JPS62283885A - Porous refractory formed body for burning functional parts - Google Patents

Porous refractory formed body for burning functional parts

Info

Publication number
JPS62283885A
JPS62283885A JP12705486A JP12705486A JPS62283885A JP S62283885 A JPS62283885 A JP S62283885A JP 12705486 A JP12705486 A JP 12705486A JP 12705486 A JP12705486 A JP 12705486A JP S62283885 A JPS62283885 A JP S62283885A
Authority
JP
Japan
Prior art keywords
firing
alumina
functional parts
weight
porous refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12705486A
Other languages
Japanese (ja)
Other versions
JPH0798707B2 (en
Inventor
淳 伊藤
浩司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61127054A priority Critical patent/JPH0798707B2/en
Publication of JPS62283885A publication Critical patent/JPS62283885A/en
Publication of JPH0798707B2 publication Critical patent/JPH0798707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、セラミック、ガラス、各種金属酸化物等の焼
成において、炉の内張、棚板、およびトレイ等として使
用することのできる軽微で耐熱性のある多孔性耐火成形
体に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to the firing of ceramics, glasses, various metal oxides, etc. as furnace linings, shelves, trays, etc. The present invention relates to a light, heat-resistant porous refractory molded body that can be used.

(従来の技術) 最近の情報、エレク1−ロニクス産業において、センサ
ー、コンデンサー、IC基板等の機部部品はセラミック
化へ移行している。中てもアルミナ質、V化珪素’!1
等のフ5・インセラミックやチタン酸バリウム等の誘’
11を素子や、鉄、バリウム又はストロンチウム等の複
合酸化物の磁性体が有望視されている。これらのセラミ
ックおよび、金属酸化物は、電気絶縁性、半導性、耐熱
性、#摩耗性、高強度、高磁力性の性質にすぐれ、今後
まずます用途は拡大されつつある。これらの機走部品は
原料混合後、押し出し成形法、射出成形法、鋳込成形法
、プレス成形法等により各種形状に成形された後、rM
熱レンガで組んである炉で、棚板、焼成トレイに載せて
、製品化される。これら炉の内張、棚板、焼成トレイ等
は、ムライト賀、アルミナ賀、ジルコニア賀、コージェ
ライト賀、炭化珪素質等およびシリカ質の耐火物が使用
されている。
(Prior Art) Recently, in the electronics industry, mechanical parts such as sensors, capacitors, and IC boards are being made of ceramics. Above all, alumina and silicon Vide! 1
etc. and barium titanate etc.'
11, and magnetic materials made of composite oxides such as iron, barium, or strontium are considered promising. These ceramics and metal oxides have excellent properties such as electrical insulation, semiconductivity, heat resistance, wear resistance, high strength, and high magnetic force, and their uses are likely to be expanded in the future. After mixing raw materials, these machine parts are formed into various shapes by extrusion molding, injection molding, casting molding, press molding, etc., and then rM
The product is produced in a furnace made of hot bricks, placed on shelves and baking trays. Mullite, alumina, zirconia, cordierite, silicon carbide, and silica refractories are used for the lining, shelves, firing trays, etc. of these furnaces.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、前記セラミック等のJa箋部品の焼成用トレイは
、いずれもプレス等の方法で成形され、さらに高温で焼
成されたものである。これらのセラミック等機能部品の
単価の値下がりは著しく、生産コストの低減が急務とな
ってきた。しかしながら、従来使用されている焼成炉中
に用いられている各部材は、カサ密度か高いため、その
もの自体を加熱するのに多量のエネルギーが必要てあっ
た。また、トレイに関して言えば重いことから多段に積
んで焼成する場合、積み重ねるのに限界があった。また
炉内において上段と下段では温度分布を均一にすること
か困難であった。さらに焼成スピードを上げるとか、冷
熱サイクルを早くすると焼成用トレイが割れたりして生
産性か悪かった。さらに焼成ゾーンを小さくして熱効率
を高めるため、焼成用トレイの占める体積を小さくしよ
うと思っても、従来の焼成用トレイでは反り等の問題の
ため、ある一定の厚み以下では製造できなかった。これ
に対して、セラミックファイバー等の耐熱無機質M!雄
と無機バインダー(例えばシリカゾル、粘度、セビオラ
イト等)を大量の木でスラリー状となし湿式抄造法によ
り成形した軽量な成形品が知られている。しかしなから
、この成形品は、表面の平滑性がないばかりか、無機バ
インダーか耐熱無機質wa!Inの格子間に充填されて
いるにすぎないため、am自体の熱間軟化もしくは収縮
により、反りを生じたり、強度的に弱かうたり、繊維自
体か脱落して粉化するため、精度のよい高純度のセラミ
ックの焼成炉内での使用は不適であった。
Conventionally, the baking trays for high-quality parts such as ceramics have all been formed by a method such as a press, and then fired at a high temperature. The unit prices of these functional parts, such as ceramics, have fallen significantly, and there has been an urgent need to reduce production costs. However, each member used in a conventional firing furnace has a high bulk density, and therefore a large amount of energy is required to heat the member itself. In addition, since trays are heavy, there is a limit to how many trays can be stacked when baking in multiple stages. Furthermore, it was difficult to make the temperature distribution uniform between the upper and lower stages in the furnace. Furthermore, if the firing speed was increased or the cooling/heating cycle was accelerated, the firing tray would crack, resulting in poor productivity. Furthermore, even if attempts were made to reduce the volume occupied by the baking tray in order to increase thermal efficiency by making the baking zone smaller, conventional baking trays could not be manufactured with a thickness below a certain level due to problems such as warpage. On the other hand, heat-resistant inorganic materials such as ceramic fiber M! A lightweight molded product is known that is made by slurrying a large amount of wood and an inorganic binder (for example, silica sol, viscosity, Seviolite, etc.) and molding it using a wet papermaking method. However, this molded product not only lacks surface smoothness, but also has an inorganic binder or heat-resistant inorganic material. Since it is only filled between the lattices of In, it may warp or become weak due to hot softening or shrinkage of the In, and the fibers themselves may fall off and become powder, making it difficult to maintain precision. The use of high-purity ceramics in a firing furnace was unsuitable.

以上のように、従来の耐火断熱レンガおよび棚板、耐熱
トレイは、エネルギーコストや消耗品コストに対して大
きなウェイトを占め、また、耐火無機質amから成る成
形品は、強度が不足して粉化し、作業環境を悪化させ、
表面平滑度も不足するという問題点かあった。
As mentioned above, conventional fire-resistant insulating bricks, shelf boards, and heat-resistant trays account for a large amount of energy costs and consumables costs, and molded products made of the fire-resistant inorganic material AM lack strength and tend to powder. , worsen the working environment,
There was also the problem of insufficient surface smoothness.

また、IC!板、フェライト、ガラス基板竿の機走部品
の焼成の際には、これらの部品が大型て平滑度を要求す
るものであるために、焼成用棚板、敷板などの治具には
高強度、表面平滑度大であって、反りのないことか必須
条件であった。
Also, IC! When firing machine parts such as plates, ferrite, and glass substrate rods, these parts are large and require smoothness, so jigs such as baking shelves and floor plates must be made of high-strength, High surface smoothness and no warping were essential conditions.

さらに、フェライト、ガラス基板等に含まれるPb、Z
n、Mn等の物質は反応性か高いので、特にアルミナ−
シリカ質レンガに含まれる5i02や敷粉として汎用さ
れるZrO□との反応を防止するために高純度のアルミ
ナ質棚板やアルミナ敷粉を用いて焼成されていた。その
ためアルミナ質棚板は前述した如く重いので熱エネルギ
ーロスか大きく、さらにアルミナ敷粉ては平滑度か不充
分であったり製品裏側に粉か付着して不良となるという
問題点かあった。
Furthermore, Pb and Z contained in ferrite, glass substrates, etc.
Since substances such as n and Mn are highly reactive, especially alumina
In order to prevent reactions with 5i02 contained in siliceous bricks and ZrO□, which is commonly used as bedding powder, high-purity alumina shelf boards and alumina bedding powder were used for firing. Therefore, as mentioned above, the alumina shelf board is heavy and causes a large loss of thermal energy, and there are also problems in that the alumina powder is not smooth enough or the powder adheres to the back side of the product, resulting in defects.

すなわら、本発明はこれらの問題点を解決すべく、省エ
ネルギータイプの軽量で強度かあり、かつ熱変化に対し
て優れ、表面乎゛滑度と作業環境を数片した精密で高純
度の前記機億部品焼成用の多孔性耐火成形体を提供する
ことを目的とする。
In other words, in order to solve these problems, the present invention has developed an energy-saving, lightweight, strong, precise and high-purity material that is excellent in resistance to thermal changes, and has improved surface smoothness and working environment. The object of the present invention is to provide a porous refractory molded body for firing the mechanical parts.

(問題点を解決するための手段) すなわち、本発明は、実質的に耐熱無機質繊維と無機結
合剤および耐火性粉末からなる![を酸物を焼結して成
形してなるセラミック・ガラス・金属酸化物などのaf
I部品焼成用多孔性耐火成形体において、前記成形体の
密度か0.6〜1.5g/cm’、常温における曲げ強
度が120〜3flQkgf/crrr’てあって、前
記機走部品を積載する面はその表面粗度R+++sxか
2〜40gmてあり、かつ、A又203純度95〜10
0%のアルミナ粉末からなる膜厚50〜1000gmの
アルミナコーティングか施されていることを特徴とする
機能部品焼成用の多孔性耐火成形体に関するものである
(Means for Solving the Problems) That is, the present invention essentially consists of heat-resistant inorganic fibers, an inorganic binder, and a fire-resistant powder! [af of ceramics, glasses, metal oxides, etc. made by sintering and molding oxides]
In the porous refractory molded body for firing I parts, the density of the molded body is 0.6 to 1.5 g/cm', the bending strength at room temperature is 120 to 3 flQkgf/crrr', and the machine part is loaded. The surface has a surface roughness of R+++sx of 2 to 40 gm, and a purity of A or 203 of 95 to 10.
The present invention relates to a porous refractory molded body for firing functional parts, characterized in that it is coated with an alumina coating of 0% alumina powder with a thickness of 50 to 1000 gm.

(作用) 本発明の多孔性耐火成形体は、耐熱無機質m維を主成分
とするため成形体中に多数の連続気孔か存在し、その軽
量化と耐熱衝立性の向上か図られ、常温における熱伝導
率も0.15〜0.30にca l/■hr°Cと低い
値となり、焼成時における蓄熱量の低減と焼成時間の減
少に寄与し、エネルギーコストを安価とするばかりてな
く、被焼f&物の品質を向上させることかできる。具体
的には、0.6〜1.5g/crn’の密度であること
か好ましく、特にl−0〜lug/crn”の密度か好
適である。 0.6g/am’未満だと強度不足となり
、1.5g/cm″を越えると蓄熱量を低くできず好ま
しくない。
(Function) The porous refractory molded product of the present invention has a large number of continuous pores in the molded product because it is mainly composed of heat-resistant inorganic m-fibers. The thermal conductivity is also as low as 0.15 to 0.30 cal/■hr°C, contributing to a reduction in the amount of heat stored during firing and a reduction in firing time, which not only lowers energy costs, but also It is possible to improve the quality of objects to be burned. Specifically, a density of 0.6 to 1.5 g/crn' is preferable, and a density of 1-0 to lug/crn' is particularly preferable. If it is less than 0.6 g/am', the strength is insufficient. Therefore, if it exceeds 1.5 g/cm'', the amount of heat storage cannot be reduced, which is not preferable.

また、本発明の多孔性耐火成形体は、耐熱無機質繊維の
am間に耐火性粉末及び、または無機結合剤を充填し、
これらの耐火性粉末及び、または無機結合剤を1400
〜1 [ioooCの温度で焼結せしめることにより、
従来のW&雄状物を主成分とする成形体と比べてより強
固な構造物たる成形体を得ることがてきる。前記成形体
の粉化を防止し、IC基板、フェライト、ガラス基板等
の大型で重い機能部品焼成用の棚板・敷板・内張等焼成
炉の各部材として使用するには常温における曲げ強度が
120へ100kg/cm2、特に150〜250 k
g/cゴであることが好適であり、前記無機結合剤と耐
火性粉末とを焼結せしめることにより達成される。12
0 kg/ crn’未満だと強度不足となり、:1O
11kg/cばを越えても実質的な利益は得られない。
In addition, the porous refractory molded article of the present invention has a refractory powder and/or an inorganic binder filled between the ams of heat-resistant inorganic fibers,
These refractory powders and/or inorganic binders are
~1 [By sintering at a temperature of ioooC,
It is possible to obtain a molded product having a stronger structure than the conventional molded product mainly composed of W&male material. The bending strength at room temperature is required to prevent the molded body from pulverizing and to use it as various parts of the firing furnace such as shelves, floor plates, linings, etc. for firing large and heavy functional parts such as IC substrates, ferrite, and glass substrates. 120 to 100kg/cm2, especially 150-250k
g/c is preferred and is achieved by sintering the inorganic binder and the refractory powder. 12
If it is less than 0 kg/crn', the strength will be insufficient, and :1O
Even if the weight exceeds 11 kg/c, no substantial benefit can be obtained.

前記耐火性粉末は、アルミナ質、アルミナ・シリカ質、
ジルコニア賀、マグネシア質、チタニア質とから還ばれ
るいずれか1種又は2種以上か耐火温度が高く好適であ
る。具体的にはアルミナ、ムライト、カオリナイト、木
節粘土、蛙目粘土。
The refractory powder is alumina, alumina/silica,
One or more of zirconia, magnesia, and titania are preferable because they have a high refractory temperature. Specifically, alumina, mullite, kaolinite, Kibushi clay, and Frogme clay.

シリマナイト、ステアタイト、)オルステライト、ジル
コニア、マグネシア、スピネル、チタニア等が好ましい
、さらに、本発明の無機結合剤はシリカ・ソーダ系、ホ
ウ酸カルシウム系、シリカ系のフリットから選ばれるの
が好ましく、たとえば、長石、マイカ粉末、ホウ酸、ガ
ラス粉、珪石等が好ましい。特に、耐熱温度を極度に下
げず強固な結合力を得ることができるシリカ系の結合剤
か最適である。ただし、5iOzはフェライトやガラス
基板との反応性か高いのでアルミナコーティングを施す
必要かある。
Sillimanite, steatite, ) orsterite, zirconia, magnesia, spinel, titania, etc. are preferable, and the inorganic binder of the present invention is preferably selected from silica-soda-based, calcium borate-based, and silica-based frits, For example, feldspar, mica powder, boric acid, glass powder, silica stone, etc. are preferable. In particular, silica-based binders are most suitable because they can provide strong bonding strength without extremely lowering the heat resistance temperature. However, since 5iOz is highly reactive with ferrite and glass substrates, it may be necessary to apply an alumina coating.

さらに、IC基板やフェライト、ガラス基板あるいは圧
7r!、素子等の焼成には表面平滑度と平行度に優れた
敷板か必要であるが、従来の耐火断熱レンガから成る敷
板では表面の凹凸が大きすぎ、焼成レンガから成る敷板
ては焼成時にソリか生じて被焼成物に不良か発生すると
いう問題点があった。
Furthermore, IC substrate, ferrite, glass substrate or pressure 7r! A bed plate with excellent surface smoothness and parallelism is necessary for firing elements, etc. However, the surface of the conventional bed plate made of fireproof and insulating bricks is too uneven, and the plate made of fired bricks tends to warp during firing. There is a problem in that this may cause defects in the fired product.

本発明の多孔性耐火成形体は、耐熱無機質繊維が含有さ
れているため細かな気孔か存在し、微細な凹凸によって
その表面が形成され、加工性も良好なことから充分な表
面平滑度を得ることができる。具体的にはコーティング
された面の表面粗度R□5か2〜40gmであることか
好ましく10〜25gmか岐適である。2μm未満は薄
型性不良となって好ましくなく、40pmを越すと被焼
成物に凹凸か生じて好ましくない。特にIC基板・ガラ
ス基板焼成用には2〜20uLmが、フェライト・圧電
素子用には20〜40gmが最適である。ここで、前記
耐熱無機質繊維中の非繊維状物は成形体表面の平滑性を
なくすので、本発明の多孔性耐火物はO81〜8重量%
以下にする必要かある。 0.1%未W4だと実質的な
利益を得られず、8%を越すと平滑性不足となって好ま
しくない。またソリについては、前記耐熱無機質!a維
によって形成される空隙によって、加熱・冷却時に生ず
る熱応力か緩和されるため、使用中の反りを皆無にする
ことができる、また、前記耐火性粉末の粒径を選択する
ことによりソリをなくすことかできる。
The porous refractory molded article of the present invention has fine pores because it contains heat-resistant inorganic fibers, and its surface is formed by fine irregularities, and has good processability, so it obtains sufficient surface smoothness. be able to. Specifically, the surface roughness of the coated surface R□5 is preferably 2 to 40 gm, preferably 10 to 25 gm. If it is less than 2 μm, it will result in poor thinness, which is undesirable, and if it exceeds 40 pm, it will cause unevenness on the fired product, which is not preferred. In particular, 2 to 20 uLm is optimal for firing IC substrates and glass substrates, and 20 to 40 gm is optimal for firing ferrite and piezoelectric elements. Here, since the non-fibrous substances in the heat-resistant inorganic fibers eliminate the smoothness of the surface of the molded product, the porous refractory of the present invention has O81 to 8% by weight.
Is it necessary to do the following? If it is less than 0.1% W4, no real profit will be obtained, and if it exceeds 8%, smoothness will be insufficient, which is not desirable. Also, regarding the sled, use the heat-resistant inorganic material mentioned above! The voids formed by the a-fibers alleviate the thermal stress that occurs during heating and cooling, so warping during use can be completely eliminated.In addition, by selecting the particle size of the refractory powder, warping can be prevented. It is possible to eliminate it.

前記アルミナコーティングは、フェライトやガラス基板
との反応を防ぐためにSiO□成分を極力減らすことが
重要であり、純度95〜100%のAl2Oユからなる
アルミナ粉末が焼結してコーティング層を形成している
ことが好ましい。
In the alumina coating, it is important to reduce the SiO□ component as much as possible to prevent reactions with ferrite and glass substrates, and alumina powder consisting of Al2OY with a purity of 95 to 100% is sintered to form a coating layer. Preferably.

A l 2 Off純度か95%未満だと、フェライト
やガラス基板との反応が防止できず好ましくない、また
、基材中に含まれる5if2成分との反応を防止するた
めにも、コーティング層はできるだけ密であることが好
ましい。
If the A l 2 Off purity is less than 95%, it is undesirable as it will not be possible to prevent reactions with ferrite and glass substrates.Also, in order to prevent reactions with the 5if2 component contained in the base material, the coating layer should be as thin as possible. It is preferable that it be dense.

前記アルミナ粉末は、汎用されている各種粉末や、塩基
性塩化アルミニウム、塩基性酢酸アルミニウム2アルミ
ナゾルの様に水溶液または水性ゾルあるいは各種アルコ
レートの形で利用され、加熱後アルミナ粉末へと変化す
るものも使用することができるが、一般にAn、o、以
外の成分として、Na、O,Sin、、Few O,等
が含有されているものである。コーティングは、スプレ
ー、へヶ塗り、ローラーコート、あるいは浸漬等の方法
で行なうことかできる。コーチインク層は前記Pb、Z
n、Mn等の高蒸発性物質の拡散を抑えるためにできる
だけ 密であることか好ましく、コーテイング後150
0〜1600°Cの温度て焼付けることにより形成され
る。
The alumina powder is used in the form of various commonly used powders, aqueous solutions or sol, or various alcoholates, such as basic aluminum chloride and basic aluminum acetate di-alumina sol, and is converted into alumina powder after heating. However, in general, Na, O, Sin, Few O, etc. are contained as components other than An and O. Coating can be done by spraying, smearing, roller coating, or dipping. The coach ink layer is made of the above-mentioned Pb, Z
It is preferable that the coating be as dense as possible in order to suppress the diffusion of highly evaporative substances such as n, Mn, etc.
It is formed by baking at a temperature of 0 to 1600°C.

さらに、前記アルミナコーティング層の厚みは5(1−
10004mか好適であり、特に150〜300 gm
が最適である。膜厚が50uLm未満だと、前記高蒸発
性物質の拡散を充分抑えることかできず、11000p
を越えると不経済となって好ましくない。
Furthermore, the thickness of the alumina coating layer is 5(1-
10004m is suitable, especially 150-300gm
is optimal. If the film thickness is less than 50 uLm, the diffusion of the highly volatile substance cannot be sufficiently suppressed, and
Exceeding this is uneconomical and undesirable.

前記耐熱無機質繊維は、A立2o、が40〜60重量%
、5i02が、10〜60重量%から成る非晶質のシリ
カ・アルミナ繊維か安価で好ましい、この繊維は通常5
0重量%程度の45トm以上の大きさの非繊維状物を含
有しているので、空気中あるいは水中て分級することに
より1#識雄状物の含有量を0.1〜8重量%に低減さ
せてから利用する必要がある。また、その配合層は20
〜50重量%か好ましい。20重量%未満では軽量化が
充分性なわれず、50重撥%を越えると強度不足となっ
て好ましくない。
The heat-resistant inorganic fiber has A2O content of 40 to 60% by weight.
, 5i02 is preferably an amorphous silica-alumina fiber consisting of 10 to 60% by weight since it is inexpensive.
Since it contains about 0% by weight of non-fibrous materials with a size of 45 tons or more, the content of 1# fibers can be reduced to 0.1 to 8% by weight by classifying in air or water. It is necessary to reduce it to before use. In addition, the blended layer is 20
~50% by weight is preferred. If it is less than 20% by weight, the weight reduction will not be sufficient, and if it exceeds 50% by weight, the strength will be insufficient, which is undesirable.

前記無機結合剤は1〜15重量%配合されることが好ま
しい。1重付%未満ては焼結か充分進行せず強度不足と
なり、15重量%を越えると密度が高くなって耐熱衝撃
性に劣るようになって好ましくない。
The inorganic binder is preferably blended in an amount of 1 to 15% by weight. If it is less than 1% by weight, sintering will not proceed sufficiently and the strength will be insufficient, and if it exceeds 15% by weight, the density will become high and the thermal shock resistance will become poor, which is not preferable.

また、前記耐火性粉末は50〜80重量%配合されるの
か好ましい。50重量%未満だと強度不足となり、80
重量%を越えると密度か高くなって耐熱衝撃性に劣るよ
うになつて好ましくない。
Further, it is preferable that the refractory powder is blended in an amount of 50 to 80% by weight. If it is less than 50% by weight, the strength will be insufficient, and 80%
If it exceeds % by weight, the density becomes high and the thermal shock resistance becomes poor, which is not preferable.

本発明の機能部品焼成用の多孔性耐火成形体は、前記耐
熱無機質繊維と前記耐火性粉末および前記無機結合剤を
従来通り混練するか、水中に分散させてスラリー溶液と
した後、型真空吸引、鋳込成形、抄造等の方法により成
形されるか、好ましくはスラリー溶液とした後、型真空
吸引又は抄造により成形する方法か繊維を均一に分散で
きて好ましいものである。成形後乾燥してから平面研磨
後アルミナコーティングをスプレー、ローラーコート、
へヶ塗り、浸漬等の方法によりコーティングしてから1
500〜1600°Cにて焼成し本発明の多孔性耐火物
を得ることかできる。また、成形後焼成し、その後コー
ティング、焼付けを行なってから最終的に研磨加工を行
なうことによっても未発11の多孔性耐火成形体を得る
ことかできる。
The porous refractory molded body for firing functional parts of the present invention can be prepared by kneading the heat-resistant inorganic fibers, the refractory powder, and the inorganic binder in the conventional manner or dispersing them in water to form a slurry solution, and then vacuuming the mold. The fibers can be uniformly dispersed, and the fibers can be uniformly dispersed by forming the fibers by molding, casting, or paper-making, or preferably by forming into a slurry solution and then molding by mold vacuum suction or paper-making. After molding, dry, polish the surface, spray alumina coating, roller coat,
1 after coating by methods such as hega-coating or dipping
The porous refractory of the present invention can be obtained by firing at 500 to 1600°C. Alternatively, a porous refractory molded product with no heat release 11 can be obtained by firing after molding, coating, baking, and finally polishing.

以下、本発明の実施例について比較例と併わせで説11
する。
Hereinafter, Examples of the present invention will be explained along with Comparative Examples.
do.

(実施例) #熱無a¥1繊維として、水中て分級することにより非
va!l状物の含有量を3重用%に制御したA党、O,
S(1重量%、 S i Oz  50重量%の非品質
のシリカ・アルミナ繊維を、耐火性粉末としてアルミナ
を、さらに無機結合剤として焼成ケイソウ土を配合後1
600℃で1時間焼結させて、かさ密度1.1g/cr
rr’の成形体を得た。この成形体にA fL 20 
s純度が90.95、g9.5%で粒径1gmのアルミ
ナ粉末(残部は5iO2)を1重量%メチルセルロース
水溶液中に分散後、スプレーにて前記成形体表面に吹付
けて種々の厚みのコーティング層を形成せしめ、その後
1600°C″rt時間焼成してコーティング層の焼付
けを行なった。焼付は後IUOssX  1010Os
 5mmの大きさに加工後研磨して表面平滑性を表面粗
度計で調べR11、を測定した。また、前記成形体を1
400 ’Cで24時間再焼成し、焼成後の寸法変化を
ダイヤルゲージで測定して反りについて調べた。さらに
、成形体曲げ強度は、島津製作所製オートグラフて試験
片大きさlO■(輻)x5Gm*(長さ)×5−1 (
厚さ)、スパン長さ30■■、曲げ速度10s*/■i
nで測定した。
(Example) #Non-va by classifying it as a non-thermal a¥1 fiber in water! Party A, O, which controlled the content of l-like substances to 3%
S (1% by weight, SiOz 50% by weight) of non-quality silica-alumina fibers, alumina as a refractory powder, and calcined diatomaceous earth as an inorganic binder.
Sintered at 600℃ for 1 hour, bulk density 1.1g/cr
A molded body of rr' was obtained. This molded body has an A fL of 20
Alumina powder with a purity of 90.95, 9.5%, and a particle size of 1 gm (the remainder is 5iO2) is dispersed in a 1% by weight methylcellulose aqueous solution, and then sprayed onto the surface of the molded body to form coatings of various thicknesses. A layer was formed, and then the coating layer was baked at 1600°C''rt.The baking was done after IUOssX 1010Os
After processing and polishing to a size of 5 mm, the surface smoothness was examined using a surface roughness meter and R11 was measured. In addition, the molded body was
It was refired at 400'C for 24 hours, and dimensional changes after firing were measured with a dial gauge to examine warpage. Furthermore, the bending strength of the molded body was determined using an autograph manufactured by Shimadzu Corporation with the test piece size lO (radius) x 5 Gm * (length) x 5-1 (
thickness), span length 30■■, bending speed 10s*/■i
Measured at n.

被焼成物として、マンガン−亜鉛フェライトを取りLげ
、前記成形体のコーテイング面に載せ1200°Cて3
時間焼成し、この操作を10回繰返し、被焼成物の反り
と反応とについて調べた。そして・測定結果を第1衷に
示した。
Manganese-zinc ferrite was taken as the object to be fired, and placed on the coating surface of the molded body at 1200°C for 3 hours.
This operation was repeated 10 times, and the warp and reaction of the fired product were examined. And the measurement results are shown in the first page.

実施例1〜4は本発明による場合のものでいずれも良好
な結果を示した。比較例1および2はコーティングを形
成する粉末中のアルミナ比が小さく、比較例3はアルミ
ナ粉のA l t O’x線純度低く、また比較例4は
アルミナコーティングのない場合を、比較例5と6は、
膜厚か好適てなく、フェライト焼成時の反りや反応を防
1ヒすることかてきなかった。
Examples 1 to 4 were based on the present invention and all showed good results. Comparative Examples 1 and 2 have a low alumina ratio in the powder forming the coating, Comparative Example 3 has a low Al t O' x-ray purity of the alumina powder, Comparative Example 4 has no alumina coating, Comparative Example 5 and 6 are
The film thickness was not suitable, and it was not possible to prevent warping and reactions during ferrite firing.

次に、本発明による多孔性耐火物を敷板として、部品化
ガラス基板の焼成に用い反応性について調べた。
Next, the porous refractory according to the present invention was used as a base plate for firing a glass substrate component, and its reactivity was investigated.

害】D1互 非繊維状物を3重t・%含有しA又t O350@−屋
%、Si0□50重量%とから成る非晶質のシリカ・ア
ルミナM&維20ffi!部、アルミナ粉末70重醗部
および焼成ケイソウ上10重量部とを木コ0交中に分P
!1.後、ポリアクリルアミドと凝集剤を加えてから真
空吸引して乾燥後180履膳X 180m■x 15t
の生成形体を得た。この生成形体を1600℃1時間焼
成後lsQmm X 1li(1重態×10tの大きさ
に切り出し研磨した。焼成後成形体表面に、 Ant 
Oユ純度99.5%のアルミナ粉末1110重量部に対
して、1毛量%メチルセルロース水溶液100重ffc
部とを加えて反したコーテイング液を吹付け、乾燥後1
600°C1時間焼成してコーティング層の焼付けを行
なった。
Harm] Amorphous silica/alumina M&fiber 20ffi containing D1 mutually non-fibrous material at 3% by weight, A or t O350@-ya%, and Si0□50% by weight! 1 part, 70 parts by weight of alumina powder and 10 parts by weight of calcined diatomaceous powder were mixed in 0 parts by weight of wood.
! 1. After that, add polyacrylamide and a flocculant, vacuum suction and dry. 180 m x 15 t.
The resulting shape was obtained. After firing this formed body at 1600°C for 1 hour, it was cut and polished into a size of lsQmm x 1li (single state x 10t).Ant
For 1110 parts by weight of alumina powder with a purity of 99.5%, 100 parts by weight of a 1% methyl cellulose solution
Spray the coating solution by adding 100% and 100% after drying.
The coating layer was baked at 600°C for 1 hour.

コーテイング面は研削研石で研磨して表面粗度R14、
かZO終mの敷板とした。この敷板の密度は1.2g/
cm’、曲げ強度L6[1kg/crn’、コーティン
グ膜厚2QOgmであった。この敷板に約120gの結
晶化ガラス7、II’板を載せて1300℃2時間焼成
し、この操作を10回繰返して敷板および結晶化ガラス
基板の反りを調べた。その結果は、結晶化ガラス基板と
敷板との反応、敷板のワレや反り等の問題もなく良好な
結果を示した。また、敷板の蓄熱量か少なくなり、急熱
急冷に耐えるようになり生産速度を約2倍とすることが
できた。
The coating surface is polished with a grinding stone to a surface roughness of R14.
It was made into a bottom plate of ZO end m. The density of this board is 1.2g/
cm', bending strength L6 [1 kg/crn', and coating thickness 2QOgm. About 120 g of crystallized glass 7, II' plate was placed on this base plate and fired at 1300°C for 2 hours, and this operation was repeated 10 times to examine warpage of the base plate and crystallized glass substrate. The results showed good results, with no problems such as reactions between the crystallized glass substrate and the bottom plate, cracking or warping of the bottom plate, etc. In addition, the amount of heat stored in the floor plate was reduced, making it resistant to rapid heating and cooling, making it possible to approximately double the production speed.

(発明の効果) 以上のように、本発明によれば以下に示すような効果が
得られる。
(Effects of the Invention) As described above, according to the present invention, the following effects can be obtained.

(1)セラミック機能部品焼成時の生産性を向上できる
(1) Productivity during firing of ceramic functional parts can be improved.

(2)機能部品の変形かなくなり、後加工を省略てきコ
ストを低減出来る。
(2) There is no deformation of functional parts, and post-processing can be omitted, reducing costs.

(3)機能部品と焼成治具の反応か抑えられ、製品歩留
りか向上する。
(3) Reactions between functional parts and firing jigs are suppressed, improving product yield.

(4)焼成治具の粉化を防ぎ、作業環境の改善および高
精度・高純度セラミックを焼成できる。
(4) Prevents pulverization of the firing jig, improves the working environment, and allows firing of high-precision, high-purity ceramics.

Claims (1)

【特許請求の範囲】[Claims] (1)実質的に耐熱無機質繊維と無機結合剤および耐火
性粉末からなる組成物を焼結して成形してなるセラミッ
ク・ガラス・金属酸化物などの機能性部品焼成用多孔性
耐火成形体において、前記成形体の密度が0.6〜1.
5g/cm^2、常温における曲げ強度が120〜30
0kg/cm^2であって、前記機能部品を積載する面
はその表面粗度R_m_a_xが2〜40μmであり、
かつAl_2O_3純度95〜100%のアルミナ粉末
からなる膜厚50〜1000μmのアルミナコーティン
グが施されていることを特徴とする機能部品焼成用の多
孔性耐火成形体。
(1) In porous refractory molded bodies for firing functional parts such as ceramics, glasses, and metal oxides, which are formed by sintering and molding a composition consisting essentially of heat-resistant inorganic fibers, inorganic binders, and refractory powders. , the density of the molded body is 0.6 to 1.
5g/cm^2, bending strength at room temperature 120-30
0 kg/cm^2, and the surface on which the functional parts are loaded has a surface roughness R_m_a_x of 2 to 40 μm,
A porous refractory molded body for firing functional parts, characterized in that it is coated with an alumina coating having a thickness of 50 to 1000 μm and made of alumina powder with an Al_2O_3 purity of 95 to 100%.
JP61127054A 1986-05-31 1986-05-31 Porous refractory molding for firing functional parts Expired - Lifetime JPH0798707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127054A JPH0798707B2 (en) 1986-05-31 1986-05-31 Porous refractory molding for firing functional parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127054A JPH0798707B2 (en) 1986-05-31 1986-05-31 Porous refractory molding for firing functional parts

Publications (2)

Publication Number Publication Date
JPS62283885A true JPS62283885A (en) 1987-12-09
JPH0798707B2 JPH0798707B2 (en) 1995-10-25

Family

ID=14950459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127054A Expired - Lifetime JPH0798707B2 (en) 1986-05-31 1986-05-31 Porous refractory molding for firing functional parts

Country Status (1)

Country Link
JP (1) JPH0798707B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183462A (en) * 1988-01-14 1989-07-21 Murata Mfg Co Ltd Calcination of mn-zn ferrite
JPH0292879A (en) * 1988-09-30 1990-04-03 Toshiba Ceramics Co Ltd Ceramic porous body having smooth surface and production thereof
EP0363911A2 (en) * 1988-10-11 1990-04-18 Nichias Corporation Refractories for use in firing ceramics
US5244727A (en) * 1988-10-11 1993-09-14 Nichias Corporation Refractories for use in firing ceramics
JP2002114537A (en) * 2000-10-04 2002-04-16 Nippon Electric Glass Co Ltd Setter for heat treatment of glass substrate
JP2009298697A (en) * 2009-08-12 2009-12-24 Nippon Electric Glass Co Ltd Setter for heat treatment of glass substrate
JP2011042519A (en) * 2009-08-20 2011-03-03 Isolite Insulating Products Co Ltd Ceramic setter for electronic component firing, and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936705A (en) * 1972-08-10 1974-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936705A (en) * 1972-08-10 1974-04-05

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183462A (en) * 1988-01-14 1989-07-21 Murata Mfg Co Ltd Calcination of mn-zn ferrite
JPH0536381B2 (en) * 1988-01-14 1993-05-28 Murata Manufacturing Co
JPH0292879A (en) * 1988-09-30 1990-04-03 Toshiba Ceramics Co Ltd Ceramic porous body having smooth surface and production thereof
EP0363911A2 (en) * 1988-10-11 1990-04-18 Nichias Corporation Refractories for use in firing ceramics
US5244727A (en) * 1988-10-11 1993-09-14 Nichias Corporation Refractories for use in firing ceramics
JP2002114537A (en) * 2000-10-04 2002-04-16 Nippon Electric Glass Co Ltd Setter for heat treatment of glass substrate
JP2009298697A (en) * 2009-08-12 2009-12-24 Nippon Electric Glass Co Ltd Setter for heat treatment of glass substrate
JP2011042519A (en) * 2009-08-20 2011-03-03 Isolite Insulating Products Co Ltd Ceramic setter for electronic component firing, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0798707B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JPS63206367A (en) Lightweight refractories and manufacture
KR900003087B1 (en) Two layered refractory plate
EP0395203B1 (en) Refractory supports
JPS62283885A (en) Porous refractory formed body for burning functional parts
US5336453A (en) Method for producing ceramic-based electronic components
KR0153905B1 (en) Materials of tools usale for burning
JPH0572341B2 (en)
JP4298236B2 (en) Manufacturing method for ceramic electronic component firing setter
EP0363911B1 (en) Refractories for use in firing ceramics
JPS61201679A (en) Lightweight heat resistant tray and manufacture
JPS62216974A (en) Porous refractories
JPH0319194B2 (en)
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPS62275078A (en) Porous refractories for burning functional parts
JPH0225686A (en) Heat insulating material for heating furnace
JP2000159569A (en) Multi-layered structure refractory for sintering ceramic
JP2511061B2 (en) Alumina refractory manufacturing method
US5244727A (en) Refractories for use in firing ceramics
JPS62191485A (en) Porous refractories
JPS629181A (en) Light-weight heat-resistant tray for baking ceramics and manufacture thereof
JPH04302992A (en) Refractory material for burning ceramics
JP3429551B2 (en) Setter
JP2593663B2 (en) Jig for firing electronic components
JPS63112477A (en) Heat resistant inorganic fiber formed body
JPH0269381A (en) Jig for calcining electronic parts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term