JPS6398597A - Condensate system - Google Patents

Condensate system

Info

Publication number
JPS6398597A
JPS6398597A JP61242986A JP24298686A JPS6398597A JP S6398597 A JPS6398597 A JP S6398597A JP 61242986 A JP61242986 A JP 61242986A JP 24298686 A JP24298686 A JP 24298686A JP S6398597 A JPS6398597 A JP S6398597A
Authority
JP
Japan
Prior art keywords
condensate
condenser
seawater
steam generator
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61242986A
Other languages
Japanese (ja)
Inventor
吉成 行正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61242986A priority Critical patent/JPS6398597A/en
Publication of JPS6398597A publication Critical patent/JPS6398597A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発電プラントの復水浄化装置における復水脱
塩装置に係り、特に、復水器への海水の漏洩が発生した
場合に給水水質を確保するに好適な、復水系統に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a condensate desalination device in a condensate purification device of a power generation plant, and in particular, the present invention relates to a condensate desalination device in a condensate purification device of a power generation plant. This invention relates to a condensate system suitable for ensuring water quality.

〔従来の技術〕[Conventional technology]

従来の復水系統の一例として、沸騰水型原子力発電所の
タービンサイクルの構成を第4図に示す。
As an example of a conventional condensate system, the configuration of a turbine cycle of a boiling water nuclear power plant is shown in FIG.

原子炉容器1で発生した蒸気は、主蒸気管2を介し、高
圧タービン3で仕事をする。高圧タービン3で仕事をし
た蒸気はクロスアラウンド管4を介し、湿分分離器5で
蒸気中の湿分を除去し、低圧タービン6に於いて仕事を
した後、復水器7に供給される。復水器7に供給された
蒸気は、取水槽8から循環水ポンプ9で吸み出された海
水により冷却され、凝縮して復水化する。復水器7で凝
縮した復水は、復水ポンプ10により吸み出され原子炉
容器1への鉄クラツド持込み抑制を図るための復水ろ過
装置11と復水器7へ海水が漏洩した場合の処理、及び
、鉄イオンの除去を図るための復水脱塩装置12を介し
復水昇圧ポンプ13に供給する。復水昇圧ポンプ13で
昇圧された復水は、低圧給水加熱器14に供給され、低
圧タービン6の油気により昇温され、給水ポンプ15に
送水される。給水ポンプ15に送水された復水け、さら
に、昇圧され、高圧給水加熱器16に供給され、高圧タ
ービン3の油気により昇温されて再び原子炉容器1へ戻
る。
Steam generated in the reactor vessel 1 passes through a main steam pipe 2 and performs work in a high-pressure turbine 3. The steam that has done work in the high-pressure turbine 3 passes through a cross-around pipe 4, removes moisture from the steam in a moisture separator 5, performs work in a low-pressure turbine 6, and is then supplied to a condenser 7. . The steam supplied to the condenser 7 is cooled by seawater sucked out from the water intake tank 8 by the circulating water pump 9, and is condensed into condensate. The condensate condensed in the condenser 7 is sucked out by the condensate pump 10, and if seawater leaks to the condenser 7 and the condensate filtration device 11 to prevent iron crud from being brought into the reactor vessel 1, The condensate is supplied to a boost pump 13 via a condensate desalination device 12 for treatment of iron ions and removal of iron ions. The condensate pressurized by the condensate boost pump 13 is supplied to the low-pressure feed water heater 14, heated by oil from the low-pressure turbine 6, and then sent to the water feed pump 15. The condensate water sent to the feedwater pump 15 is further pressurized, supplied to the high-pressure feedwater heater 16, heated by oil gas from the high-pressure turbine 3, and returned to the reactor vessel 1 again.

一方、取水槽8から循環水ポンプ9で吸み出された海水
は、海水供給管17を介し、復水器冷却管18に供給さ
れ、低圧タービン6で仕事をした蒸気を冷却後、放水管
19を介し、放水槽20に供給する。
On the other hand, the seawater sucked out from the water intake tank 8 by the circulating water pump 9 is supplied to the condenser cooling pipe 18 via the seawater supply pipe 17, and after cooling the steam that has worked in the low pressure turbine 6, it is passed through the water discharge pipe. The water is supplied to the water discharge tank 20 via the water pipe 19.

尚、近年の原子力発電プラントでは、復水器冷却管18
の材質をチタン化している。
In addition, in recent nuclear power plants, the condenser cooling pipe 18
The material is made of titanium.

復水器冷却管18の材質をチタン化している理由につい
て以下に説明する。
The reason why the material of the condenser cooling pipe 18 is made of titanium will be explained below.

従来、復水器冷却管18の材質はアルミニウム黄銅管を
使用しているが、汚染海水による腐食に対し、実用上十
分に有効であるとみなされる程度まで耐えさせるため、
鉄イオンを注入し、復水器冷却管18の内面に水酸化第
二鉄の皮膜を形成させ耐潰食性を向上させる方法、及び
、塩素注入を行い、各種の海洋生物にもとずく障害を防
止し。
Conventionally, aluminum brass pipes have been used as the material for the condenser cooling pipes 18, but in order to withstand corrosion from contaminated seawater to a degree that is considered to be sufficiently effective for practical use,
A method of injecting iron ions to form a film of ferric hydroxide on the inner surface of the condenser cooling pipe 18 to improve corrosion resistance, and a method of injecting chlorine to prevent damage caused by various marine organisms. Prevent.

海洋生物の生育および繁殖を抑制する方法をとっている
Measures are taken to suppress the growth and reproduction of marine organisms.

しかし、最近“公害”に対する規制はますます厳しく″
なり、鉄イオン注入及び塩素注入等について、論議され
ている。
However, recently, regulations regarding "pollution" have become increasingly strict.
Iron ion implantation, chlorine implantation, etc. are being discussed.

近年、原子力発電プラントでは、復水器冷却管18の材
質に、チタンを使用している。
In recent years, titanium has been used as the material for condenser cooling pipes 18 in nuclear power plants.

チタン管の特徴は、アルミニウム管に比べて耐食性にす
ぐれており、また、腐食生成物ができにくく、かつ、汚
れも付着しにくい。さらに、復水器の設計では、熱貫流
率の低下が少ないため、清浄度を90%(アルミニウム
鋼管:85%)で設計することができる。
Titanium pipes are characterized by superior corrosion resistance compared to aluminum pipes, and are less prone to corrosion products and dirt. Furthermore, in the design of the condenser, since there is little decrease in heat transfer coefficient, it is possible to design the condenser with a cleanliness of 90% (aluminum steel pipe: 85%).

なお、この種の装置として関連するものは1例えば、特
開昭56−43594号公報が挙げられる。
An example of a related device of this type is disclosed in Japanese Patent Application Laid-Open No. 56-43594.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、循環水ポンプ9で吸み出された海水が
復水器冷却g18の腐食及び破断により復水器へ海水漏
洩した場合を想定し、復水器7内の復水を復水ポンプ1
0で吸み出し、復水ろ過装置11を介し、復水脱塩装置
12で復水器7への海水漏洩を全量処理可能な容量とし
100%負荷を確保することで計画しているが、復水器
冷却管18をチタン相当の耐食性のすぐれた材質を使用
したプラントでは、海水漏洩の可能性が極めて少ないと
考えられる。また、海水漏洩が発生した復水器7を使用
し連続運転することは信頼性上好ましくない。従って、
海水漏洩の緊急時に100%負荷を確保するための設備
を設ける必要はないと考えられる。
The above conventional technology assumes that the seawater sucked out by the circulating water pump 9 leaks into the condenser due to corrosion and breakage of the condenser cooling g18, and the condensate in the condenser 7 is condensed. pump 1
The plan is to ensure a 100% load by sucking out seawater at 0, passing through the condensate filtration device 11, and using the condensate desalination device 12 to have a capacity that can handle the entire amount of seawater leaking to the condenser 7. In plants where the condenser cooling pipe 18 is made of a material with excellent corrosion resistance equivalent to titanium, the possibility of seawater leakage is considered to be extremely low. Further, it is not preferable in terms of reliability to operate continuously using the condenser 7 in which seawater leakage has occurred. Therefore,
It is considered that there is no need to provide equipment to ensure 100% load in the event of a seawater leak emergency.

本発明の目的は、復水器冷却管18から海水が漏洩した
場合に、必要となる復水脱塩装置12の容量を部分容量
、又は、削除し、プラントの信頼性を向上させることの
できる復水系統を得ることにある。また、通常運転で、
復水ポンプ10の揚程を低減するための復水系統を得る
ことにある。
An object of the present invention is to improve the reliability of the plant by reducing or eliminating the required capacity of the condensate desalination device 12 when seawater leaks from the condenser cooling pipe 18. The purpose is to obtain a condensate system. Also, in normal operation,
The object of the present invention is to obtain a condensate system for reducing the head of the condensate pump 10.

〔問題点を解決するための手段〕[Means for solving problems]

前述の問題点の解決方法は、復水器冷却管18からの海
水漏洩が発生した場合に、復水器7内の4電率を検出し
、発電プラント負荷を制御(又は緊急停止)シ、復水器
7に漏洩した海水を処理することが必要となる。
The solution to the above-mentioned problem is to detect the 4-power ratio in the condenser 7 and control the power plant load (or emergency stop) when seawater leaks from the condenser cooling pipe 18. It is necessary to treat the seawater leaking into the condenser 7.

尚、発電プラント負荷は、原子炉ランバックを使用する
ことにより、約30秒以内に、50%負荷まで低下させ
ることが可能である。また、原子炉緊急停止時には、約
20秒以内に停止することができる。
Note that the power plant load can be reduced to 50% load within about 30 seconds by using reactor runback. Furthermore, in the event of an emergency shutdown of the nuclear reactor, it can be shut down within about 20 seconds.

さらに、復水器7に漏洩した海水は復水ポンプ10で吸
み出され、復水ろ過装置11介し復水脱塩袋ff112
人口まで達するために約60秒の時間がある。また、復
水脱塩装置12から原子炉容器1まで海水を含んだ復水
が達するには、約180秒の時間が必要となる。
Furthermore, the seawater leaked into the condenser 7 is sucked out by the condensate pump 10, and passed through the condensate filtration device 11 to the condensate desalination bag ff112.
There is approximately 60 seconds to reach the population. Further, it takes about 180 seconds for the condensate containing seawater to reach the reactor vessel 1 from the condensate desalination device 12.

つまり、復水器7で導電率を検出し、発電プラント負荷
(又は緊急停止)を制御することにより復水器7に漏洩
した海水を処理することができる。
In other words, the seawater leaking into the condenser 7 can be treated by detecting the conductivity in the condenser 7 and controlling the power plant load (or emergency shutdown).

〔作用〕[Effect]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

発電プラントが通常運転中は、復水脱塩装置12と復水
供給管22に並列に通水し、海水漏洩が発生した場合に
は、復水供給弁23をインターロックで急閉し、復水脱
塩装置12で水処理するため、原子炉容器1へ海水が送
られることはない。
During normal operation of the power plant, water is passed through the condensate desalination equipment 12 and the condensate supply pipe 22 in parallel, and if seawater leakage occurs, the condensate supply valve 23 is quickly closed with an interlock and the condensate supply pipe 22 is closed. Since the water is treated in the water desalination device 12, seawater is not sent to the reactor vessel 1.

また、万一、復水供給弁23の動作が遅れた場合には、
復水脱塩装v112の出口の海水漏洩検出器24の信号
により原子炉停止装置25で原子炉を安全に停止するこ
とができる。
In addition, in the event that the operation of the condensate supply valve 23 is delayed,
The nuclear reactor can be safely stopped by the reactor shutdown device 25 based on the signal from the seawater leak detector 24 at the outlet of the condensate desalination system v112.

一方、復水器の海水漏洩検出器により、海水漏洩を検出
し、原子炉停止装置で原子炉を停止した場合には、イン
ターロックで原子炉へ制御棒を挿入することにより、安
全に原子炉を停止することができる。
On the other hand, if seawater leakage is detected by the seawater leakage detector in the condenser and the reactor is shut down by the reactor shutdown device, the control rods are inserted into the reactor using an interlock to safely react to the reactor. can be stopped.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、および第3
図により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3.
This will be explained using figures.

原子炉1で発生した蒸気は、主蒸気管2を介し高圧ター
ビン3で仕事をし、クロスアラウンド管4を介し、湿分
分離器5で蒸気中の湿分を除去され、低圧タービン6で
仕仕事をした後、復水器7に供給される。復水器7に供
給された蒸気は、取水槽8から循環水ポンプ9で吸み出
された海水により冷却され、凝縮する。復水器7で凝縮
した復水は、復水器7に設置された海水漏洩検出器21
で海水漏洩の有無を確認後、復水ポンプ10より吸み出
され、復水ろ過装置11を介し、復水脱塩装置12と復
水供給管22に並列に送水し、復水昇圧ポンプ13に供
給する。復水昇圧ポンプ13で昇圧された復水は、低圧
給水加熱器14を介し給水ポンプ15に送水される。給
水ポンプ15に送水された復水は給水ポンプ15により
昇圧され、高圧給水加熱器6を介して原子炉容器へ戻る
The steam generated in the reactor 1 passes through the main steam pipe 2 to a high-pressure turbine 3, passes through a cross-around pipe 4, removes moisture from the steam in a moisture separator 5, and is sent to a low-pressure turbine 6 for work. After doing its work, it is supplied to the condenser 7. The steam supplied to the condenser 7 is cooled and condensed by seawater sucked out from the water intake tank 8 by the circulating water pump 9. The condensate condensed in the condenser 7 is collected by a seawater leak detector 21 installed in the condenser 7.
After confirming the presence or absence of seawater leakage, the water is sucked out by the condensate pump 10, sent to the condensate desalination device 12 and the condensate supply pipe 22 in parallel via the condensate filtration device 11, and the condensate boost pump 13 supply to. The condensate pressurized by the condensate boost pump 13 is sent to the feed water pump 15 via the low pressure feed water heater 14 . The condensate fed to the feedwater pump 15 is pressurized by the feedwater pump 15 and returns to the reactor vessel via the high-pressure feedwater heater 6 .

従来と異なる点は、復水脱塩装置11と並列に復水供給
管22を設け、復水器7に設置された海水漏洩検出器2
1の信号により復水供給弁23を開閉操作することにあ
る。
The difference from the conventional method is that a condensate supply pipe 22 is provided in parallel with the condensate desalination device 11, and a seawater leak detector 2 is installed in the condenser 7.
The purpose is to open and close the condensate supply valve 23 according to the signal No. 1.

また、復水脱塩装置12の出口と復水供給管22の出口
の合流点の下流側に海水漏洩検出器24を設け、原子炉
停止制御装置25への信号により原子炉を緊急停止した
ことである。
In addition, a seawater leak detector 24 is installed downstream of the confluence of the outlet of the condensate desalination device 12 and the outlet of the condensate supply pipe 22, and a signal is sent to the reactor shutdown control device 25 to emergencyly shut down the reactor. It is.

尚、第3図では、海水漏洩検出器24(復水脱塩装置出
口)の信号を直接復水器へ設置されている海水漏洩検出
器21より検出し、原子炉を緊急停止りしたことである
In addition, in Figure 3, the signal from the seawater leak detector 24 (condensate desalination equipment outlet) was detected by the seawater leak detector 21 installed directly in the condenser, and the reactor was brought to an emergency shutdown. be.

次に1本発明の動作について説明する。通常運転では、
復水脱塩装置12及び復水供給管23に並列に送水する
が、復水器冷却’1718より海水が爲洩した場合には
、復水器7に設置された海水漏洩検出器21により検出
し、復水供給弁23を閉じ、電気出力を部分負荷運用と
する。一方、復水器7に設置された海水漏洩検出器21
により検出し、復水供給弁23を閉じ部分負荷運用に移
行するための所要時間は約30秒以内であり、復水器7
で海水漏洩した海水がM子炉容器1へ送水されることは
ない(復水器1から復水脱塩装置12までの配管が長く
、かつ、流速を2〜3 m / sにて口径を選定して
いる)が、万一、海水が原子炉容器1へ送られるのを防
止するため、復水脱塩装置出口に海水漏洩検出器24を
設け、海水漏洩を検出し、原子炉緊急制御装置25によ
り、原子炉を緊急停止する。
Next, the operation of the present invention will be explained. In normal operation,
Water is sent in parallel to the condensate desalination device 12 and the condensate supply pipe 23, but if seawater leaks from the condenser cooling '1718, it will be detected by the seawater leak detector 21 installed in the condenser 7. Then, the condensate supply valve 23 is closed, and the electrical output is set to partial load operation. On the other hand, a seawater leak detector 21 installed in the condenser 7
The time required to detect this, close the condensate supply valve 23, and shift to partial load operation is within about 30 seconds, and the condenser 7
(The piping from the condenser 1 to the condensate desalination equipment 12 is long, and the diameter is set at a flow rate of 2 to 3 m/s.) In order to prevent seawater from being sent to the reactor vessel 1, a seawater leak detector 24 is installed at the outlet of the condensate desalination equipment to detect seawater leakage and perform reactor emergency control. The device 25 causes an emergency shutdown of the reactor.

第3図の実施例では、復水器7に設置されている海水漏
洩検出器24により海水の漏洩を検出し原子炉緊急制御
装置25により原子炉を緊急停止する(復水器7の海水
が原子炉容器まで移送されるには、約2分以上の時間が
必要であり、原子炉を安全に停止することができる。)
。特に、復水器7に設けた海水漏洩検出器24で原子炉
を停止した場合は、制御棒をインターロックで挿入する
ことにより制御する。
In the embodiment shown in FIG. 3, the seawater leakage detector 24 installed in the condenser 7 detects seawater leakage, and the reactor emergency control device 25 immediately stops the reactor (the seawater in the condenser 7 It takes approximately 2 minutes or more to be transferred to the reactor vessel, and the reactor can be safely shut down.)
. In particular, when the reactor is stopped by the seawater leak detector 24 provided in the condenser 7, control is performed by interlocking control rods.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発電プラントにおいて、復水供給管及
び、復水器導電率計を設けることにより、海水漏洩時の
対応が可能となる。
According to the present invention, by providing a condensate supply pipe and a condenser conductivity meter in a power generation plant, it becomes possible to deal with seawater leakage.

また1通常運転中は、復水脱塩装置と復水供給管を並列
に通水するため復水ポンプの軸動力が小さくなる。
Furthermore, during normal operation, the shaft power of the condensate pump is reduced because water is passed through the condensate desalination device and the condensate supply pipe in parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の系統図、第2図は、本発
明における復水説塩装置廻りの系統図、第3図は、本発
明を応用した場合の系統図、第4図は、従来の系統図で
ある。 1・・・〃1(子炉容器、2・・・主蒸気管、3・・・
高圧タービン、4・・・クロスアラウンド管、5・・・
湿分分離器。 6・・・低圧タービン、7・・・復水器、8・・・取水
槽。
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of the condensate theory salt equipment of the present invention, Fig. 3 is a system diagram when the present invention is applied, and Fig. 4 is a system diagram of an embodiment of the present invention. The figure is a conventional system diagram. 1... 1 (child furnace vessel, 2... main steam pipe, 3...
High pressure turbine, 4... Cross-around pipe, 5...
Moisture separator. 6...Low pressure turbine, 7...Condenser, 8...Water intake tank.

Claims (1)

【特許請求の範囲】 1、蒸気発生器と、その発生蒸気により、発電機を駆動
するタービンと排気蒸気を凝縮し溜める復水器と、復水
を水質処理する復水浄化装置と前記蒸気発生器への給水
をタービン抽気により加熱する給水加熱器と、前記復水
器から前記蒸気発生器へ給水を供給する各ポンプより成
る発電プラントにおいて、 前記復水浄化装置の復水脱塩装置に並列に復水供給管及
び復水供給弁を設け、前記復水器に設けた海水漏洩検出
器により、復水供給弁が急閉できるようにしたことを特
徴とする復水系統。 2、特許請求の範囲第1項において、 前記復水器への海水漏洩を検出して前記蒸気発生器を緊
急停止することを特徴とする復水系統。
[Claims] 1. A steam generator, a turbine for driving a generator using the steam generated by the steam generator, a condenser for condensing and storing exhaust steam, a condensate purification device for treating the quality of condensate, and the steam generator. In a power generation plant consisting of a feed water heater that heats water supplied to a steam generator using turbine extraction air, and pumps that supply water from the condenser to the steam generator, A condensate system, characterized in that a condensate supply pipe and a condensate supply valve are provided in the condenser, and the condensate supply valve can be quickly closed by a seawater leak detector provided in the condenser. 2. The condensing system according to claim 1, wherein leakage of seawater into the condenser is detected and the steam generator is brought to an emergency stop.
JP61242986A 1986-10-15 1986-10-15 Condensate system Pending JPS6398597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242986A JPS6398597A (en) 1986-10-15 1986-10-15 Condensate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242986A JPS6398597A (en) 1986-10-15 1986-10-15 Condensate system

Publications (1)

Publication Number Publication Date
JPS6398597A true JPS6398597A (en) 1988-04-30

Family

ID=17097196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242986A Pending JPS6398597A (en) 1986-10-15 1986-10-15 Condensate system

Country Status (1)

Country Link
JP (1) JPS6398597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293714A (en) * 1992-01-07 1993-11-09 Mitsubishi Electric Corp Electric discharge machining method and device thereof
JP2008076721A (en) * 2006-09-21 2008-04-03 Yamaha Corp Electronic keyboard musical instrument
JP2010261444A (en) * 2009-05-05 2010-11-18 General Electric Co <Ge> Steam turbine power generation system and method of assembling the same
JP4874109B2 (en) * 2003-05-20 2012-02-15 クリエイティブ テクノロジー リミテッド System that allows the use of white keys on music keyboards on various scales

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293714A (en) * 1992-01-07 1993-11-09 Mitsubishi Electric Corp Electric discharge machining method and device thereof
JP4874109B2 (en) * 2003-05-20 2012-02-15 クリエイティブ テクノロジー リミテッド System that allows the use of white keys on music keyboards on various scales
JP2008076721A (en) * 2006-09-21 2008-04-03 Yamaha Corp Electronic keyboard musical instrument
JP2010261444A (en) * 2009-05-05 2010-11-18 General Electric Co <Ge> Steam turbine power generation system and method of assembling the same

Similar Documents

Publication Publication Date Title
JPS6398597A (en) Condensate system
US4043864A (en) Nuclear power plant having a pressurized-water reactor
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JPS6048716B2 (en) How to prevent corrosion of reactor piping
JPH0776786A (en) Corrosion prevention method for once-through type boiler
JPH11304993A (en) Turbine equipment for power generation
JP2003097801A (en) Water treating device and water treating method for power generating plant
JP3130095B2 (en) Method and apparatus for removing decay heat of boiling water reactor
JPH0694209A (en) Treatment of boiler feed water
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS59112292A (en) Condensed water cleanup device
JPS59112293A (en) Leaked sea water decontaminating device
JPS60152991A (en) Purifier for condensate from steam turbine plant
JPS62215894A (en) Purification system of coolant for nuclear reactor
JP4598996B2 (en) Water purification equipment and nuclear power generation equipment
JPS6324207B2 (en)
Daucik et al. The international association for the properties of water and steam
JPS63113204A (en) Turbine system of nuclear power plant
JPH01185492A (en) Feed water tubing circulating facility in nuclear power plant
JPH0425798A (en) Condensate purification system
JPH07158811A (en) Iron removing device