JPS61201679A - Lightweight heat resistant tray and manufacture - Google Patents

Lightweight heat resistant tray and manufacture

Info

Publication number
JPS61201679A
JPS61201679A JP60043017A JP4301785A JPS61201679A JP S61201679 A JPS61201679 A JP S61201679A JP 60043017 A JP60043017 A JP 60043017A JP 4301785 A JP4301785 A JP 4301785A JP S61201679 A JPS61201679 A JP S61201679A
Authority
JP
Japan
Prior art keywords
weight
silica
alumina
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043017A
Other languages
Japanese (ja)
Inventor
桐山 光明
早川 正臣
宮下 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60043017A priority Critical patent/JPS61201679A/en
Publication of JPS61201679A publication Critical patent/JPS61201679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス、ガラス、各種金属酸化物の薄板
状成形物の焼成用の軽量耐熱トレイに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lightweight heat-resistant tray for firing thin plate-like molded products of ceramics, glass, and various metal oxides.

〔従来の技術〕[Conventional technology]

最近の情報、エレクトロニクス産業において、センサー
、コンデンサー、IC基板等の機能部品はセラミック化
へ移行している。中でもアルミナ質、窒化硅素等のファ
インセラミックやチタン酸バリウム等の誘電素子や、鉄
、バリウム又はストロンチウム等の複合酸化物の磁性体
等が有望視されている。これらのセラミックおよび、金
属酸化物は、電気絶縁性、半導性、耐熱性、耐摩耗性高
強度、高磁力性の性質にすぐれ、今後ますます、用途は
拡大されつつある。これらの機能部品は原料混合後、押
し出し成形法、射出成形法、鋳込成形方法、プレス成形
方法等により各種形状に成形された後、焼成トレイに載
せて、焼成され製品化される。この焼成トレイは、ムラ
イト質、アルミナ質、ジルコニヤ質、コージェライト質
、炭化硅素質およびシリカ質の耐火物が使用されている
In recent information, in the electronics industry, functional parts such as sensors, capacitors, and IC boards are transitioning to ceramics. Among them, fine ceramics such as alumina and silicon nitride, dielectric elements such as barium titanate, and magnetic materials such as composite oxides such as iron, barium, or strontium are considered promising. These ceramics and metal oxides have excellent properties such as electrical insulation, semiconductivity, heat resistance, wear resistance, high strength, and high magnetic force, and their uses will continue to expand in the future. After mixing raw materials, these functional parts are molded into various shapes by extrusion molding, injection molding, cast molding, press molding, etc., and then placed on a firing tray and fired to become a product. This firing tray uses mullite, alumina, zirconia, cordierite, silicon carbide, and silica refractories.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、前記セラミックス等の機能部品の焼成用トレイは
いずれも、プレス等の方法で成形され、さらに高温で焼
成されたものである。しかしながら、従来使用されてい
る焼成用トレイはカサ密度が高いため、そのもの自体を
加熱するのに多量のエネルギーが必要である事、また重
いことから多段に積んで焼成する場合、積み重ねるのに
限界があった。また炉内において上段と下段では温度分
布を均一にすることが困難であった。さらに焼成スピー
ドを上げるとか、冷熱サイクルを速くすると、焼成用ト
レイが割れたりして、生産性が悪かった。さらに焼成ゾ
ーンを小さくして熱効率を高めるため、焼成用トレイの
占る体積を小さくしようと思っても、従来の焼成用トレ
イではソリ等の問題のため、ある一定の厚み以下では製
造出来なかった。これに対して、セラミックファイバー
等の耐熱無機質繊維と無機バインダー(例えばシリカゾ
ル、粘土、セビオライ)等) 全大量の水でスラリー状
となし湿式抄造法により成形し軽量な成形品が知られて
いる。しかしながらこの成形品は表面の平滑性がないば
かりか、無機バインダーが耐熱無機質繊維の格子間に充
填されているにすが脱落して粉化するため、精度のよい
セラミックスを焼成するトレイとしては不適であった。
Conventionally, all of the trays for firing functional parts such as ceramics are formed by a method such as pressing, and then fired at a high temperature. However, conventionally used baking trays have a high bulk density, so a large amount of energy is required to heat them, and they are also heavy, so there is a limit to stacking them when baking in multiple stages. there were. Furthermore, it was difficult to make the temperature distribution uniform between the upper and lower stages in the furnace. Furthermore, if the firing speed was increased or the cooling/heating cycle was increased, the firing tray would crack, resulting in poor productivity. Furthermore, even if we tried to reduce the volume occupied by the baking tray in order to increase thermal efficiency by making the baking zone smaller, conventional baking trays could not be manufactured below a certain thickness due to problems such as warping. . On the other hand, lightweight molded products are known that are made by making a slurry of heat-resistant inorganic fibers such as ceramic fibers and an inorganic binder (for example, silica sol, clay, Sevioly, etc.) and a large amount of water and molding them using a wet papermaking method. However, this molded product does not have a smooth surface, and although the inorganic binder is filled between the lattices of the heat-resistant inorganic fibers, it falls off and becomes powder, making it unsuitable for use as a tray for firing precision ceramics. Met.

以上のように従来の耐熱焼成用トレイはエネルギーコス
トや消耗品コストが製品に対して大きなつエイトを占め
るばかシでなく、精密なセラミックスの焼成用としては
不適であった。
As described above, conventional heat-resistant firing trays are not unsuitable for firing precision ceramics because their energy costs and consumables costs account for a large portion of the product cost.

本発明はこれらの欠点を解決すべく、省エネμギータイ
プの軽量でかつごく薄いしかも熱変化に対して優れた精
密セラミックス焼成用の軽墓耐熱トレイを提供すること
を目的とする。
SUMMARY OF THE INVENTION In order to solve these drawbacks, it is an object of the present invention to provide a lightweight heat-resistant tray for firing precision ceramics that is energy-saving, lightweight, extremely thin, and excellent against thermal changes.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明の軽量耐熱トレイは実質的に耐熱無機質繊維を3
5〜85重量%とアルミナ質、アルミナ−シリカ質、ジ
ルコニア質から選ばれる何れか一種又は2、 種以上の
耐火粉末15〜50重量%とシリカ−ソーダ糸、ホウ酸
力ルシュウム糸、シリカ糸のフリットから選ばれる易焼
結性助剤5〜40重量%からなり、その合計量が100
重量%となる成形板において前記無機質繊維の接点を焼
結結合せしめてなるセラミックス焼成用軽量トレイに関
し、また本発明は耐熱性無機質繊維とアルミナ質、アル
ミナ−シリカ質、ジルコニア質から選ばれる何れか1種
又は2種以上の耐火粉末とシリカ−ソーダ糸、ホウ酸力
pシュウム糸、シリカ系フリットから選ばれる易焼性助
剤と、必要に応じて有機、無機の成形用助剤とを水に分
散し、成形せしめて固形分換算にて耐熱性無機質繊維3
5〜85 重fi%とアルミナ質、アルミナ−シリカ質
The lightweight heat-resistant tray of the present invention substantially contains three heat-resistant inorganic fibers.
5 to 85% by weight, 15 to 50% by weight of one or more refractory powders selected from alumina, alumina-silica, and zirconia, and silica-soda yarn, boric acid yarn, and silica yarn. It consists of 5 to 40% by weight of an easy-sintering aid selected from frit, and the total amount is 100% by weight.
The present invention relates to a lightweight tray for firing ceramics, which is formed by sintering and bonding the contact points of the inorganic fibers in a molded plate with a heat-resistant inorganic fiber and a material selected from alumina, alumina-silica, and zirconia. One or more types of refractory powder, an easy-to-burn auxiliary agent selected from silica-soda yarn, boric acid pneumatic yarn, and silica-based frit, and organic or inorganic molding auxiliary agents as necessary are mixed with water. heat-resistant inorganic fibers in terms of solid content.
5-85 heavy fi%, alumina, alumina-silica.

ジルコニア質から選ばれる何れか1種又は2種以上の耐
火粉末15〜50重量%とシリカ−ソーダ糸、ホウ酸力
ルシュウム糸、シリカ系フリットから選ばれる易焼性助
剤5〜40重it%、及び含水量100〜150重量%
の成形体となし、前記成形体を圧縮して、次いで乾燥し
、1200〜1500℃の温度範囲で焼成することを特
徴とするセラミックス焼成用軽量耐熱トレイの製造方法
に関するものである。
15-50% by weight of one or more types of refractory powder selected from zirconia materials and 5-40% by weight of an easy-to-burn auxiliary agent selected from silica-soda yarn, boric acid lucium yarn, and silica-based frit. , and water content 100-150% by weight
The present invention relates to a method for producing a lightweight heat-resistant tray for firing ceramics, which comprises forming a molded body, compressing the molded body, then drying it, and firing it at a temperature range of 1200 to 1500°C.

0作用 従来耐熱無機質繊維を主体とする成形品は一般にコロイ
ド状ンリカ等の無機結合剤Or/andでんぷん等の有
機結合剤を混合してスラリー状とし、硫酸バンド等の凝
集剤を用いて凝集し抄造方法によυ成形し乾燥して得ら
れる。しかしながら、これらの成形品は不焼成の成形品
のため加熱時に収縮したり、有機結合剤が焼失した場合
強度的に弱くなったり、無機結合剤が焼結されていない
ため、無機質繊維が軟化したり、もしくは焼結する際に
大きな変形を生ずる事がしばしばあった。
0 effect Conventionally, molded products made mainly of heat-resistant inorganic fibers are generally made into a slurry by mixing an inorganic binder such as colloidal phosphoric acid or/and an organic binder such as starch, and then agglomerated using a flocculant such as sulfuric acid. It is obtained by molding and drying using the papermaking method. However, since these molded products are unfired molded products, they may shrink when heated, become weaker if the organic binder is burnt out, and because the inorganic binder is not sintered, the inorganic fibers may soften. Large deformations often occurred during sintering or sintering.

そこで本発明者らは従来使用されている無機質耐熱繊維
を無機結合剤を用いて、その接合部を焼結結合させる方
法を検討した結果、あらかじめ、1200℃〜1500
℃の温度で焼成することKよって、従来得られなかった
耐熱性があ夛軽量で高強度のセラミックス焼成用のトレ
イが得られる事が判った。以下にその方法について詳細
に説明する。
Therefore, the present inventors investigated a method of sintering and bonding the joints of conventionally used inorganic heat-resistant fibers using an inorganic binder.
It has been found that by firing at a temperature of 0.degree. C., it is possible to obtain a tray for firing ceramics that is extremely lightweight and has a high strength and heat resistance that was previously unobtainable. The method will be explained in detail below.

本発明に使用される耐熱無機質繊維はシリカ・アルミナ
ファイバ(以下CFと略す)、アルミナ結晶質繊維(以
下AFと略す)、ムライト質結晶化繊維(以下MFと略
す)等の少なくとも一種が有効である。ただしこれらの
耐熱無機質繊維中の非繊維物は成形品の表面の平滑性を
なくすばかシでなく重量的に重くなるため、本発明の軽
量耐熱トレイを得るためには20重量%以下にする必要
がある。これらの耐熱無機質繊維は本発明の軽量耐熱ト
レイの主要構造体であることから少なくとも35〜85
重量%が必要で望ましくは40〜60重量%が好適に選
ばれる。
At least one type of heat-resistant inorganic fiber used in the present invention is effective, such as silica-alumina fiber (hereinafter abbreviated as CF), alumina crystalline fiber (hereinafter abbreviated as AF), mullite crystallized fiber (hereinafter abbreviated as MF), etc. be. However, the non-fibrous materials in these heat-resistant inorganic fibers do not only reduce the smoothness of the surface of the molded product, but also add weight, so in order to obtain the lightweight heat-resistant tray of the present invention, the content must be 20% by weight or less. There is. Since these heat-resistant inorganic fibers are the main structure of the lightweight heat-resistant tray of the present invention, the fibers are at least 35 to 85
% by weight is necessary, and preferably 40 to 60% by weight is suitably selected.

もし35重量%未溝の場合、相対的に無機結合剤が多く
なり重量が重くなるし、割れやすくなってしまう。反対
に85重量%を越えると、繊維の接点を焼結結合する割
合が少なくなり、軽くはなるが強度的に小さく、変形も
発生する。
If 35% by weight is ungrooved, the amount of inorganic binder will be relatively large, making it heavier and more likely to break. On the other hand, if it exceeds 85% by weight, the ratio of sintering and bonding the contact points of the fibers will decrease, and although the weight will be reduced, the strength will be low and deformation will occur.

また本発明の無機結合剤はシリカ・アルミナ系又はアル
ミア質、ジルコニア質の粘土、カオリン、アルミナ、ジ
ルコニア等の耐火粉末と、長石、ホウ酸。
In addition, the inorganic binder of the present invention is a refractory powder such as silica/alumina-based or alumia-based or zirconia-based clay, kaolin, alumina, or zirconia, feldspar, or boric acid.

石灰石、ベタライト、ガラス粉、畦面等の易焼性助剤の
少なくとも1種類以上を組み合わせて使用することもで
きる。これらの無機結合剤はあらかじめ所定の温度で焼
結する配合に混合された後、ボー!レミル等の粉砕機で
およそ50μm以下まで、粉砕して使用する。これによ
って耐熱無機質繊維の接合部分を確実に焼結結合出来る
It is also possible to use a combination of at least one kind of easy-to-burn auxiliary agents such as limestone, betalite, glass powder, and ridges. These inorganic binders are mixed in advance into a formulation that sinters at a predetermined temperature, and then the Bo! It is used after being ground to approximately 50 μm or less using a grinder such as Remill. As a result, the bonded portions of the heat-resistant inorganic fibers can be reliably sintered and bonded.

前記耐熱無機質繊維と無機バインダーは従来通シ混練す
るか、スラリー液にして吸引成形、流し込み成形 抄造
成形等の方法によりシート化されるが、好ましくはスラ
リー液を作成し抄造によりシート化する方法が望ましい
The heat-resistant inorganic fiber and the inorganic binder are conventionally kneaded or made into a slurry liquid and formed into a sheet by suction molding, pour molding, paper forming, etc., but preferably, a method of preparing a slurry liquid and forming it into a sheet by paper forming is preferable. desirable.

前記無機質繊維と無機結合剤からなる組成物を抄造する
際にその歩留を向上させるため、一般的なポリアクリル
アミド糸、もしくは多価塩基性アルミ等の凝集剤を添加
する。また室温におけるハンドリング強度を向上するた
め一般の有機バインダー例えばでんぷん、ラテックス等
が好適であり、さらに有機質繊維例えばパルプ、麻等を
用いる事も出来る。さらに混線物を作成する場合はCM
C、アルギン酸ソーダ等の増粘剤を少量添加する事も出
来る。
In order to improve the yield when forming a composition comprising the inorganic fibers and an inorganic binder, a flocculant such as general polyacrylamide thread or polybasic aluminum is added. Further, in order to improve the handling strength at room temperature, general organic binders such as starch and latex are suitable, and organic fibers such as pulp and hemp can also be used. If you want to create more interference, CM
It is also possible to add a small amount of a thickener such as C or sodium alginate.

上記組成物は油圧シリンダーを持つ平板フ”レスにより
およそ30〜6096圧縮するプレス成形法により、成
形され、乾燥後0.4〜1.0〜のカサ密度を持つ成形
体とする。この成形体を発熱体もしくはバーナーを具備
した加熱炉内で1200〜1500℃の温度で2時間以
上焼成して、冷却後本発明の軽量耐熱トレイを得る事が
出来る。なお焼成温度は無機結合剤の配合割合によって
任意に変える事が出来るが、実際セラミックス焼成用と
して使用する温度から考えて少なくとも1200tr以
上が必要であシ、望ましくは1400〜1500℃の焼
成温度が経済的にも好適である。
The above composition is molded by a press molding method in which compression is approximately 30 to 6096 degrees using a flat plate having a hydraulic cylinder, and after drying, the molded product has a bulk density of 0.4 to 1.0. The light weight heat-resistant tray of the present invention can be obtained by baking at a temperature of 1200 to 1500°C for 2 hours or more in a heating furnace equipped with a heating element or burner, and after cooling.The baking temperature depends on the blending ratio of the inorganic binder. Although it can be changed arbitrarily, considering the temperature actually used for firing ceramics, at least 1200 tr or more is required, and preferably a firing temperature of 1400 to 1500° C. is economically suitable.

以下来施例にて本発明の軽量耐熱トレイを詳細に説明す
る。
The lightweight heat-resistant tray of the present invention will be explained in detail in the following examples.

〔実施例〕〔Example〕

実施例1 焼成アルミナ粉2251とホウ酸カルシウム40J’を
混合し、市販のボールミル して、JISZ−8801に規定の標準ふるい250メ
ツシユを通過したものを無機結合剤とした。この無機結
合剤にAFを4001とアク二μニトリルゲタジエンラ
テックス(42 96溶液)30mlとを20ノの水中
にて混合攪拌した。次いで硫酸バンド(10%溶液)2
4。
Example 1 Calcined alumina powder 2251 and calcium borate 40J' were mixed and passed through a commercially available ball mill to pass through a 250-mesh standard sieve specified in JIS Z-8801, and this was used as an inorganic binder. To this inorganic binder, AF 4001 and 30 ml of acinitrile getadiene latex (4296 solution) were mixed and stirred in 20 μm of water. Then sulfuric acid band (10% solution) 2
4.

屑lを添加して、スラリー状の混合液とした。このスラ
リー液を35X40αの角型の抄造機へ移しナツシュポ
ンプで余剰の水を脱水して厚さおよそ10g111の成
形板を得た。この成形板を油圧式の平板プレスに挿入し
て20麹の圧力でプレスして厚さ6JIBの成形体とし
た。その成形体め乾燥後のカサ密度は0.80〜であっ
た。この成形体の表面を研磨後1400℃の炉内で24
時間焼成を行った。得られた成形体の諸物性は第1表に
示すとおりであった。      ゛実施例2 焼成アルミナ300ノとカオリン185J’、ガラスフ
リ、)115/からなる混合物を実施例1と同様な方法
で粉砕選別して、無機結合剤とした。これとは別にあら
かじめ水洗により非繊維物含有量を1896に処理した
、CF4001とカチオン化でんぷん(2096溶液)
40a/と全20ノの水中へ混合し攪拌した。次いでポ
リアクリルアミド系凝集剤(0,5%溶液)を投入し凝
集させてスラリー状混合液とした。このスラリー状液を
実施例1と同様な手順で抄造−プレスをして厚さ6mの
成形体を得た。この成形体を表面ケン磨後1300℃の
炉内で24時間焼成を行った。得られた成形体の諸物性
は第1表に示すとおりであった。
A slurry-like mixture was prepared by adding 1 liter of waste. This slurry liquid was transferred to a 35×40α rectangular paper making machine, and excess water was removed using a nutsch pump to obtain a molded plate with a thickness of about 10 g111. This molded plate was inserted into a hydraulic flat plate press and pressed at a pressure of 20 koji to form a molded product with a thickness of 6 JIB. The bulk density of the molded product after drying was 0.80 to 0.80. After polishing the surface of this molded body, it was placed in a furnace at 1400°C for 24 hours.
Time firing was performed. The physical properties of the obtained molded product were as shown in Table 1. Example 2 A mixture of calcined alumina 300, kaolin 185J', glass free, ) 115/ was pulverized and sorted in the same manner as in Example 1 to obtain an inorganic binder. Separately, CF4001 and cationized starch (2096 solution) were previously washed with water to reduce the non-fibrous content to 1896.
The mixture was mixed into a total of 20 μm of water and stirred. Next, a polyacrylamide flocculant (0.5% solution) was added and flocculated to form a slurry mixture. This slurry liquid was paper-formed and pressed in the same manner as in Example 1 to obtain a molded article with a thickness of 6 m. After the surface of this molded body was polished, it was fired in a furnace at 1300° C. for 24 hours. The physical properties of the obtained molded product were as shown in Table 1.

実施例3 実施例1と同様に無機バインダーをカオリン110り、
石英607’、ソーダ長石95/の混合物の粉砕品とし
てAF 200 J’と実施例2で使用したCF200
pとスナレンブタジエンゴムラテックス(固形分42%
)30’l/とを20!の水中にて混合攪拌した。つい
でポリアクリルレアミド浴M(1596g液)80a/
、!:硫酸アルミニウム溶液(10%溶液)を200m
添加してスラリー状の混合液とした。このスラリー状液
から実施例1と同様な手順で抄造−プレスをして厚さ5
mの成形体を得た。この成形体へ表面研磨後1350℃
の炉内で24時間焼成を行った。得られた成形体の諸物
性は第1表に示すとおりであった。
Example 3 Similar to Example 1, the inorganic binder was kaolin 110,
AF 200 J' as a crushed product of a mixture of quartz 607' and soda feldspar 95/CF200 used in Example 2
P and snalene butadiene rubber latex (solid content 42%
) 30'l/and 20! The mixture was mixed and stirred in water. Then polyacrylamide bath M (1596g liquid) 80a/
,! :200m of aluminum sulfate solution (10% solution)
The mixture was added to form a slurry-like mixture. From this slurry liquid, paper was made and pressed in the same manner as in Example 1 to obtain a thickness of 5.
A molded body of m was obtained. 1350℃ after surface polishing to this molded body
Firing was performed in a furnace for 24 hours. The physical properties of the obtained molded product were as shown in Table 1.

実施例4 実施例1と同様に無機結合剤として焼成アルミナ微粉2
00 J’、木節粘土120P、ホウ酸力ルシュウム8
0ノの混合物の粉砕品とMF400/とカチオン化でん
ぷん(2051[)40d1r2(lの水中へ混合し撹
拌した。
Example 4 Calcined alumina fine powder 2 was used as an inorganic binder in the same manner as in Example 1.
00 J', Kibushi clay 120P, boric acid lucium 8
The pulverized mixture of MF400 and cationized starch (2051) was mixed into 40d1r2 (l) of water and stirred.

次いでポリアクリlレアミド系凝集剤180d(0,5
96溶液)を添加して、スラリー混合液となし、実施例
1と同様な手順で抄造プレスを行い厚さ6鵡の成形体と
した。この成形体を1400℃の炉内で10時間焼成後
の諸物性は第1表に示すとおシであった。
Next, polyacrylamide flocculant 180d (0,5
96 solution) to form a slurry mixture, and the same procedure as in Example 1 was carried out to form a molded product with a thickness of 6 mm. The physical properties of this molded body after firing in a furnace at 1400° C. for 10 hours were as shown in Table 1.

実施例5 実施例1と同様に無機結合剤としてカオリン75J’、
モンモリロナイト10P1ホウ酸カルシウム357’の
混合粉砕したものを使用して、実施例2と同様にして得
られた、CF4001とニトリルブタジェンラテックス
(4296溶液)を30dとを20!の水中に分散させ
て混合攪拌した。次いで硫酸アルミニウム(109if
n液)を240m1を添加してスラリー状液となした後
、実施例1と同様な手順で6mの成形体を得た。この成
形体を1350℃の炉内で焼成した後に第1表に示すよ
うな物性の成形体を得た。
Example 5 Similar to Example 1, kaolin 75J' was used as an inorganic binder,
CF4001 and 30d of nitrile butadiene latex (4296 solution) obtained in the same manner as in Example 2 using a mixed and pulverized mixture of montmorillonite 10P1 calcium borate 357' and 20! The mixture was dispersed in water and mixed and stirred. Then aluminum sulfate (109if
After adding 240 ml of liquid n) to form a slurry liquid, a 6 m molded body was obtained in the same manner as in Example 1. After firing this molded body in a furnace at 1350°C, a molded body having physical properties as shown in Table 1 was obtained.

〔比較例1〕 焼成アルミナ微粉13重量%、カオリン48重量%、滑
石39重量%からなる混合物2りにメチルセルロース粉
20J’および水120J’を添加して土練機にかけて
十分混練する。このようにして得られた混練物をセラコ
ラであらかじめ作られた型の中へ移し、プレス成形をお
こない乾燥後厚さiomの成形品を得た。
[Comparative Example 1] 20 J' of methylcellulose powder and 120 J' of water were added to a mixture 2 consisting of 13% by weight of calcined alumina fine powder, 48% by weight of kaolin, and 39% by weight of talc, and thoroughly kneaded in a clay kneader. The kneaded product thus obtained was transferred into a mold previously made with Ceracola and press-molded to obtain a molded product having a thickness of iom after drying.

この成形品を1350℃の炉内で24 hr加熱して室
温まで十分除冷して焼成用トレイを得た。このようにし
て得られた成形品の諸物性は第1表に示すとおりであっ
た。
This molded product was heated in a furnace at 1350° C. for 24 hours and then slowly cooled to room temperature to obtain a baking tray. The physical properties of the molded article thus obtained were as shown in Table 1.

第1表 第2表 〔発明の効果〕 以上のように実施例1で得られた、軽量耐熱トレイの表
面に酸化ジルコニアを主体とするコーティングを施した
トレイと比較例1で得られたトレイを用いてチタン酸パ
リワムを主成分として若干の有機バインダーを添加して
ホットプレスによって成形された電子用セラミックス部
品を炉内温度1350℃の電気炉にて10時間焼成した
。その結果を第2表に示す。
Table 1 Table 2 [Effects of the Invention] As described above, the tray obtained in Example 1, in which the surface of the lightweight heat-resistant tray was coated mainly with zirconia oxide, and the tray obtained in Comparative Example 1 were compared. An electronic ceramic part formed by hot pressing with Pariwam titanate as the main component and a small amount of organic binder added thereto was fired for 10 hours in an electric furnace with an internal furnace temperature of 1350°C. The results are shown in Table 2.

同様にアルミナ粉末に若干のマグネシャならびに有機結
合剤等をに≦加してなる泥漿よりドクタープレイド法に
よって成形されたアルミナ基板を炉内温度1400℃の
電気炉にて12時間焼成した。その結果を第2表に示す
。この結果、従来の耐熱トレイに比較して、軽量化によ
り1回当りの焼成量は3.3倍〜1.4倍と増える。さ
らにトレイ自体の持ち出す熱量はおよそ%となり省エネ
ルギーにも効果があり、トレイ1枚当りおよそ1.1〜
2゜8倍も製品が出来る事から消耗品としてのコストダ
ウンがはかれるものである。
Similarly, an alumina substrate formed from a slurry made by adding a small amount of magnesia and an organic binder to alumina powder by the Doctor Plaid method was fired for 12 hours in an electric furnace at an internal temperature of 1400°C. The results are shown in Table 2. As a result, compared to conventional heat-resistant trays, the weight reduction increases the amount of baking per batch by 3.3 to 1.4 times. Furthermore, the amount of heat taken out by the tray itself is approximately 1.1%, which is effective for energy saving, and is approximately 1.1% per tray.
Since the product can be made 2.8 times as large, it is possible to reduce costs as a consumable item.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の耐熱繊維成形板の繊維と結合剤との混合
状態を示す模式図、第2図は本発明の耐熱トレイの成形
板の繊維と結合剤との結合状態を示す模式図である。 1・・・・・・耐熱無機質繊維
FIG. 1 is a schematic diagram showing the mixing state of the fibers and binder in a conventional heat-resistant fiber molded board, and FIG. 2 is a schematic diagram showing the bonding state of the fibers and binder in the molded board of the heat-resistant tray of the present invention. be. 1...Heat-resistant inorganic fiber

Claims (1)

【特許請求の範囲】 1、実質的に耐熱無機質繊維35〜85重量%とアルミ
ナ質、アルミナ−シリカ質、ジルコニア質から選ばれる
何れか1種又は2種以上の耐火粉末15〜50重量%と
シリカ・ソーダ系、ホウ酸カルシューム糸、シリカ糸の
フリットから選ばれる易焼結性助剤5〜40重量%から
なり、その合計量が100重量%となる成形板において
前記無機質繊維の接点を焼結結合せしめてなるセラミッ
クス焼成用軽量トレイ。 2、耐熱性無機質繊維とアルミナ質、アルミナ−シリカ
質、ジルコニア質から選ばれる何れか1種又は2種以上
の耐火粉末とシリカ−ソーダ系、ホウ酸カルシューム系
、シリカ系フリットから選ばれる易焼性助剤と、必要に
応じて、有機、無機の成形用助剤とを水に分散し、成形
せしめて固形分換算にて耐熱性無機質繊維35〜85重
量%と、アルミナ質、アルミナ−シリカ質、ジルコニア
質から、選ばれる何れか1種又2種以上の耐火粉末15
〜50重量%とシリカ−ソーダ系、ホウ酸カルシューム
系、シリカ系フリットから選ばれる易焼性助剤5〜40
重量%、及び含水量100〜150重量%の成形体とな
し、前記成形体を圧縮し、次いで乾燥し、1200〜1
500℃の温度範囲で焼成することを特徴とするセラミ
ックス焼成用軽量耐熱トレイの製造方法。
[Claims] 1. Substantially 35 to 85% by weight of heat-resistant inorganic fibers and 15 to 50% by weight of one or more refractory powders selected from alumina, alumina-silica, and zirconia. The contacts of the inorganic fibers are sintered in a molded plate containing 5 to 40% by weight of an easy-sintering aid selected from silica/soda-based, calcium borate thread, and silica thread frit, and the total amount is 100% by weight. A lightweight tray for firing ceramics made by bonding. 2. Heat-resistant inorganic fibers, one or more refractory powders selected from alumina, alumina-silica, and zirconia, and easy-to-burn frits selected from silica-soda, calcium borate, and silica frits. The auxiliary agent and, if necessary, an organic or inorganic molding auxiliary agent are dispersed in water and molded to form a heat-resistant inorganic fiber of 35 to 85% by weight in terms of solid content, alumina, and alumina-silica. 15. One or more types of refractory powder selected from zirconia and zirconia.
~50% by weight and an easy-to-scorch aid selected from silica-soda, calcium borate, and silica frits 5 to 40% by weight
% by weight, and a water content of 100 to 150% by weight, the molded object was compressed, and then dried, and the moisture content was 100 to 150% by weight.
A method for manufacturing a lightweight heat-resistant tray for firing ceramics, characterized by firing at a temperature range of 500°C.
JP60043017A 1985-03-05 1985-03-05 Lightweight heat resistant tray and manufacture Pending JPS61201679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043017A JPS61201679A (en) 1985-03-05 1985-03-05 Lightweight heat resistant tray and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043017A JPS61201679A (en) 1985-03-05 1985-03-05 Lightweight heat resistant tray and manufacture

Publications (1)

Publication Number Publication Date
JPS61201679A true JPS61201679A (en) 1986-09-06

Family

ID=12652201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043017A Pending JPS61201679A (en) 1985-03-05 1985-03-05 Lightweight heat resistant tray and manufacture

Country Status (1)

Country Link
JP (1) JPS61201679A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113294A (en) * 1986-10-30 1988-05-18 イビデン株式会社 Heat-resistant inorganic fibrous ceramic baked jig
JPS6467262A (en) * 1987-09-07 1989-03-13 Toto Kagaku Kogyo Kk Wire mesh with ceramic heat buffer
JPH0237285A (en) * 1988-07-28 1990-02-07 Tanaka Seishi Kogyo Kk Ceramic firing setter
JPH0625187U (en) * 1991-08-23 1994-04-05 日本電気ホームエレクトロニクス株式会社 Storage container for individual packaging boxes
JP2018095502A (en) * 2016-12-13 2018-06-21 瑞浪市 Manufacturing method of carbon fiber ceramics
KR102408138B1 (en) * 2021-09-14 2022-06-15 주식회사 엔바이오니아 Ceramic Paper and Manufacturing Method Thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113294A (en) * 1986-10-30 1988-05-18 イビデン株式会社 Heat-resistant inorganic fibrous ceramic baked jig
JPS6467262A (en) * 1987-09-07 1989-03-13 Toto Kagaku Kogyo Kk Wire mesh with ceramic heat buffer
JPH0577458B2 (en) * 1987-09-07 1993-10-26 Toto Kagaku Kogyo Kk
JPH0237285A (en) * 1988-07-28 1990-02-07 Tanaka Seishi Kogyo Kk Ceramic firing setter
JPH0625187U (en) * 1991-08-23 1994-04-05 日本電気ホームエレクトロニクス株式会社 Storage container for individual packaging boxes
JP2018095502A (en) * 2016-12-13 2018-06-21 瑞浪市 Manufacturing method of carbon fiber ceramics
KR102408138B1 (en) * 2021-09-14 2022-06-15 주식회사 엔바이오니아 Ceramic Paper and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
CN100503507C (en) Low temperature sintered 99 aluminium oxide ceramic and its production method and use
CN102757244B (en) Corundum-mullite zircon fire-proofing material and preparation method thereof
CN106145976B (en) Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof
JPH0465030B2 (en)
EP0784036A1 (en) Process for producing body of whiteware with high strength and excellent thermal impact resistance
CN1303834A (en) Corundum-mullite product
CN108298963A (en) A kind of high temperature corundum-mullite refractory slab and preparation method thereof
EP0395203B1 (en) Refractory supports
CN108585902A (en) A kind of reinforcing refractory brick of pressure resistance anticracking
JPS63224937A (en) Double layer structure heat-resistant plate
WO2022100560A1 (en) Full-fiber burner tile and manufacturing method therefor
JPS61201679A (en) Lightweight heat resistant tray and manufacture
CN115259833B (en) Ceramic thin plate and preparation method thereof
JPS62283885A (en) Porous refractory formed body for burning functional parts
US6107223A (en) Method for preparing high strength and high thermal shock-resistant china for ceramic whiteware
CN111056851A (en) Super low-porosity brick
JPS6410469B2 (en)
JPS629181A (en) Light-weight heat-resistant tray for baking ceramics and manufacture thereof
CN108840668A (en) A kind of wear-resistant material
JPH1179852A (en) Setter for baking and its production
JPS63112477A (en) Heat resistant inorganic fiber formed body
JP2001335379A (en) Method of making fiber formed body
CN111423119A (en) High-temperature-resistant glaze
JPS62216974A (en) Porous refractories
JPH0319194B2 (en)