JPH0796469B2 - Heat resistant inorganic fiber molding - Google Patents

Heat resistant inorganic fiber molding

Info

Publication number
JPH0796469B2
JPH0796469B2 JP61258779A JP25877986A JPH0796469B2 JP H0796469 B2 JPH0796469 B2 JP H0796469B2 JP 61258779 A JP61258779 A JP 61258779A JP 25877986 A JP25877986 A JP 25877986A JP H0796469 B2 JPH0796469 B2 JP H0796469B2
Authority
JP
Japan
Prior art keywords
heat
resistant inorganic
fiber
fibers
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258779A
Other languages
Japanese (ja)
Other versions
JPS63112477A (en
Inventor
淳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61258779A priority Critical patent/JPH0796469B2/en
Publication of JPS63112477A publication Critical patent/JPS63112477A/en
Publication of JPH0796469B2 publication Critical patent/JPH0796469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス、ガラス、各種金属酸化物等の焼
成において、炉の内張、棚板、およびトレイ等として使
用することのできる耐熱性無機質繊維を主体とする成形
体や、バーナープレート、排ガス浄化用触媒担体として
使用することのできる軽量、高強度で、耐熱衝撃性に優
れた耐熱性無機質繊維成形体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a heat-resistant inorganic material that can be used as a lining of a furnace, a shelf plate, a tray, etc. in the firing of ceramics, glass, various metal oxides and the like. The present invention relates to a light-weight, high-strength, heat-resistant inorganic fiber molding which can be used as a fiber-based molding, a burner plate, and an exhaust gas-purifying catalyst carrier, and which has excellent thermal shock resistance.

〔従来の技術〕[Conventional technology]

耐熱性無機質繊維を主体とする成形体は、軽量(多孔
質)で耐熱衝撃性に優れているという特徴から種々の工
業分野で利用されている。特に最近になって、前記耐熱
性無機質繊維に無機物質を複合させることにより、従来
より高密度で高強度の成形体が得られるようになり、た
とえば、コンデンサー、センサー、IC基板等の電子機能
部品焼成用の内張、棚板、浅い鉢(以下トレイという)
等に使用されたり、多孔性を利用して触媒担体として使
用されたりしている。
Molded products mainly composed of heat-resistant inorganic fibers are used in various industrial fields because they are lightweight (porous) and have excellent thermal shock resistance. Particularly recently, by compounding the heat-resistant inorganic fiber with an inorganic substance, it has become possible to obtain a molded body having a higher density and higher strength than ever before. For example, electronic functional parts such as capacitors, sensors and IC substrates. Liners, shelves, and shallow pots for baking (hereinafter called trays)
It is also used as a catalyst carrier due to its porosity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した如く、耐熱性無機質繊維を主体とする成形体
は、各種形状に成形され、種々の用途に使用されている
が、従来の製造方法は、耐熱性無機質繊維と無機物質等
の添加剤を多量の水中にて分散混合後、凝集させてから
成形用型に真空吸引成形させる方法が汎用されていた。
この方法では、かさ密度の低い成形体は成形可能である
が、特に、電子機能部品焼成用の棚板・敷板、トレイ・
匣鉢等の各種焼成治具や触媒担体の用途に関しては、高
密度で高強度の材質が必要となり従来の製造方法では成
形できず、平板状に成形、プレス後、各種形状に加工し
て使用されたり、熱可塑性樹脂、熱硬化性樹脂中に耐熱
性無機質繊維を混練させてから成形したり、さらには、
空気中に浮遊させたまま各種物質の混合を行なうという
方法が考えられてきた。
As described above, the molded product mainly composed of the heat-resistant inorganic fiber is molded into various shapes and used for various purposes, but the conventional manufacturing method is to use the heat-resistant inorganic fiber and the additive such as the inorganic substance. A method of dispersing and mixing in a large amount of water, aggregating, and then vacuum suction molding in a molding die has been widely used.
With this method, molded products with low bulk density can be molded, but in particular, shelf boards, floor boards, trays, etc. for firing electronic functional parts
As for the use of various baking jigs such as saggers and catalyst supports, high density and high strength materials are required, which cannot be formed by conventional manufacturing methods. Molding, kneading the heat-resistant inorganic fiber in the thermoplastic resin, thermosetting resin, or further,
A method of mixing various substances while suspended in the air has been considered.

たとえば、耐熱性無機質繊維と無機バインダー(例えば
粘土、シリカゾル、アルミナゾル等)を大量の水でスラ
リー状となし平板状に真空吸引、プレス、乾燥後、所定
の形状に切削加工したものは、繊維が厚み方向に積層し
ているため切削の方向により成形体の一部が特に弱くな
るという問題点があった。具体的には、第1図の模式図
にあるように積層面相互の強度がないため、図の矢印の
部分で深い形状物に対しては原料収率が低くなって製品
が高価となる問題があり量産には不向きであった。ま
た、凝集剤を使うことにより無機結合剤が集合離散する
ために強度が低かった。
For example, heat-resistant inorganic fibers and an inorganic binder (for example, clay, silica sol, alumina sol, etc.) with a large amount of water are vacuum-suctioned into a slurry form, pressed into a flat plate form, pressed, dried, and then cut into a predetermined shape. Since the layers are laminated in the thickness direction, there is a problem that a part of the molded body becomes particularly weak depending on the cutting direction. Specifically, as shown in the schematic diagram of FIG. 1, since there is no mutual strength between the laminated surfaces, the raw material yield is low and the product is expensive for deep-shaped products at the portion indicated by the arrow. Therefore, it was not suitable for mass production. Moreover, the strength was low because the inorganic binder was aggregated and dispersed by using the coagulant.

また、セラミックスの成形によく使用される顆粒状の原
料をプレスする方法は、耐熱性無機質繊維を核とする顆
粒がプレスにより破壊されず、また、破壊してしまうと
密度を小さくできないため粒状の繊維集合体が連続して
つながった構造となり、繊維集合粒子間の強度の全くな
い成形体となってしまい、第2図のようにエッヂの部分
に強度不足からよく欠損が生ずる問題があった。
In addition, the method of pressing a granular raw material that is often used for forming ceramics is such that the granules having the heat-resistant inorganic fiber as the core are not destroyed by the pressing, and if the granules are destroyed, the density cannot be reduced and the granular There is a problem that the fiber aggregate has a structure in which the fiber aggregates are continuously connected to each other, resulting in a molded body having no strength between the fiber aggregate particles, and the edge portion is often damaged due to insufficient strength as shown in FIG.

また、特開昭61−163173号公報に開示されている様な成
形助剤として固体ワックスを使い加熱混練成形により耐
熱性無機質繊維成形体を得る方法は、混練に必要な粘性
をワックスにて補償させることが困難であり充分に繊維
の分散していない構造を有した成形体しか得られないこ
と、さらに、脱ロウ費用が高く成形体が高価となる等の
問題があった。
Further, a method of obtaining a heat-resistant inorganic fiber molded body by heat kneading and molding using a solid wax as a molding aid as disclosed in JP-A-61-163173 is such that the viscosity necessary for kneading is compensated by the wax. However, there are problems that it is difficult to obtain a molded product and only a molded product having a structure in which the fibers are not sufficiently dispersed can be obtained, and that the dewaxing cost is high and the molded product is expensive.

さらに、特開昭59−184763号公報で提案の如く超高温用
セラミックファイバーと粘土との混練物を吹付けにより
型付けして成形体を得る方法は、繊維が短くなりすぎ成
形体の密度を下げることができないこと、また、プレス
成形等の手段と比べて成形体の生密度が低くなり焼成後
の成形体強度を充分に向上できないこと等の問題があっ
た。
Further, as proposed in JP-A-59-184763, a method of obtaining a molded product by molding a kneaded product of ceramic fiber for ultrahigh temperature and clay by spraying is to shorten the density of the molded product because the fiber becomes too short. However, there is a problem in that the green density of the molded body is lower than that of the means such as press molding, and the strength of the molded body after firing cannot be sufficiently improved.

一方、特開昭58−190855号公報で提案の如く、セラミッ
ク原料を混合したポリウレタン発泡体を焼成してポリウ
レタンを除去させて多孔質セラミック成形品を得る方法
によって成形した成形体は、基本的には繊維質材料を含
有していないし、微細な気孔を有する成形体が得られな
いから、繊維質材料を含むものに比較して、強度が劣る
という問題があった。
On the other hand, as proposed in JP-A-58-190855, a molded body formed by a method of firing a polyurethane foam mixed with a ceramic raw material to remove polyurethane to obtain a porous ceramic molded article is basically Since it does not contain a fibrous material and a molded product having fine pores cannot be obtained, there is a problem that the strength is inferior as compared with a product containing a fibrous material.

以上のように従来の耐熱性無機質繊維成形体は、製造方
法に起因した構造状の問題があり、コンデンサー、セン
サー、IC基板、フェライト等の電子機能部品焼成用棚
板、トレイとしては、特に荷重のほとんどかからない部
分にしか使用されていなかった。また、匣鉢の如き深い
鉢状のものの、異形状物については高価である理由から
使用されていなかった。
As described above, the conventional heat-resistant inorganic fiber molded body has a structural problem due to the manufacturing method, and the capacitor, the sensor, the IC substrate, the shelf for firing electronic functional components such as ferrite, and the tray are particularly loaded. It was used only for the part that does not take most of. Also, a deep bowl-shaped object such as a bowl has not been used because of its expensive shape.

本発明は、これらの問題点を解決し、耐火性粉末と無機
結合剤との混合組成物中に耐熱性無機質繊維を均一に分
散させた構造を有する成形体を提供することにより、高
強度で軽量、かつ量産化の容易な種々形状の耐熱性無機
質繊維成形体を提供し、前記機能部品焼成用治具の省エ
ネルギーおよび作業性の改善に寄与し、前記触媒担体の
品質向上とコストダウンに寄与することを目的とする。
The present invention solves these problems, by providing a molded body having a structure in which the heat-resistant inorganic fibers are uniformly dispersed in a mixed composition of a refractory powder and an inorganic binder, by high strength We provide heat-resistant inorganic fiber moldings of various shapes that are lightweight and easy to mass-produce, contributing to energy saving and improvement of workability of the jig for firing functional parts, contributing to quality improvement and cost reduction of the catalyst carrier. The purpose is to do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために耐熱性無機質繊維
20〜50重量%と耐火性粉末40〜80重量%と無機結合剤5
〜30重量%とから成り、前記耐熱性無機質繊維は大部分
が解繊された状態で前記耐火性粉末と前記無機結合剤と
から成る組成物中にある特定方向に配向することなく、
均一に分散した構造を有する、かさ密度が0.6〜1.5g/cm
3であり、かつ、150〜300kgf/cm2の曲げ強度を有するこ
とを特徴とする耐熱性無機質繊維成形体を提供するもの
である。
The present invention, in order to achieve the above object, a heat-resistant inorganic fiber
20-50% by weight, refractory powder 40-80% by weight, and inorganic binder 5
-30% by weight, the heat-resistant inorganic fibers in the composition composed of the refractory powder and the inorganic binder in a defibrated state without being oriented in a particular direction,
Has a uniformly dispersed structure and a bulk density of 0.6-1.5 g / cm
The present invention provides a heat-resistant inorganic fiber molded body characterized by having a bending strength of 3 and having a bending strength of 150 to 300 kgf / cm 2 .

〔作用〕[Action]

本発明の耐熱性無機質繊維成形体は、耐熱性無機質繊維
を主成分とするため成形体中に多数の連続気孔が存在
し、その軽量化と耐熱衝撃性の向上が図られ、常温にお
ける熱伝導率も0.15〜0.3Kcal/mhr℃と低い値となり焼
成時における蓄電量の低減と焼成時間の減少に寄与し、
エネルギーコストを安価とすることができる。具体的に
は、0.6〜1.5g/cm3の密度であることが好ましく、0.6g/
cm3未満だと強度不足となり1.5g/cm3を越えると蓄電量
を低くできず耐熱衝撃性に劣るようになり好ましくな
い。特に1.0〜1.3g/cm3の密度が好適である。
The heat-resistant inorganic fiber molded body of the present invention has a large number of continuous pores in the molded body because the heat-resistant inorganic fiber is the main component, and its weight reduction and thermal shock resistance are improved, and the heat conduction at room temperature is improved. The rate is as low as 0.15 to 0.3 Kcal / mhr ° C, which contributes to a reduction in the amount of electricity stored during firing and a reduction in firing time.
Energy costs can be reduced. Specifically, it is preferable that the density is 0.6 to 1.5 g / cm 3 , and 0.6 g / cm 3
If it is less than cm 3 , the strength is insufficient, and if it exceeds 1.5 g / cm 3 , the amount of stored electricity cannot be lowered and the thermal shock resistance becomes inferior, which is not preferable. A density of 1.0 to 1.3 g / cm 3 is particularly suitable.

又、本発明の耐熱性無機質繊維成形体は、耐熱性無機質
繊維の繊維間に耐火性粉末及び、または無機結合剤を充
填し、これらの耐火性粉末及び、または無機結合剤を焼
結せしめることにより、従来の繊維状物を主成分とする
成形体と比べてより強固な構造物たる成形体を得ること
ができる。特に、本発明においては、耐熱性無機質繊維
がその大部分が解繊された状態で、ある特定方向に配向
することなく、前記耐火性粉末と無機結合剤とから成る
組成物中に均一に分散した構造を前記成形体が有してい
るため、従来品に比較して飛躍的に向上した強度を得る
ことができる。
Further, the heat-resistant inorganic fiber molded body of the present invention is obtained by filling a refractory powder and / or an inorganic binder between the fibers of the heat-resistant inorganic fiber, and sintering the refractory powder and / or the inorganic binder. As a result, it is possible to obtain a molded body that is a stronger structure than a conventional molded body containing a fibrous material as a main component. In particular, in the present invention, the heat-resistant inorganic fibers are dispersed in the composition consisting of the refractory powder and the inorganic binder uniformly without being oriented in a specific direction in a state where most of them are defibrated. Since the molded body has the above structure, it is possible to obtain a significantly improved strength as compared with the conventional product.

すなわち、従来からよく行なわれている大量の水で耐熱
性無機質繊維と無機バインダーをスラリー状となし真空
吸引する方法で得られた成形体は、吸引方向に対して繊
維が積層すること、あるいは、無機バインダーの歩留を
上げるため凝集させるからで成形体そのものが大粒子状
の無機バインダーの集合体から成ること等の原因に基づ
いて、成形体の強度に方向性が存在したり、高強度が得
られなかったのに対して本発明の成形体は、繊維が均一
に分散していること、無機結合剤を凝集させずに使用で
きるためその働きを充分に発揮させることができるの
で、繊維を主体とした成形体とは思われない程の強度を
得ることができる。たとえば、従来法で得られた成形体
は40〜120kgf/cm2の曲げ強度しか得られなかったが、本
発明によれば、150〜300kgf/cm2の強度を得ることがで
きるようになり、従来は使用することの困難だった、ア
ルミナ、フェライト等の重い電子部品の焼成用治具とし
て使用できるようになる。
That is, a molded body obtained by a method of vacuum suctioning a heat-resistant inorganic fiber and an inorganic binder with a large amount of water that has been often performed conventionally is that the fibers are laminated in the suction direction, or Based on the reason that the molded body itself is composed of an aggregate of large-particle inorganic binders because it aggregates in order to increase the yield of the inorganic binder, there is a directionality in the strength of the molded body, and high strength On the other hand, in the molded article of the present invention, which was not obtained, the fibers are uniformly dispersed, and since the inorganic binder can be used without aggregating, its function can be sufficiently exhibited, It is possible to obtain a strength that does not seem to be the formed body mainly. For example, the molded body obtained by the conventional method but was only bending strength 40~120kgf / cm 2, according to the present invention, it becomes possible to obtain a strength of 150~300kgf / cm 2, It can now be used as a jig for firing heavy electronic components such as alumina and ferrite, which were difficult to use in the past.

前記耐熱性繊維を耐火性粉末と無機結合剤との混合組成
物中に分散させるには、パンやチョコレート等食料品用
の混練物を使用するのが良い。模型のニーダーやホール
ミル等では繊維が充分に解繊されず好ましくない。
In order to disperse the heat resistant fiber in the mixed composition of the refractory powder and the inorganic binder, it is preferable to use a kneaded product for food products such as bread and chocolate. In a model kneader or hole mill, the fibers are not sufficiently disentangled, which is not preferable.

前記耐熱性無機質繊維は、アルミノシリケート繊維、結
晶質アルミナ繊維、結晶質ムライト繊維、シリカ繊維、
ジルコニア繊維とから選ばれるいずれか1種又は2種以
上であることが好適である。特に、繊維強度の高いアル
ミノシリケート繊維、シリカ繊維は、長い繊維のまま混
合成形でき、成形体密度が低くなって蓄電量が低減でき
好ましい。また、結晶質アルミナ繊維、結晶質ムライト
繊維、ジルコニア繊維等は耐熱温度が高く、耐触性に優
れているため、アルミナ、フェライト、圧電素子等のよ
り厳しい条下での焼成用治具として好適である。
The heat-resistant inorganic fiber, aluminosilicate fiber, crystalline alumina fiber, crystalline mullite fiber, silica fiber,
It is preferable that any one kind or two or more kinds selected from the zirconia fibers is used. In particular, aluminosilicate fibers and silica fibers having high fiber strength are preferable because they can be mixed and molded as long fibers as they are, and the density of the molded body is lowered to reduce the amount of stored electricity. Also, crystalline alumina fiber, crystalline mullite fiber, zirconia fiber, etc. have high heat resistance temperature and excellent touch resistance, so they are suitable as a jig for firing under more severe conditions such as alumina, ferrite, and piezoelectric elements. Is.

前記耐火性粉末は、アルミナ質、アルミナ・シリカ質、
ジルコニア質、マグネシア質、チタニア質、クロミア質
とから選ばれるいずれか1種又は2種以上であることが
好適である。具体的には、アルミナ、ムライト、カオリ
ナイト、木節粘土、蛙目粘土、シリマナイト、ステアタ
イト、フォルステライト、タルク、ジルコニア、マグネ
シア、スピネル、チタニア等が好ましい。
The refractory powder, alumina, alumina-silica,
It is preferable that one or more selected from zirconia, magnesia, titania and chromia. Specifically, alumina, mullite, kaolinite, kibushi clay, frog eye clay, sillimanite, steatite, forsterite, talc, zirconia, magnesia, spinel, titania and the like are preferable.

さらに、本発明の無機結合剤はシリカ・ソーダ系、ホウ
酸カルシウム系、シリカ系のフリット、アルミナゾル、
シリカゾルから選ばれるのが好ましく、たとえば、長
石、マイカ粉末、ホウ酸、ガラス粉、珪石、アルミナゾ
ル、シリカゾル等が好ましい。
Furthermore, the inorganic binder of the present invention is a silica / soda-based, calcium borate-based, silica-based frit, alumina sol,
It is preferably selected from silica sols, for example, feldspar, mica powder, boric acid, glass powder, silica stone, alumina sol, silica sol and the like.

本発明の耐熱性無機質繊維成形体は、前記耐熱性無機質
20〜50重量%と前記耐火性粉末40〜80重量%と前記無機
結合剤5〜30重量%とを有機成形助剤を必要に応じて添
加してから混練・脱気後、多孔性の成形用型に入れプレ
スして製造される。ここで、前記耐熱性無機質繊維が20
重量%未満であると、密度が高くなり過ぎたり、耐熱衝
撃性に劣るようになって好ましくなく、50重量%を越え
ると充分な強度を得ることができず好ましくない。ま
た、前記耐火性粉末が40重量%未満だと強度が不充分で
あり、80重量%を越えると密度が高くなって好ましくな
い。さらに、前記無機結合剤5重量%未満では、成形体
強度が低い値となり、30重量%を越えると重くなり過ぎ
て好ましくない。
The heat-resistant inorganic fiber molding of the present invention is the heat-resistant inorganic material
20 to 50% by weight, 40 to 80% by weight of the refractory powder, and 5 to 30% by weight of the inorganic binder are added as needed with an organic molding aid, and after kneading and degassing, porous molding is performed. It is manufactured by putting it in a mold and pressing it. Here, the heat-resistant inorganic fiber is 20
When it is less than 50% by weight, the density becomes too high and the thermal shock resistance becomes poor, which is not preferable, and when it exceeds 50% by weight, sufficient strength cannot be obtained, which is not preferable. Further, if the refractory powder is less than 40% by weight, the strength is insufficient, and if it exceeds 80% by weight, the density becomes high, which is not preferable. Further, if the amount of the inorganic binder is less than 5% by weight, the strength of the molded body becomes a low value, and if it exceeds 30% by weight, it becomes too heavy, which is not preferable.

以下、本発明の実施例について比較例と合せて説明す
る。
Hereinafter, examples of the present invention will be described together with comparative examples.

〔実施例〕〔Example〕

実施例1 耐熱性無機質繊維として、水中で分級することにより非
繊維状物の含有量を3wt%に制御したAl2O350wt%、SiO2
50wt%のアルミノシリケート繊維600gと耐火性粉末とし
て平均粒径4.5μmのアルミナ粉末1100gおよび木節粘土
300gと無機結合剤として焼成ケイソウ土150gとを配合し
て混練機の中に入れ、水950gと有機成形助剤(ワック
ス、ポリアクリルアミン酢酸塩)300gとを添加してから
5分間混練した。混練物を脱気後、石膏型に入れ10〜30
kgf/cm2の圧力でプレスして200×200×80Hmm(内寸180
×180×60Hmm)の深鉢状の成形品を製造した。乾燥後14
50℃で6時間焼成し本発明の実施例とした。
Example 1 As heat resistant inorganic fibers, Al 2 O 3 50 wt%, SiO 2 whose content of non-fibrous material was controlled to 3 wt% by classification in water, SiO 2
600 g of 50 wt% aluminosilicate fiber, 1100 g of alumina powder with a mean particle size of 4.5 μm as fire resistant powder and Kibushi clay
300 g and 150 g of calcined diatomaceous earth as an inorganic binder were mixed and put in a kneader, 950 g of water and 300 g of an organic molding aid (wax, polyacrylamine acetate) were added, and then kneaded for 5 minutes. After degassing the kneaded product, put it in a plaster mold for 10-30
Pressed with a pressure of kgf / cm 2 to 200 × 200 × 80Hmm (inside dimension 180
A deep pot-shaped molded product of × 180 × 60Hmm) was produced. After drying 14
It was fired at 50 ° C. for 6 hours to obtain an example of the present invention.

比較例1 実施例1と同様の組成物を30の水中に分散してスラリ
ーを作成しポリアクリルアミド500mlと10wt%と硫バン
水溶液600mlを添加して凝集させ300×300mmの平板状に
真空吸引成形した。乾燥後、実施例1と同様の形状およ
び密度になるまで切削し、続いて1450℃で6時間焼成し
て本発明の比較例とした。
Comparative Example 1 A composition similar to that of Example 1 was dispersed in 30 water to prepare a slurry, and 500 ml of polyacrylamide, 10 wt% and 600 ml of an aqueous solution of vanadium sulfide were added and aggregated to form a vacuum suction molding into a 300 × 300 mm flat plate. did. After drying, it was cut to the same shape and density as in Example 1, and subsequently fired at 1450 ° C. for 6 hours to obtain a comparative example of the present invention.

比較例2 比較例1と同様のスラリーを凝集後、200×200×80Hの
深鉢状の金型に真空吸引成形した。成形後密度を設定す
るために金型に付着させたままプレスしたところ、角の
部分にクラックが入り、所定の密度の成形体は得られな
かった。
Comparative Example 2 The same slurry as in Comparative Example 1 was aggregated and then vacuum suction molded into a 200 × 200 × 80H deep pot-shaped mold. When pressed while being attached to the mold to set the density after molding, cracks were formed in the corners, and a molded product having a predetermined density could not be obtained.

比較例3 非繊維状物の含有量を3wt%に制御した繊維長1〜2mmの
アルミノシリケート繊維600gとアルミナ粉末1100gおよ
び木節粘土300g焼成ケイソウ土150gとをPVA水溶液中に
分散後、スプレードライヤーにて顆粒状に成形した。こ
の顆粒を実施例1で用いたものと同様の石膏型に入れて
プレスし深鉢状成形品を製造、乾燥後1450℃で6時間焼
成し本発明の比較例とした。顆粒がつぶれたものは密度
が高くなりすぎ、顆粒の形状の残ったものは、強度が小
さく不良であった。
Comparative Example 3 600 g of an aluminosilicate fiber having a fiber length of 1 to 2 mm and a non-fibrous substance content controlled to 3 wt%, 1100 g of alumina powder and 300 g of kibushi clay and 150 g of fired diatomaceous earth were dispersed in a PVA aqueous solution, and then a spray dryer was used. Was molded into granules. The granules were placed in a plaster mold similar to that used in Example 1 and pressed to produce a deep pot-shaped molded product, which was dried and then baked at 1450 ° C. for 6 hours to give a comparative example of the present invention. When the granules were crushed, the density became too high, and when the granule shape remained, the strength was low and it was poor.

第1表は本発明の実施例および比較例の成形体密度と各
方向の曲げ強度とを示したものである。
Table 1 shows the compact density and the bending strength in each direction of Examples and Comparative Examples of the present invention.

この表からわかる様に、本発明の実施例によれば強度の
バラツキもなく高強度の成形体が製造できる。ここで曲
げ強度は、試験片大きさ10mm×50mm×5mm、スパン長さ3
0mm、曲げ速度10mm/minの条件で島津製作所製オートグ
ラフで測定した。
As can be seen from this table, according to the examples of the present invention, it is possible to manufacture a high-strength molded product without variations in strength. Here, the bending strength is the size of the test piece 10 mm × 50 mm × 5 mm, the span length 3
It was measured with an Shimadzu autograph under the conditions of 0 mm and a bending speed of 10 mm / min.

〔発明の効果〕〔The invention's effect〕

以上の様に本発明によれば以下の如き効果が現われる。 As described above, according to the present invention, the following effects are exhibited.

(1)高強度で種々形状の耐熱性無機質繊維成形体がで
き、重いセラミックスの焼成ができる。
(1) High-strength, heat-resistant inorganic fiber moldings of various shapes can be formed, and heavy ceramics can be fired.

(2)種々形状の耐熱性無機質繊維成形体が安価に量産
できる。
(2) Heat resistant inorganic fiber moldings of various shapes can be mass-produced at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の耐熱性無機質繊維成形体の断面図、第2
図は顆粒状原料で成形した耐熱性無機質繊維成形体の断
面図であり、これら両図中の矢印はいずれも強度の弱い
部分を表わすものである。
FIG. 1 is a sectional view of a conventional heat-resistant inorganic fiber molding,
The figure is a cross-sectional view of a heat-resistant inorganic fiber molded body formed from a granular raw material, and the arrows in both of these figures represent weak portions.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】耐熱性無機質繊維20〜50重量%と耐火性粉
末40〜80重量%と無機結合剤5〜30重量%とから成り、
前記耐熱性無機質繊維は大部分が解繊された状態であっ
て、前記耐火性粉末と前記無機結合剤とから成る組成物
中において、ある特定方向に配向することなく、均一に
分散した構造を有する、かさ密度が0.6〜2.0g/cm3であ
り、かつ、150〜300kgf/cm2の曲げ強度を有することを
特徴とする耐熱性無機質繊維成形体。
1. A heat-resistant inorganic fiber 20 to 50% by weight, a refractory powder 40 to 80% by weight, and an inorganic binder 5 to 30% by weight,
Most of the heat-resistant inorganic fibers are in a defibrated state, in the composition comprising the refractory powder and the inorganic binder, without being oriented in a specific direction, a uniformly dispersed structure. A heat-resistant inorganic fiber molded article having a bulk density of 0.6 to 2.0 g / cm 3 and a bending strength of 150 to 300 kgf / cm 2 .
【請求項2】前記耐熱性無機質繊維は、アルミノシリケ
ート繊維、結晶質アルミナ繊維、結晶質ムライト繊維、
シリカ繊維、ジルコニア繊維とから選ばれるいずれか1
種又は2種以上であることを特徴とする特許請求の範囲
第1項記載の耐熱性無機質繊維成形体。
2. The heat resistant inorganic fibers are aluminosilicate fibers, crystalline alumina fibers, crystalline mullite fibers,
Any one selected from silica fiber and zirconia fiber
The heat-resistant inorganic fiber molded article according to claim 1, characterized in that it is one kind or two or more kinds.
【請求項3】前記耐火性粉末は、アルミナ質、アルミナ
・シリカ質、ジルコニア質、マグネシア質、チタニア
質、クロミア質とから選ばれるいずれか1種又は2種以
上であることを特徴とする特許請求の範囲第1項および
第2項記載の耐熱性無機質繊維成形体。
3. The refractory powder is one or more selected from alumina, alumina-silica, zirconia, magnesia, titania, and chromia. The heat-resistant inorganic fiber molded product according to claim 1 or 2.
【請求項4】前記無機結合剤は、粘土、ガラスフリッ
ト、ケイ酸ソーダ、ホウ酸カルシウム、硅石、アルミナ
ゾル、シリカゾルとから選ばれるいずれか1種又は2種
以上であることを特徴とする特許請求の範囲第1項〜第
3項記載の耐熱性無機質繊維成形体。
4. The inorganic binder is any one or two or more selected from clay, glass frit, sodium silicate, calcium borate, silica stone, alumina sol and silica sol. The heat-resistant inorganic fiber molded article according to any one of claims 1 to 3.
JP61258779A 1986-10-30 1986-10-30 Heat resistant inorganic fiber molding Expired - Lifetime JPH0796469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258779A JPH0796469B2 (en) 1986-10-30 1986-10-30 Heat resistant inorganic fiber molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258779A JPH0796469B2 (en) 1986-10-30 1986-10-30 Heat resistant inorganic fiber molding

Publications (2)

Publication Number Publication Date
JPS63112477A JPS63112477A (en) 1988-05-17
JPH0796469B2 true JPH0796469B2 (en) 1995-10-18

Family

ID=17324964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258779A Expired - Lifetime JPH0796469B2 (en) 1986-10-30 1986-10-30 Heat resistant inorganic fiber molding

Country Status (1)

Country Link
JP (1) JPH0796469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222223A (en) * 1992-02-10 1993-08-31 Tokai Univ Method for modifying surface of acrylic resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553420Y2 (en) * 1989-11-06 1997-11-05 日本石油精製株式会社 Igniter for combustion device
JP5042286B2 (en) * 2009-08-20 2012-10-03 イソライト工業株式会社 Ceramic setter for firing electronic parts and method for producing the same
CN111925224A (en) * 2020-07-11 2020-11-13 巩义市泛锐熠辉复合材料有限公司 Aluminum silicate fiber paper for aerogel felt and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222223A (en) * 1992-02-10 1993-08-31 Tokai Univ Method for modifying surface of acrylic resin

Also Published As

Publication number Publication date
JPS63112477A (en) 1988-05-17

Similar Documents

Publication Publication Date Title
US20190300447A1 (en) High-temperature Resistant Lightweight Thermal Insulation Material with Dual-pore Structure and Preparation Method Thereof
CN113213942B (en) Composite silicon carbide ceramic kiln furniture and preparation method thereof
JPS638275A (en) Refractory fibrous product and manufacture
CN107935608B (en) Method for preparing zircon brick by using compact zircon aggregate
CN102153349A (en) Method for preparing refractory shed plate
CN107619267A (en) A kind of SiC reinforcement cordierite-mullite ceramic composite and preparation method thereof
JP3000151B2 (en) Refractory support and method for producing the same
CN111574227A (en) Forming method of composite sagger
CN103253935A (en) Automobile exhaust Al2TiO5/SiC porous composite material and preparation method thereof
JPH0796469B2 (en) Heat resistant inorganic fiber molding
JPH0572341B2 (en)
JPS6410469B2 (en)
JPS62283885A (en) Porous refractory formed body for burning functional parts
JPS61201679A (en) Lightweight heat resistant tray and manufacture
JPH0796468B2 (en) Method for producing heat-resistant inorganic fiber molded body
JP2614809B2 (en) Manufacturing method of heat-resistant low specific gravity fibrous molding
JP2001228031A (en) Temperature detection material, temperature detection method, and method of manufacturing noble metal product
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPS629181A (en) Light-weight heat-resistant tray for baking ceramics and manufacture thereof
JP2538744B2 (en) Fire resistant shelf
CN112535907B (en) High-density ceramic fiber filter material and preparation method thereof
JP3099043B2 (en) Jig for ceramic firing and manufacturing method thereof
JPH0645510B2 (en) Inorganic oxide artificial fiber honeycomb structure and method for manufacturing the same
JPH0319194B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term