphous refractory molded body and method of manufacturing the same

Info

Publication number
JP3117180B2
JP3117180B2 JP06310799A JP31079994A JP3117180B2 JP 3117180 B2 JP3117180 B2 JP 3117180B2 JP 06310799 A JP06310799 A JP 06310799A JP 31079994 A JP31079994 A JP 31079994A JP 3117180 B2 JP3117180 B2 JP 3117180B2
Authority
JP
Japan
Prior art keywords
weight
molded body
hot metal
examples
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06310799A
Other languages
Japanese (ja)
Other versions
JPH08169754A (en
Inventor
俊久 佐々木
哲夫 久保
倫 中村
章生 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP06310799A priority Critical patent/JP3117180B2/en
Publication of JPH08169754A publication Critical patent/JPH08169754A/en
Application granted granted Critical
Publication of JP3117180B2 publication Critical patent/JP3117180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐溶銑性と耐スポール
性に優れ、製銑用高炉の炉底築炉用に適した不定形耐火
物成形体(施行体を含む)とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous shaped refractory molded article (including an enforced body) having excellent hot metal resistance and spall resistance and suitable for use in a furnace bottom construction of a blast furnace for ironmaking, and a method for producing the same. About.

【0002】[0002]

【従来の技術】近年の高炉炉底構造は、通常、鉄皮の内
側にカーボンブロックを下積にしてその上に中積れんが
を設け、さらにその上にシャモットれんがを上積に配設
したラィニング構造が主になっている。
2. Description of the Related Art In recent years, a blast furnace hearth structure is generally constructed by installing a carbon block as a lower layer inside a steel shell, a middle brick on the lower layer, and a chamotte brick on the upper layer. The structure is mainly.

【0003】前記の中積れんがとしては、溶銑やスラ
グ、アルカリの侵食を防止すると共に炉内の熱を断熱
し、下積のカーボンブロックを保護するために、耐溶銑
性及び耐スポール性の優れたAl2 3 −C−Si質れ
んがが通常使用されている。
[0003] The above-mentioned middle bricks have excellent hot metal resistance and spall resistance in order to prevent the erosion of hot metal, slag, and alkali, to insulate the heat in the furnace, and to protect the carbon blocks in the lower layers. Al 2 O 3 -C-Si bricks were are normally used.

【0004】その他に特開公昭63−57706号公報
に示されるAl2 3 −C−SiC質れんがやC−Si
C質れんが、さらに、特開公昭61−122160号公
報に示されているAl2 3 −SiO2 質れんがや、こ
れにSiCウィスカーを添加したれんががある。
In addition, Al 2 O 3 -C-SiC bricks and C-Si are disclosed in Japanese Patent Application Laid-Open No. 63-57706.
C bricks, further, Japanese Publication and Al 2 O 3 -SiO 2 quality bricks shown in 61-122160, JP-this is brick with added SiC whiskers.

【0005】この上積れんがや中積れんがは、1個当り
の重量が30〜40kg前後の小型れんがであり、高炉
の築炉作業時には、手作業により1つずつ積み重ねられ
もので、手間の掛かる重労働であると共に多大の時間を
要するので、築炉工程が長くなり能率が悪い。とくに、
最近では築炉工の高齢化及び熟練工の人員不足による問
題が大きく、築炉の自動化や省力化、機械化が要求され
ている。
[0005] The upper brick and the middle brick are small bricks weighing about 30 to 40 kg per piece, and are piled up one by one during the blast furnace construction work, which is troublesome. Since it is hard work and takes a lot of time, the furnace construction process becomes long and the efficiency is low. In particular,
Recently, there are many problems due to the aging of the furnace construction and the shortage of skilled workers, and automation, labor saving and mechanization of the furnace are required.

【0006】この問題を解消するための手段として、小
型れんがを築炉前に事前に組み合わせたれんが接着ブロ
ックが採用されつつある。こうしたれんが接着ブロック
は、見掛上大型れんがとなるため、築炉時にクレーンや
リフトの使用による取扱いを容易にし、築炉の能率化、
省力化を可能にする。しかし、セット形状に制約がある
と共に、小型れんがに比べて接着分だけコスト高にな
る。また、このような接着ブロックでは目地数が減少し
ないため、大型化に伴う耐用の向上が期待できない。つ
まり、築炉時にこうした煉瓦間の目地や隙には通常モル
タルが使用されるが、モルタルはれんがに比べて著しく
組織が不良となるため、結果として高炉火入れ後に目地
部に溶銑の侵入をもたらし耐火物の寿命を短くする。
As a means for solving this problem, a brick bonding block in which small bricks are combined in advance before a furnace is being built is being adopted. Since these brick adhesive blocks are apparently large bricks, they can be easily handled by using cranes and lifts during furnace construction, making furnace construction more efficient,
Enable labor saving. However, the set shape is restricted, and the cost is increased by the amount of the adhesive compared to the small brick. Further, since the number of joints does not decrease in such an adhesive block, it is not possible to expect an improvement in durability with an increase in size. In other words, mortar is usually used for joints and gaps between such bricks during furnace construction.However, mortar has a significantly poorer structure than brick, and as a result, hot metal enters the joints after the blast furnace is fired, resulting in fire resistance. Shorten the life of objects.

【0007】その点から言って目地のない大型の一体物
で製造することが望ましいが、大型のれんがは、品質あ
るいは寸法精度上、製造が困難であると共に、れんが製
造時における大型成形機や大型焼成炉の使用のためのコ
ストが掛かりすぎ実用的でない。
[0007] In view of this, it is desirable to manufacture a large-sized monolith without joints. However, large-sized bricks are difficult to manufacture due to quality or dimensional accuracy. The cost for using the firing furnace is too high to be practical.

【0008】そのため、不定形耐火物を用いた成形体も
使用されるようになった。このような不定形耐火物製の
成形体は、一般に、粒度調整された耐火原料の配合物
に、結合剤としてアルミナセメントなどを使用した粉末
材料を、通常は鋳込現場に搬入して、水を添加し、混
練、鋳込、養生、脱枠し、必要に応じて熱処理を施して
製造される。
[0008] For this reason, molded articles using irregular-shaped refractories have come to be used. In general, such a molded article made of an amorphous refractory is prepared by adding a powder material using alumina cement or the like as a binder to a mixture of a refractory raw material whose particle size has been adjusted, usually to a casting site, and adding Is added, kneaded, cast, cured, deframed, and subjected to heat treatment if necessary.

【0009】こうして得られた不定形耐火物からなる成
形体は以下のような利点がある。
The molded article made of the amorphous refractory thus obtained has the following advantages.

【0010】 大型形状になってもれんがに比べて均
一な品質を得ることができ、特別な成形機や焼成炉を必
要としないため、大型化が容易で炉床の目地数が減少で
き、耐火層の耐用向上が期待できる。また、鋳込みブロ
ックであればリフティングプラグで吊上げるためのコア
の設置もその修復も容易である。
[0010] Even in a large shape, uniform quality can be obtained as compared with brick, and a special molding machine and a baking furnace are not required. Therefore, the size can be easily increased, the number of joints in the hearth can be reduced, and fire resistance can be reduced. An improvement in the durability of the layer can be expected. In the case of a cast block, it is easy to install and repair a core for lifting with a lifting plug.

【0011】 鋳込み成形体である為、枠形状にこだ
わらずにブロック化できるので、製造上形状的な制約が
なく、築炉上炉底コーナー部の隙間のようなれんがを配
設できない部位を含んだ特殊形状れんがに容易に製造で
きる。
Since it is a cast molded body, it can be formed into a block without being restricted to a frame shape. Therefore, there is no restriction on the shape in terms of production, and there is a portion where a brick such as a gap at a furnace bottom corner can not be arranged. Special shaped bricks can be easily manufactured.

【0012】しかしながら、不定形耐火物成形体は、こ
のような利点と共に、製造に際して以下のような欠点が
ある。
[0012] However, the amorphous refractory molded article has the following disadvantages in the production thereof, in addition to such advantages.

【0013】 れんがに比べて成形圧が低く添加水分
が多いために成形体の密度が低く、気孔径が大きくなり
耐溶銑浸透性を下げると共に、熱間強度が低下する。
[0013] Since the molding pressure is lower and the amount of added moisture is larger than that of brick, the density of the molded body is low, the pore diameter is increased, the hot metal penetration resistance is reduced, and the hot strength is reduced.

【0014】 アルミナセメントのような耐熱性が低
い結合剤を多く使用するため、成形ブロックの耐食性、
容積安定性、熱間強度等熱間特性を下げ、耐スポール性
を低下させる。
Since a large amount of a binder having low heat resistance such as alumina cement is used, the corrosion resistance of the molded block,
Reduces hot properties such as volume stability and hot strength, and reduces spall resistance.

【0015】 不定形耐火物を混練後、型枠に鋳込む
際に振動充填によって成形される際に内部空洞が発生し
やすく、この空洞は集合発達して独立気泡として残り、
成形体の表面及び内部に比較的大きな空洞を形成し、こ
のため、成形体の耐溶銑浸透性を低下させる。
[0015] After kneading the amorphous refractory, an internal cavity is apt to be generated when molded by vibration filling when cast into a mold, and this cavity collectively develops and remains as a closed cell,
Relatively large cavities are formed on the surface and inside of the compact, thereby reducing the hot metal penetration resistance of the compact.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、築炉
効率を上げるための不定形耐火物成形体の熱間強度、耐
スポール性、耐溶銑浸透性を向上せしめるための組成物
成形体とその製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a molded article for improving the hot strength, spall resistance, and hot metal penetration resistance of an irregular shaped refractory molded article for improving the efficiency of furnace construction. And its manufacturing method.

【0017】[0017]

【課題を解決するための手段】本発明による成形体は、
バインダーとしてセメン卜の添加量を抑えて分散剤等を
使用し、成形体の高温特性を改善せしめたものである。
The molded article according to the present invention comprises:
The high-temperature properties of the molded article are improved by using a dispersant or the like while suppressing the amount of cement added as a binder.

【0018】すなわち、本発明の不定形耐火物成形体
は、Al2 3 を75〜90重量%、Cを4〜15重量
%、金属Siを1〜6重量%、及びケイ酸質粉末起源の
SiO2 を1〜6重量%、水硬性セメント起源のCaO
を0.5〜2重量%を含有する組成物に分散剤を0.0
05〜1重量%添加した鋳込み成形体であり、且つ、1
300〜1500℃の温度で還元焼成後の平均気孔径が
1μm以下であることを特徴とする。
That is, the amorphous refractory molded article of the present invention comprises 75 to 90% by weight of Al 2 O 3 , 4 to 15% by weight of C, 1 to 6% by weight of metal Si, and silicic powder. of SiO 2 1 to 6 wt%, CaO hydraulic cements origin
Is added to a composition containing 0.5 to 2% by weight of a dispersant.
It is a cast molded product to which 0.05 to 1% by weight is added, and 1
The average pore diameter after reduction firing at a temperature of 300 to 1500 ° C. is 1 μm or less.

【0019】使用する分散剤として、通常の流し込み材
に使用する分散剤を使用することができる。例えば、ア
ルカリ金属リン酸塩、アルカリ金属カルボン酸塩、アル
カリ金属フミン酸塩、ポリカルボン酸ナトリウム等の
塩、アルキルスルホン酸ナトリウム等の塩、芳香族スル
ホン酸ナトリウム等の塩、アルカリ金属珪酸塩、アルカ
リ金属炭酸塩、又はリグニンスルホン酸ナトリウム等の
塩、無水マレイン−イソブチレン共重合物のナトリウム
塩及びこれらのアンモニウム塩等、更に、これらと同様
な効果が得られる物質から1種又は2種以上を選択して
使用できる。これら分散剤の使用量は、慣用の使用範囲
内であり、例えば耐火骨材100重量部当たり0.00
5〜1.000重量%程度である。
As the dispersing agent to be used, a dispersing agent used for a usual casting material can be used. For example, alkali metal phosphate, alkali metal carboxylate, alkali metal humate, salt such as sodium polycarboxylate, salt such as sodium alkyl sulfonate, salt such as sodium aromatic sulfonate, alkali metal silicate, Alkali metal carbonates, salts such as sodium ligninsulfonate, sodium maleic anhydride-isobutylene copolymer and ammonium salts thereof, and further, one or more kinds of substances having the same effect as those described above are obtained. You can select and use. The amount of these dispersants used is within the usual range of use, for example, 0.00 per 100 parts by weight of refractory aggregate.
It is about 5 to 1.000% by weight.

【0020】本成形体に使用する耐火骨材として、溶銑
に対する耐食性、耐摩耗性、容積安定性に優れたAl2
3 を用いる。
[0020] As the refractory aggregate to be used in the present moldings, corrosion resistance against the molten iron, wear resistance, Al 2 with excellent volume stability
O 3 is used.

【0021】Al2 3 の原料としては、Al2 3
有量が95%以上であるかぎり、特に限定されず、電融
アルミナ、焼結アルミナ、仮焼アルミナ等の人造アルミ
ナ、天然コランダム、ボーキサイト等の天然アルミナが
挙げられるが、この中で前述の具備条件を満足するには
電融アルミナが最も望ましく、粒径は0mm以上5mm
未満及び5mm以上10mm未満の2種に粒度調整す
る。
[0021] As a raw material of Al 2 O 3, as long as Al 2 O 3 content of 95% or more is not particularly limited, fused alumina, sintered alumina, synthetic alumina such as calcined alumina, natural corundum, Among them, natural alumina such as bauxite is mentioned, and among them, fused alumina is most desirable to satisfy the above-mentioned conditions, and the particle size is 0 mm or more and 5 mm or more.
The particle size is adjusted to two types of less than 5 mm and less than 5 mm and less than 10 mm.

【0022】とくに、Al2 3 のうち1〜6重量%を
10μm以下の仮焼アルミナとするのが好ましい。
In particular, it is preferable that 1 to 6% by weight of Al 2 O 3 be calcined alumina of 10 μm or less.

【0023】仮焼アルミナは分散剤、解膠剤、界面活性
剤等との組み合わせにより、混練時に低水分で流動性が
出て鋳込みが可能になることで、成形体の組織が緻密
で、高強度となり、耐食性を向上することができる。1
%未満だと十分な効果を得られず、また、6%を越える
と過焼結現象を生じやすくなり、耐スポール性が下がる
からである。
When calcined alumina is used in combination with a dispersing agent, a deflocculant, a surfactant, etc., it has a low fluidity at the time of kneading and can be cast. It becomes strong and corrosion resistance can be improved. 1
If the amount is less than 6%, a sufficient effect cannot be obtained, and if it exceeds 6%, an oversintering phenomenon is liable to occur and the spall resistance is lowered.

【0024】電融アルミナや仮焼アルミナの全使用量は
75〜90重量%である必要があり、75重量%未満で
は耐溶銑性が悪く、90重量%を越えると過焼結が進
み、耐スポール性が悪くなる。
The total amount of fused alumina or calcined alumina needs to be 75 to 90% by weight. If it is less than 75% by weight, the hot metal resistance is poor. Poor sport performance.

【0025】Cとしては、鱗状黒鉛、鱗片状黒鉛、土状
黒鉛等の天然黒鉛、人造電極屑等の人造黒鉛、コーク
ス、カーボンブラック、無煙炭、石炭粉、ピッチ粉、カ
ーボンレンガ屑等を使用する。これらカーボンの中で溶
銑への溶解度が小さく、揮発分が少なく、粒自体が緻密
で、耐アルカリ性に優れており、凝集性が強くないこと
等より、無煙炭が良く、中でも揮発分を除去した仮焼無
煙炭が良好である。こうした無煙炭及び黒鉛質の骨材
は、粉末、粒状など各種の粒度のものが存在し、大きな
粒では2メッシュの程度まで用いることができる。
As C, natural graphite such as flaky graphite, flaky graphite and earthy graphite, artificial graphite such as artificial electrode waste, coke, carbon black, anthracite, coal powder, pitch powder, carbon brick waste and the like are used. . Among these carbons, anthracite is good because of its low solubility in hot metal, low volatile content, dense granules itself, excellent alkali resistance, and low cohesiveness. Burnt anthracite is good. Such anthracite and graphite aggregates have various particle sizes such as powder and granules, and large particles of up to about 2 mesh can be used.

【0026】ケイ酸質粉末は、ホワイトカーボン、無水
又は含水無定型ケイ酸、蒸発シリカ、シラス、フライア
ッシュ等を用いる。このケイ酸質粉末は、一次粒子の粒
子径は数μm〜数十μmに達し、これが団粒化した2次
粒子もほぼ20μm以下である。
As the siliceous powder, white carbon, anhydrous or hydrous amorphous silicic acid, evaporated silica, shirasu, fly ash and the like are used. In this siliceous powder, the primary particles have a particle diameter of several μm to several tens μm, and the secondary particles formed by agglomeration are also approximately 20 μm or less.

【0027】CaOは、耐火材の結合材として併用添加
する水硬性セメントに起因し、一般的にはアルミナセメ
ントを使用するが、アルミナセメントはJIS規格の耐
火物アルミナセメント1種又は2種相当品の他に、Ca
O量が少ない、例えば電気化学社製のハイアルミナセメ
ント、ハイアルミナセメントスーパー等も使用できる。
[0027] CaO is derived from hydraulic cement which is added together as a binder for refractory materials. Generally, alumina cement is used. Alumina cement is one or two equivalents of refractory alumina cement of JIS standard. Other than Ca
A high-alumina cement, a high-alumina cement super, etc., manufactured by Denki Kagaku, which has a small O content, can also be used.

【0028】また、この成形体は、減圧混練あるいは減
圧振動鋳込みによる鋳込む成形によって製造することが
できる。
The molded body can be produced by kneading under reduced pressure or molding by casting under reduced pressure vibration.

【0029】製造に際しては、骨材やバインダー、分散
剤の種類を決定し、混練時に添加水分を低下させて緻密
な組織を有する成形体を得るために粗粒、中粒、微粒に
調整する。
At the time of production, the types of aggregate, binder, and dispersant are determined, and are adjusted to coarse particles, medium particles, and fine particles in order to obtain a compact having a fine structure by reducing the added water during kneading.

【0030】1300〜1500℃の温度で還元焼成後
の平均気孔径が1μmとなる成形体を得るためには、混
練時の添加水分を極力抑える必要があり、過剰の水を加
えないように注意する必要があり、例えば、ボルテック
スミキサー等の混練効果の良いミキサーを使用する。更
に、混練後常圧下で棒状バイブレーターあるいは振動ゴ
テ等を使用し、直接又は間接的に混練物及び、枠に振動
を与えて混練物の脱気を行ないながら振動充填により枠
に鋳込む。この際、前述のように添加水分を抑えた混練
物は、粘りが強く、脱気が困難になる。このため、混練
物を鋳込む際に、巻き込みエアーが抜けにくくなり、成
形体中にこうしたエアーが集合して成形体中に比較的大
きな空洞を形成して成形体の耐溶銑性を下げる。従っ
て、成形体中に空洞を形成しないようにする為には、必
要に応じて、鋳込み時に混練物及び枠に振動を強くかけ
て脱気を充分に行なったり、減圧混練あるいは、減圧振
動鋳込み方法を併用することにより、成形体中の脱気を
行なう。
In order to obtain a molded body having an average pore diameter of 1 μm after reduction firing at a temperature of 1300 to 1500 ° C., it is necessary to minimize the amount of water added during kneading, and be careful not to add excessive water. For example, a mixer having a good kneading effect such as a vortex mixer is used. Further, after kneading, the mixture is cast into the frame by vibratory filling while applying vibrations to the kneaded material and the frame directly or indirectly using a rod-shaped vibrator or a vibrating iron under normal pressure to deaerate the kneaded material. At this time, the kneaded material in which the amount of added water is suppressed as described above has a high viscosity and is difficult to deaerate. For this reason, when casting the kneaded material, it is difficult for the entrained air to escape, and such air gathers in the molded body to form a relatively large cavity in the molded body, thereby lowering the hot metal resistance of the molded body. Therefore, in order to prevent the formation of a cavity in the compact, if necessary, the kneaded material and the frame should be vibrated strongly during demolding to sufficiently deaerate or knead under reduced pressure or a method of casting under reduced pressure vibration. Is used to deaerate the molded body.

【0031】また、成形体の平均気孔径が1300〜1
500℃の還元焼成後としたのは、高炉炉床に配設され
た成形体が、使用時に熱を受けて還元雰囲気下で130
0〜1500℃まで昇温するからである。そして、この
時に前述の様な成形体中の組織の緻密化が生じる。
The average pore diameter of the molded product is 1300 to 1
After the reduction firing at 500 ° C., the compact disposed on the blast furnace hearth receives heat at the time of use and receives 130 ° C. under a reducing atmosphere.
This is because the temperature is raised to 0 to 1500 ° C. Then, at this time, the structure in the compact is densified as described above.

【0032】[0032]

【作用】カーボンの添加により、高炉スラグに対する高
耐食性と耐アルカリ性、更に容積安定性による耐スポー
リング性の改善と共に、高温での還元雰囲気下で金属シ
リコンとの反応により成形体の組織を緻密にする。使用
量は4重量%未満では耐アルカリ性、耐食性が下がる。
逆に、15重量%を超えるとカーボンが疎水性である
為、不定形耐火物の粉末材料に水を添加して混練する際
の流動性が下がり、水分を過剰にして鋳込まざるを得な
くなる為に、緻密な組織を有する成形体が得られず、強
度も大幅に低下すると共に耐溶銑浸透性が下がる。
[Function] With the addition of carbon, high corrosion resistance and alkali resistance against blast furnace slag, as well as improvement in spalling resistance due to volume stability, and the structure of the compact compacted by reaction with metallic silicon under a reducing atmosphere at high temperature. I do. If the amount used is less than 4% by weight, the alkali resistance and the corrosion resistance decrease.
Conversely, if the content exceeds 15% by weight, since carbon is hydrophobic, the fluidity of kneading after adding water to the powdery material of the amorphous refractory decreases, and the casting must be carried out with excess water. Therefore, a compact having a dense structure cannot be obtained, the strength is significantly reduced, and the hot metal penetration resistance is reduced.

【0033】金属シリコンは加熱されて還元雰囲気下で
カーボンと反応し、自己結合してβ−SiCを生成す
る。この反応により、成形体のマトリックスを強化し、
熱間強度は向上し、平均気孔径が1μm以下に微小化し
て、耐溶銑浸透性を良好にする。この時、金属シリコン
とカーボンが反応する重量比は金属シリコンが100重
量部に対しカーボンは約50重量部である。反応を効率
良く行わせるために金属シリコンの粒径は小さいほど望
ましいが、粒径は1mm以下で充分であり、0.1mm
以下の微粉であれば更に良好である。
The metallic silicon is heated and reacts with carbon under a reducing atmosphere, and self-bonds to generate β-SiC. This reaction strengthens the matrix of the molded body,
The hot strength is improved, the average pore diameter is reduced to 1 μm or less, and the hot metal penetration resistance is improved. At this time, the weight ratio at which metal silicon and carbon react is about 50 parts by weight of carbon to 100 parts by weight of metal silicon. It is desirable that the particle size of the metallic silicon be small in order to efficiently carry out the reaction, but the particle size of 1 mm or less is sufficient.
The following fine powders are even better.

【0034】ここで、金属シリコンやカーボンを所定量
添加せずに、例えばβ−SiC粉末やSiCウィスカ
ー、その他のSiC粉末原料を配合物に添加して粒度調
整して鋳込み成形を行っても、還元焼成後の組織の平均
気孔径を1μm以下にすることはできない。即ち、金属
シリコンとカーボンを原料として用い、実炉使用温度に
等しい1300〜1500℃の還元雰囲気下においてマ
トリックス中のこれらの原料が反応してβ−SiCの生
成により、組織が緻密になる。
Here, even if casting is performed by adding, for example, β-SiC powder, SiC whiskers, or other SiC powder raw materials to the compound without adding a predetermined amount of metallic silicon or carbon, and adjusting the particle size, The average pore diameter of the structure after reduction firing cannot be made 1 μm or less. That is, using metallic silicon and carbon as raw materials, these raw materials in the matrix react under a reducing atmosphere of 1300 to 1500 ° C. which is equal to the operating temperature of the actual furnace, and β-SiC is generated, whereby the structure becomes dense.

【0035】また、還元焼成としたのは、還元雰囲気下
で金属シリコンとカーボンが反応してβ−SiCとなる
からであり、還元焼成をせずに、酸化焼成をすると金属
シリコンは、酸化して二酸化珪素となる。
The reason for the reduction firing is that metal silicon and carbon react in a reducing atmosphere to form β-SiC. If oxidation firing is performed without reduction firing, metal silicon is oxidized. To silicon dioxide.

【0036】金属シリコンの使用量を1〜6%としたの
は、1%未満だと充分な効果が得られず、また、6%を
超えると珪素粉と反応するカーボンの量が多くなり過ぎ
て、充分に金属シリコンとカーボンを反応する事ができ
なくなり、工業的に意味がないばがりでなく、耐スポー
ル性が下がるためである。
When the amount of metallic silicon is set to 1 to 6%, if it is less than 1%, a sufficient effect cannot be obtained, and if it exceeds 6%, the amount of carbon reacting with silicon powder becomes too large. As a result, metal silicon and carbon cannot be sufficiently reacted with each other, which is not industrially meaningful and also reduces spall resistance.

【0037】平均気孔径を1μm以下に限定したのは、
平均気孔径が1μmをこえると溶銑が成形体中へ侵入し
て成形体が著しく損耗するためである。
The reason why the average pore diameter is limited to 1 μm or less is as follows.
If the average pore diameter exceeds 1 μm, the hot metal penetrates into the compact and the compact is significantly worn.

【0038】このことは次式による計算値及び実験によ
っても確認できる。
This can be confirmed by the following equation and the calculated value.

【0039】 v=A・√(b2 r/4)・√(γcosθ/η)・t v:融液侵入量 A:断面積 b:見掛気孔率 r:気孔径 γ:融液の表面張力 θ:耐火物と融液の接触角 t:時間 η:融液の粘性 従って、成形体の平均気孔径を1μm以下に限定するこ
とにより、溶銑が成形体中へ侵入する量を少なくするこ
とができる。ここで、成形体中の平均気孔径で限定した
のは、成形体中の全ての気孔径を1μm以下にすること
は製造上困難であり、平均気孔径を1μm以下に管理し
た成形体を、高圧操業の実炉条件下で試用した所、使用
上問題のないことを使用後の調査結果より確認した。
V = A · √ (b 2 r / 4) · √ (γ cos θ / η) · t v: melt penetration amount A: cross-sectional area b: apparent porosity r: pore diameter γ: melt surface Tension θ: Contact angle between the refractory and the melt t: Time η: Viscosity of the melt Therefore, by limiting the average pore diameter of the compact to 1 μm or less, the amount of hot metal entering the compact is reduced. Can be. Here, the reason for limiting the average pore diameter in the molded body is that it is difficult to reduce all the pore diameters in the molded body to 1 μm or less, and a molded body in which the average pore diameter is controlled to 1 μm or less, After trial use under the actual furnace conditions of high pressure operation, it was confirmed from the inspection results after use that there was no problem in use.

【0040】ケイ酸質粉末に起因するSiO2 は、耐火
材料中に組織の緻密化を図る為に用いる。即ち、ケイ酸
質粉末を添加する事により、鋳込み時における流動性を
良好にし、低水分による鋳込みを行い、組織を緻密にし
て気孔率を低下させ耐溶銑性を良好にする。
The SiO 2 derived from the siliceous powder is used in the refractory material to densify the structure. That is, by adding a siliceous powder, the fluidity at the time of casting is improved, casting is performed with low moisture, the structure is densified, the porosity is reduced, and the hot metal resistance is improved.

【0041】この種のケイ酸質粉末を配合した成形体
は、前記仮焼アルミナと同様に分散剤、解膠剤、界面活
性剤等を併用して使用することにより、低水分で鋳込み
ができ、充填性向上による緻密な組織を得られると共
に、ケイ酸質粉末が超微粒である事に起因して、焼結の
促進による高強度な組織が得られる。使用量は1重量%
以上が良好で、これ以下だと十分な効果が得られない。
しかし、使用量が6重量%を超えると過焼結現象を生じ
やすくなると共に、耐食性が低下する。
A molded product containing this type of siliceous powder can be cast with low moisture by using a dispersant, a deflocculant, a surfactant and the like in combination with the calcined alumina. In addition, a dense structure can be obtained by improving the filling property, and a high-strength structure can be obtained by promoting sintering because the siliceous powder is ultrafine. 1% by weight
Above is good, and below this, sufficient effect cannot be obtained.
However, when the used amount exceeds 6% by weight, the oversintering phenomenon easily occurs, and the corrosion resistance decreases.

【0042】CaOは、0.5重量%未満では乾燥強度
が低下し、乾燥成形体では築造できなくなる。また、2
重量%を超えると、耐火材の使用時に前述のSiO2
反応し、アノーサイト(CaO・Al2 3 ・2SiO
2 )やゲーレナイト(2CaO・Al2 3 ・Si
2 )等の低融点化合物が生成し、耐火骨材の耐熱性を
下げ、また、アルミナセメントは硬化時に水和物を作
り、この水和物が昇温時に分解して耐火材の中間強度を
低下させる。
When the content of CaO is less than 0.5% by weight, the dry strength is reduced, and it is impossible to construct a dry molded body. Also, 2
If the content is more than 10% by weight, it reacts with the above-mentioned SiO 2 when the refractory material is used, and anorthite (CaO.Al 2 O 3 .2SiO
2 ) and Gehlenite (2CaO.Al 2 O 3 .Si)
O 2 ) and other low-melting compounds are formed, lowering the heat resistance of the refractory aggregate. Alumina cement forms a hydrate when hardened, and this hydrate decomposes when the temperature rises, resulting in an intermediate strength of the refractory material. Lower.

【0043】このように本発明は鋳込み成形体であって
も、上記組成と鋳込み方法の調整を行うことにより、1
300〜1500℃の温度で還元焼成後の平均気孔径が
1μm以下となる耐溶銑性のあるれんが相当の成形体と
することができる。これによって使用時の耐用を上げる
と共に、大型成形体を可能にして築炉を容易にする。
As described above, according to the present invention, even in the case of a cast molded article, by adjusting the above composition and the casting method, 1 can be obtained.
A hot-iron-resistant brick having a mean pore diameter of 1 μm or less after reduction and firing at a temperature of 300 to 1500 ° C. can be used as a considerably shaped body. As a result, the durability in use is increased, and a large-sized molded body is made possible to facilitate the furnace construction.

【0044】成形体の大きさや形状、重量については、
高炉の規模により違いがあると共に、築造時における大
型成形体のハンドリング作業でのクレーン及びリフトの
能力、大型成形体の炉床への取り込み、押し付け施工な
どを考慮すると、施工調整できる成形体の大きさと重量
には制限があるものの、小型レンガと比較した場合、築
炉工期の短縮を計るためには、成形体の大きさは0.1
3 程度以上は必要であり、好ましくは0.2m3 程度
以上が適用できる。
Regarding the size, shape and weight of the molded body,
The size of the compact that can be adjusted in consideration of the size of the blast furnace and the size of the compact that can be adjusted in consideration of the ability of the crane and lift to handle large compacts during construction, the loading of large compacts into the hearth, and pressing work during construction. Although the size and weight are limited, compared to small bricks, the size of the compact is 0.1
About m 3 or more is necessary, and preferably about 0.2 m 3 or more can be applied.

【0045】[0045]

【実施例】以下に本発明を高炉炉床用の成形体に適用し
た場合の実施例を比較例と共に示す。
EXAMPLES Examples in which the present invention is applied to a molded product for a blast furnace hearth are shown below together with comparative examples.

【0046】実施例1〜4 表1の実施例1〜3は、仮焼アルミナ、金属シリコン、
ケイ酸質粉末、水硬性セメント、分散剤の添加量を所定
量の範囲内で一定となるようにして、仮焼無煙炭の添加
量を4〜15部、すなわちC量を4〜15重量%の間で
変化させ、合計が100部になる様に電融アルミナで調
整した。実施例4は実施例3の配合から金属シリコンを
増加させ、Al2 3 成分が下限値になるように調整し
配合原料を得た。
Examples 1 to 4 Examples 1 to 3 in Table 1 show that calcined alumina, metallic silicon,
The addition amount of the siliceous powder, the hydraulic cement, and the dispersant is kept constant within a predetermined range, and the addition amount of the calcined anthracite is 4 to 15 parts, that is, the C amount is 4 to 15% by weight. And adjusted with fused alumina so that the total was 100 parts. In Example 4, the amount of metallic silicon was increased from the composition of Example 3, and the Al 2 O 3 component was adjusted to the lower limit to obtain a blended raw material.

【0047】この配合原料を密充填が得られるように粒
度を粗粒、中粒、微粒に調整し、JIS R2553で
示される標準軟度状態になるようにそれぞれ粉末材料に
水を添加して、混練後900×600×500mmの大
きさで減圧振動鋳込みを行い、養生、脱枠、乾燥後、約
200×100×100mmの大きさに切出した後、1
350℃でコークスブリーズを詰めたサヤ内にて還元焼
成した。その後、40×40×160mmの大きさでサ
ンプルを切り出した後、品質の測定を行った。
The particle size of this compounded raw material is adjusted to coarse particles, medium particles, and fine particles so that dense packing can be obtained, and water is added to each powder material so as to be in a standard softness state specified in JIS R2553. After kneading, pressure-reduced vibration casting was performed at a size of 900 × 600 × 500 mm, and after curing, deframing and drying, cut out to a size of approximately 200 × 100 × 100 mm,
Reduction calcination was performed at 350 ° C. in a sheath filled with coke breeze. Thereafter, a sample was cut out in a size of 40 × 40 × 160 mm, and the quality was measured.

【0048】[0048]

【表1】 比較例1として、表2に示す配合原料を、混練後100
0〜1300kg/cm2 の成形圧で成形し、脱枠、乾
燥後、1350℃で還元焼成した後、40×40×14
0mmの大きさでサンプルを切出した。その後、品質測
定を行なった。
[Table 1] As Comparative Example 1, the blended raw materials shown in Table 2 were mixed for 100 minutes after kneading.
After molding at a molding pressure of 0 to 1300 kg / cm 2 , removing the frame, drying, and reducing and firing at 1350 ° C., 40 × 40 × 14
A sample was cut out at a size of 0 mm. Thereafter, a quality measurement was performed.

【0049】実施例1〜4に示す成形体は、比較例1の
れんがの品質に比較し、いずれも同等以上の品質を得
た。
The molded articles shown in Examples 1 to 4 obtained the same or better quality as compared with the quality of the brick of Comparative Example 1.

【0050】表2に示す比較例2〜4は、仮焼無煙炭を
0部(C=0%)、3部(C=3%)、16部(C=1
6%)とし、調整のAl2 3 は90%より大きく、7
5%未満になった。製造方法は、実施例1〜4と同様な
方法でサンプルの製作を行い、品質測定を行った結果、
Cが3%と0%のものはスポーリングテストで亀裂が発
生し、Cが16%と多いものは、強度が不足してサンプ
ルの成形ができなかった。
In Comparative Examples 2 to 4 shown in Table 2, 0 parts (C = 0%), 3 parts (C = 3%) and 16 parts (C = 1
6%) and the adjusted Al 2 O 3 is greater than 90%,
It was less than 5%. As for the manufacturing method, a sample was manufactured in the same manner as in Examples 1 to 4, and the quality was measured.
Samples with C of 3% and 0% cracked in the spalling test, and samples with a large C of 16% had insufficient strength and could not be molded.

【0051】[0051]

【表2】 実施例5、6 表1の実施例5、6は、仮焼アルミナ、仮焼無煙炭、ケ
イ酸質粉末、水硬性セメント、分散剤の添加量を本特許
請求範囲内で一定とし、金属シリコンを1部(Si=1
%)と5部(Si=5%)添加し、合計が100部にな
るように電融アルミナで調整した。サンプルの製作は、
実施例1〜4と同様な方法で行い、品質測定を行った結
果、比較例1のれんがの品質に比較し、いずれも同等以
上の品質を得た。
[Table 2] Examples 5 and 6 In Examples 5 and 6 of Table 1, the amounts of calcined alumina, calcined anthracite, siliceous powder, hydraulic cement, and dispersant were fixed within the scope of the present invention, and metallic silicon was used. 1 copy (Si = 1
%) And 5 parts (Si = 5%), and adjusted with fused alumina so that the total becomes 100 parts. The production of the sample
The quality was measured by the same method as in Examples 1 to 4, and as a result, the quality was equal to or higher than the quality of the brick in Comparative Example 1.

【0052】表2の比較例5、6は、金属シリコンを0
部と7部(Si=7%)の添加品を実施例1〜4と同様
な方法で製作後、サンプリングして品質測定を行った結
果、Siのないものは、溶銑浸透試験で溶銑の浸透があ
った。また、Siが7%のものは、溶銑の浸透は見られ
なかったが、スポーリングテストにおいて亀裂が発生し
た。
In Comparative Examples 5 and 6 in Table 2, the metal silicon was 0%.
Parts and 7 parts (Si = 7%) of the additive were manufactured in the same manner as in Examples 1 to 4, and then sampled and quality was measured. was there. In the case of 7% Si, the infiltration of hot metal was not observed, but cracks occurred in the spalling test.

【0053】実施例7、8 表1に示す実施例7、8は、仮焼アルミナ、仮焼無煙
炭、金属シリコン、ケイ酸質粉末、分散剤の添加量を、
その製品の組成が本特許請求範囲内で一定とし、水硬性
セメントを2部(CaO=0.6%)と6部(CaO=
1.8%)添加し、合計が100部になるように電融ア
ルミナで調整した。サンプルの製作は、実施例1〜4と
同様な方法で行い、品質測定を行った結果、比較例1の
れんがの品質に比較し、いずれも同等以上の品質を得
た。
Examples 7 and 8 In Examples 7 and 8 shown in Table 1, the amounts of the calcined alumina, calcined anthracite, metallic silicon, siliceous powder, and the dispersant were determined.
The composition of the product is constant within the scope of the claims, and 2 parts (CaO = 0.6%) and 6 parts (CaO =
(1.8%) and adjusted with fused alumina so that the total would be 100 parts. The samples were manufactured in the same manner as in Examples 1 to 4, and the quality was measured. As a result, the quality of the bricks was equal to or higher than that of the brick of Comparative Example 1.

【0054】表2に示す比較例7、8は、水硬性セメン
トを1部(CaO=0.3%)と8部(CaO=2.4
%)の添加品を実施例1〜4と同様な方法で製作後、サ
ンプリングして品質測定を行った結果、CaOが0.3
%のものは、強度が不足してサンプルの成形ができなか
った。また、CaOが2.4%と多いものは、スポーリ
ングテストで亀裂が発生すると共に、溶銑浸透試験で溶
銑の浸透が見られた。 実施例9、10 表1の実施例9、10は、仮焼アルミナ、仮焼無煙炭、
金属シリコン、水硬性セメント、分散剤の添加量を本特
許請求範囲内で一定とし、ケイ酸質粉末を1部(SiO
2 =1%)と5部(SiO2 =5%)添加し、合計が1
00%になるように電融アルミナで調整した。サンプル
の製作は、実施例1〜4と同様な方法で行い、品質測定
を行った結果、比較例1のれんがの品質に比較し、いず
れも同等以上の品質を得た。
In Comparative Examples 7 and 8 shown in Table 2, 1 part (CaO = 0.3%) and 8 parts (CaO = 2.4) of the hydraulic cement were used.
%) Was manufactured in the same manner as in Examples 1 to 4, and the quality was measured by sampling. As a result, CaO was 0.3%.
%, The sample was not molded due to insufficient strength. When the content of CaO was as high as 2.4%, cracks were generated in the spalling test, and permeation of hot metal was observed in the hot metal permeation test. Examples 9 and 10 Examples 9 and 10 in Table 1 show calcined alumina, calcined anthracite,
The addition amounts of the metal silicon, hydraulic cement and dispersant are fixed within the scope of the present invention, and 1 part of the siliceous powder (SiO
2 = 1%) and 5 parts (SiO 2 = 5%), and the total is 1
It was adjusted with fused alumina so as to be 00%. The samples were manufactured in the same manner as in Examples 1 to 4, and the quality was measured. As a result, the quality of the bricks was equal to or higher than that of the brick of Comparative Example 1.

【0055】表2の比較例9、10はケイ酸質粉末を0
部と7部(SiO2 =7%)の添加品を実施例1〜4と
同様な方法で製作後、サンプリングして品質測定を行っ
た結果、SiO2 が0%のものは、スポーリングテスト
で亀裂は発生しないが、溶銑浸透試験で溶銑の浸透が見
られた。また、SiO2 が7%と多いものは、スポーリ
ングテストで亀裂が発生し、溶銑浸透試験でも溶銑の浸
透が見られた。
In Comparative Examples 9 and 10 in Table 2, the siliceous powder was
Parts and 7 parts after fabrication addition products of (SiO 2 = 7%) in the same manner as in Examples 1-4, sampling and result of quality measurement, what SiO 2 is 0%, the spalling test No cracks occurred in the test, but infiltration of hot metal was observed in the hot metal infiltration test. When the content of SiO 2 was as high as 7%, cracks were generated in the spalling test, and infiltration of the hot metal was observed in the hot metal permeation test.

【0056】実施例11、12 表1に示す実施例11、12は、仮焼無煙炭、金属シリ
コン、ケイ酸質粉末、水硬性セメント、分散剤の添加量
を本特許請求範囲内で一定とし、仮焼アルミナを1部と
6部添加し、合計が100%になるように電融アルミナ
で調整した。サンプルの製作は、実施例1〜4と同様な
方法で行い、品質測定を行った結果、比較例1のれんが
の品質に比較し、いずれも同等以上の品質を得た。
Examples 11 and 12 In Examples 11 and 12 shown in Table 1, the amounts of calcined anthracite, metallic silicon, siliceous powder, hydraulic cement and dispersant were fixed within the scope of the present invention. 1 part and 6 parts of calcined alumina were added and adjusted with fused alumina so that the total would be 100%. The samples were manufactured in the same manner as in Examples 1 to 4, and the quality was measured. As a result, the quality of the bricks was equal to or higher than that of the brick of Comparative Example 1.

【0057】これに対して、表2に示す比較例11、1
2は仮焼アルミナを0部と7部の添加品を実施例1〜4
と同様な方法で製作後、サンプリングして品質測定を行
った結果、仮焼アルミナが0部が0%のものは、スポー
リングテストで亀裂は発生しないが、溶銑浸透試験で溶
銑の浸透が見られた。また、仮焼アルミナが7%と多い
ものは、スポーリングテストで亀裂が発生し、溶銑浸透
試験でも溶銑の浸透が見られた。
On the other hand, Comparative Examples 11 and 1 shown in Table 2
2 is a calcined alumina containing 0 parts and 7 parts of additives.
After manufacturing in the same manner as above, sampling and quality measurement were performed. As a result, no cracking occurred in the spalling test for calcined alumina with 0% 0%, but penetration of hot metal was observed in the hot metal penetration test. Was done. In the case of calcined alumina as large as 7%, cracks occurred in the spalling test, and infiltration of hot metal was observed in the hot metal infiltration test.

【0058】実施例13、14 表1に示す実施例13、14は、実施例1の配合の分散
剤の添加量を外掛けで0.005部と1部とし、実施例
1〜4と同様な方法で製作後品質測定を行なった結果、
比較例1のれんがの品質に比較し、いずれも同等以上の
品質を得た。
Examples 13 and 14 Examples 13 and 14 shown in Table 1 were the same as Examples 1 to 4 except that the amount of the dispersant added in Example 1 was 0.005 part and 1 part on the outside. Quality measurement after production by
Comparative Example 1 In comparison with the quality of bricks, all of them obtained equal or higher quality.

【0059】これに対して、表2に示す比較例13、1
4は、分散剤を0部と1.1部の添加品を実施例1〜4
と同様な方法で製作後サンプリングして品質測定を行な
った結果、分散剤が0%のものは、強度が不足してサン
プルの成形ができなかった。また、分散剤が1.1%と
多いものは、スポーリングテストで亀裂が発生し、溶銑
浸透試験でも溶銑の浸透が見られた。
On the other hand, Comparative Examples 13 and 1 shown in Table 2
No. 4 is an additive having 0 parts and 1.1 parts of a dispersant as in Examples 1 to 4.
As a result of quality measurement by sampling after production in the same manner as in the above, it was found that the sample with 0% dispersant had insufficient strength and could not be molded. When the dispersant content was as high as 1.1%, cracks were generated in the spalling test, and permeation of the hot metal was observed in the hot metal permeation test.

【0060】また、表3に示す比較例15は、実施例1
の配合の金属シリコンを焼成後に生成するβ−SiCに
置き換え、実施例1〜4と同様な方法で製作後、サンプ
リングして品質測定を行った結果、スポーリングテスト
で亀裂は発生しないが、溶銑浸透試験で溶銑の浸透が見
られた。
Comparative Example 15 shown in Table 3 is the same as that of Example 1
Was replaced by β-SiC generated after firing, and the quality was measured by sampling after manufacturing in the same manner as in Examples 1 to 4. As a result, no crack was generated in the spalling test. Infiltration test showed penetration of hot metal.

【0061】また、同表3に示す比較例16は、実施例
1の配合の仮焼無煙炭をβ−SiCに置き換え、実施例
1〜4と同様な方法で製作後、サンプリングして品質測
定を行った結果、比較例15と同様にスポーリングテス
トで亀裂は発生しないが、溶銑浸透試験で溶銑の浸透が
見られた。
In Comparative Example 16 shown in Table 3, the calcined anthracite of the composition of Example 1 was replaced with β-SiC, and the quality was measured by sampling after production in the same manner as in Examples 1 to 4. As a result, no crack was generated in the spalling test as in Comparative Example 15, but permeation of the hot metal was observed in the hot metal permeation test.

【0062】さらに、表3に示す比較例17は、実施例
1の配合の金属シリコンを除き、仮焼無煙炭を4部(C
量としては4重量%)とし、β−SiC5部に置き換
え、実施例1〜4と同様な方法で製作後、サンプリング
して品質測定を行った結果、溶銑浸透試験で溶銑の浸透
が見られた。
Further, in Comparative Example 17 shown in Table 3, 4 parts of calcined anthracite (C
The amount was 4% by weight), replaced with 5 parts of β-SiC, manufactured in the same manner as in Examples 1 to 4, sampled, and measured for quality. As a result, permeation of the hot metal was observed in the hot metal permeation test. .

【0063】また、さらに、表3に示す比較例18は、
表1の実施例1の配合にJIS R2553で示される
標準軟度状態になるように粉末材料に水を添加して、混
練後900×600×500mmの大きさで常圧下での
振動鋳込みを行い、養生、脱枠、乾燥後、約200×1
00×100mmの大きさに切出した後、1350℃で
コークスブリーズを詰めたサヤ内にて還元焼成した。そ
の後、40×40×160mmの大きさでサンプルを切
り出した後、品質の測定を行った。こうして得られたサ
ンプルは、その表面及び内部に多数の残存気泡が確認さ
れ、平均気孔径が1μm以上になり、溶銑浸透試験で溶
銑の浸透が認められた。
Further, Comparative Example 18 shown in Table 3
Water is added to the powdered material to the standard softness indicated by JIS R2553 in the composition of Example 1 in Table 1, and after kneading, vibration casting under a normal pressure of 900 × 600 × 500 mm is performed. After curing, de-framing and drying, about 200 × 1
After cutting into a size of 00 × 100 mm, reduction firing was performed at 1350 ° C. in a sheath filled with coke breeze. Thereafter, a sample was cut out in a size of 40 × 40 × 160 mm, and the quality was measured. In the sample thus obtained, many residual air bubbles were confirmed on the surface and inside thereof, the average pore diameter became 1 μm or more, and permeation of hot metal was recognized in the hot metal permeation test.

【0064】さらに、表3に示す比較例19〜22は、
電融アルミナ、仮焼アルミナ、金属シリコン、ケイ酸質
粉末、水硬性セメント、分散剤の添加量を本特許請求範
囲内で一定とし、仮焼無煙炭4部を他のカーボン源、即
ち無煙炭、ピッチ、カーボンブラック、コークスに置き
換え、それぞれ4部ずつ配合して、実施例1〜4と同様
な方法で900×600×500mmの大きさの鋳込
み、脱枠、養生、乾燥を行なった。その結果、カーボ
ン源変更により、混練時における添加水分の増加による
成形体の養生強度の低下と乾燥時における内部蒸気圧の
上昇及びカーボン源中の揮発分による成形体中の内部
圧の上昇により、乾燥後に内部亀裂が入り、40×40
×160mmの大きさでサンプルを切り出すことができ
ず、品質の測定が不能になった。
Further, Comparative Examples 19 to 22 shown in Table 3
The addition amount of the fused alumina, calcined alumina, metallic silicon, siliceous powder, hydraulic cement, and dispersant is fixed within the scope of the present invention, and 4 parts of calcined anthracite is used as another carbon source, that is, anthracite, pitch. , Carbon black, and coke, and blended in 4 parts each, and cast, deframed, cured, and dried in a size of 900 × 600 × 500 mm in the same manner as in Examples 1 to 4. As a result, due to the change of the carbon source, the curing strength of the molded body decreases due to an increase in the added moisture during kneading, the internal vapor pressure increases during drying, and the internal pressure in the molded body increases due to volatile components in the carbon source. Internal cracks after drying, 40 × 40
A sample could not be cut out at a size of × 160 mm, making quality measurement impossible.

【0065】[0065]

【表3】 このように、本発明の成形体の還元焼成は、成形体を高
炉炉床に築炉後、炉の火入れに成形体が熱をうけて行な
われる場合について説明したが、成形体を必要に応じて
事前に熱処理を施し、高炉炉床に築炉しても差し支えな
い。例えば、鋳込み終了後脱枠、養生したAl2 3
C−Si質成形体は、300〜500℃で乾燥した後、
事前に1300〜1500℃の還元焼成を行うこともで
きる。
[Table 3] As described above, the reduction firing of the molded body of the present invention has been described in the case where the molded body is subjected to heat when the furnace is ignited after the molded body is built on the blast furnace hearth. Heat treatment in advance, and the furnace can be built on the blast furnace hearth. For example, after the casting is completed, the unframed and cured Al 2 O 3
After the C-Si based molded body is dried at 300 to 500 ° C.,
Reduction firing at 1300 to 1500 ° C. can be performed in advance.

【0066】また、本発明の成形体を高炉に適用する場
合には、予め成形した成形体に代えて高炉炉底に型枠を
セットして直接鋳込み施工して成形体を得ることもでき
る。
When the molded article of the present invention is applied to a blast furnace, a molded article can be obtained by setting a mold frame at the bottom of the blast furnace and casting directly, instead of the molded article in advance.

【0067】このようにして得た成形体を高炉炉床に配
設し、火入れ後は成形体が熱を受けて、即ち還元焼成さ
れて組織が緻密化し、れんが並みの特性を有する。
The compact obtained in this manner is placed on a blast furnace hearth, and after burning, the compact receives heat, that is, is reduced and fired to densify the structure and has characteristics similar to brick.

【0068】[0068]

【発明の効果】本発明の不定形耐火物の成形体によって
以下の効果を奏する。
The following effects can be obtained by the molded article of the amorphous refractory of the present invention.

【0069】(1) 大型成形体で築造できる為、築造
の工期を短縮でき、築炉の省力化が可能になる。
(1) Since it is possible to build a large molded body, the construction period can be shortened, and the furnace can be saved in labor.

【0070】(2) 目地数が少ないため溶銑に接触し
た場合、目地部への溶銑、及びスラグ侵入による溶損を
低減でき、高炉炉床の耐火層、即ち耐火物の耐用が長く
なる。 (3) 鋳込み成形体である為、製造から見ても形状的
な制約がない。即ち、築炉上炉底コーナ一部の問隙の様
なれんがを配設できない部位を含んだ特殊形状れんが
は、これまでれんがで製造できなかったり、製造コスト
が掛かり過ぎる為にスタンプやモルタル等を使用して埋
めていたが、成形体であればこうした特殊形状でも比較
的容易に製造できる。
(2) Since the number of joints is small, when hot metal comes into contact with the hot metal, melting loss due to hot metal and slag intrusion into the joints can be reduced, and the refractory layer of the blast furnace hearth, that is, the service life of the refractory becomes longer. (3) Since it is a cast molded body, there is no restriction on the shape from the viewpoint of manufacturing. In other words, specially shaped bricks that include parts where bricks can not be placed, such as gaps in the upper furnace bottom corner part of the furnace, can not be manufactured with bricks so far, or the manufacturing cost is too high, so stamps and mortar etc. However, if it is a molded article, such a special shape can be produced relatively easily.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 倫 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 石井 章生 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 - 35/22 C04B 35/622 - 35/636 C04B 35/66 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Rin Nakamura 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Akio Ishii 20-1 Shintomi, Futtsu-shi, Chiba New Nippon Steel Corporation (58) Investigated field (Int. Cl. 7 , DB name) C04B 35/00-35/22 C04B 35/622-35/636 C04B 35/66

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al2 3 を75〜90重量%、Cを4
〜15重量%、金属Siを1〜6重量%、及びケイ酸質
粉末起源のSiO2 を1〜6重量%、水硬性セメント起
源のCaOを0.5〜2重量%を含有する組成物に分散
剤を0.005〜1重量%添加した鋳込み成形体であ
り、且つ、1300〜1500℃の温度で還元焼成後の
平均気孔径が1μm以下であることを特徴とする不定形
耐火物成形体。
1. An Al 2 O 3 content of 75 to 90% by weight and a C content of 4%.
15 wt%, the metal Si 1 to 6% by weight, and SiO 2 1 to 6 weight percent of the siliceous powder origin, the CaO of hydraulic cement origin composition containing 0.5 to 2 wt% It is a cast molded product to which a dispersant is added in an amount of 0.005 to 1% by weight, and has an average pore diameter of 1 μm or less after reduction firing at a temperature of 1300 to 1500 ° C. .
【請求項2】 Al2 3 のうちの1〜6重量%を仮焼
アルミナであることを特徴とする請求項1記載の不定形
耐火物成形体。
2. The amorphous refractory molding according to claim 1, wherein 1 to 6% by weight of Al 2 O 3 is calcined alumina.
【請求項3】 C量のうちの一部又は全部が仮焼無煙炭
であることを特徴とする請求項1または2に記載の不定
形耐火物成形体。
3. The amorphous refractory molded product according to claim 1, wherein a part or all of the C content is calcined anthracite.
【請求項4】 Al2 3 を75〜90重量%、Cを4
〜15重量%、金属Siを1〜6重量%、及びケイ酸質
粉末起源のSiO2 を1〜6重量%、水硬性セメント起
源のCaOを0.5〜2重量%を含有するからなる組成
物とする原料を減圧混練あるいは減圧振動により鋳込む
ことを特徴とする不定形耐火物成形体の製造方法。
4. An Al 2 O 3 content of 75 to 90% by weight and a C content of 4%.
15 wt%, the metal Si 1-6% by weight, and SiO 2 1-6 wt% of the siliceous powder origin, composition consisting of CaO hydraulic cements origin containing 0.5-2 wt% A method for producing an amorphous refractory molded body, characterized in that raw materials to be used are kneaded under reduced pressure or cast under reduced pressure.
JP06310799A 1994-12-14 1994-12-14 Amorphous refractory molded body and method of manufacturing the same Expired - Fee Related JP3117180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06310799A JP3117180B2 (en) 1994-12-14 1994-12-14 Amorphous refractory molded body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06310799A JP3117180B2 (en) 1994-12-14 1994-12-14 Amorphous refractory molded body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08169754A JPH08169754A (en) 1996-07-02
JP3117180B2 true JP3117180B2 (en) 2000-12-11

Family

ID=18009590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06310799A Expired - Fee Related JP3117180B2 (en) 1994-12-14 1994-12-14 Amorphous refractory molded body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3117180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192754B2 (en) * 2019-12-09 2022-12-20 Jfeスチール株式会社 Cured monolithic refractory and method for producing the same

Also Published As

Publication number Publication date
JPH08169754A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
US4093470A (en) Alumina refractories
CN108046784A (en) A kind of high alumina refractory casting material and preparation method thereof
CN1108634A (en) Fired microporous carbon-aluminium brick
CZ20003060A3 (en) Basic, free flowing casting material and shaped parts produced from such material
JP3117180B2 (en) Amorphous refractory molded body and method of manufacturing the same
JPS5988378A (en) Lightweight refractories and manufacture
JP2874831B2 (en) Refractory for pouring
JP6330877B2 (en) Method for producing cordierite castable refractories
JP4141158B2 (en) SiC for amorphous refractories with excellent corrosion resistance, spalling resistance, and drying properties, and raw materials for amorphous refractories
JP2000203953A (en) Castable refractory for trough of blast furnace
JP3617765B2 (en) Slide gate plate and manufacturing method thereof
JP2604310B2 (en) Pouring refractories
JP4384351B2 (en) Refractory for blast furnace tuyere
JP2004137122A (en) Pouring refractory containing compact silicon carbide
CN116283315B (en) Carbon-free inorganic pressed spinel sliding plate brick and preparation method thereof
RU2153480C2 (en) Method of making refractory compounds for monolithic linings
JPH068223B2 (en) Casting refractory material for blast furnace tappipe
KR100450370B1 (en) Dolomite waterless- monolithic lining material and its installation method
JPH0952169A (en) Refractory for tuyere of molten steel container
JP4034858B2 (en) Indeterminate refractories for casting construction
RU2153482C2 (en) Method of manufacturing aluminosilicate and corundum refractory products
KR100299459B1 (en) Mlagnesia-Carbon Based Castable Having Superior Anti-Oxidation
JPH0717773A (en) Monolithic refractory containing specified carbon
JPH0671422A (en) Method for lining bottom part in ladle
JPH07115952B2 (en) Irregular shaped refractory for stainless hot metal ladle and stainless hot metal ladle lining it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000825

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141006

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees