JPS6324207B2 - - Google Patents

Info

Publication number
JPS6324207B2
JPS6324207B2 JP56113457A JP11345781A JPS6324207B2 JP S6324207 B2 JPS6324207 B2 JP S6324207B2 JP 56113457 A JP56113457 A JP 56113457A JP 11345781 A JP11345781 A JP 11345781A JP S6324207 B2 JPS6324207 B2 JP S6324207B2
Authority
JP
Japan
Prior art keywords
condensate
water
pump
piping
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56113457A
Other languages
Japanese (ja)
Other versions
JPS5815196A (en
Inventor
Hitoshi Ishimaru
Hirotsugu Nagai
Toyohiko Masuda
Katsumi Oosumi
Michoshi Yamamoto
Yoshe Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56113457A priority Critical patent/JPS5815196A/en
Publication of JPS5815196A publication Critical patent/JPS5815196A/en
Publication of JPS6324207B2 publication Critical patent/JPS6324207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は、蒸気発生プラントに係り、特に、沸
騰水型原子炉プラントの停止時の給水配管の腐食
を防止するのに好適な蒸気発生プラントに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam generation plant, and particularly to a steam generation plant suitable for preventing corrosion of water supply piping during shutdown of a boiling water nuclear reactor plant.

従来の沸騰水型原子炉プラントの系統構成を第
1図によつて説明する。
The system configuration of a conventional boiling water nuclear reactor plant will be explained with reference to FIG.

原子炉圧力容器18内で発生した蒸気は、主蒸
気管55を通つてタービン56に供給される。
Steam generated within the reactor pressure vessel 18 is supplied to the turbine 56 through the main steam pipe 55.

タービン56の排気蒸気および、給水加熱器ド
レンは、サイドストリーム式の復水器1内で凝縮
され、冷却水として復水器1内の第1ホツトウエ
ル2に入る。第1ホツトウエル2の冷却水は、ヘ
ツダ3に流出し、復水浄化ポンプ4により昇圧さ
れ、復水浄化系配管22を通つて過脱塩装置5
および脱塩装置6に送られ、そこで浄化された
後、タービン及び、弁のグランド部の封入蒸気を
凝縮するグランド蒸気復水器7および、復水器1
内の非凝縮気体を抽出するために使用される蒸気
式エゼクタの排出蒸気を凝縮させる空気抽出器8
へ送られる。
The exhaust steam of the turbine 56 and the feed water heater drain are condensed in the side stream type condenser 1 and enter the first hot well 2 in the condenser 1 as cooling water. The cooling water in the first hot well 2 flows into the header 3, is pressurized by the condensate purification pump 4, and passes through the condensate purification system piping 22 to the over-desalination device 5.
and a gland steam condenser 7, which condenses the steam sealed in the gland section of the turbine and the valve after being sent to the desalination device 6 and purified there, and the condenser 1.
Air extractor 8 for condensing the exhaust steam of the steam ejector used to extract non-condensable gases in the
sent to.

グランド蒸気復水器7および空気抽出器8での
熱交換により温度上昇した冷却水は、ヘツダ10
およびサイドストリームタンク水位制御弁11を
介して、復水器1内の第2ホツトウエル21に導
かれる。
The cooling water whose temperature has increased due to heat exchange in the gland steam condenser 7 and the air extractor 8 is transferred to the header 10.
and is guided to the second hot well 21 in the condenser 1 via the side stream tank water level control valve 11.

第2ホツトウエル21内の冷却水は、ヘツダ1
2より給水配管24に流入し、復水ポンプ13で
昇圧され、低圧給水加熱器14で昇温され、さら
に給水ポンプ15により昇圧され、高圧給水加熱
器16によりさらに加熱された後、原子炉圧力容
器18に供給される。
The cooling water in the second hot well 21 is
2 into the feed water pipe 24, the pressure is increased by the condensate pump 13, the temperature is raised by the low pressure feed water heater 14, the pressure is further increased by the feed water pump 15, and the water is further heated by the high pressure feed water heater 16, and then the reactor pressure is increased. It is supplied to container 18.

復水浄化系配管22内の冷却水流量と、給水配
管22内の冷却水流量の差分は、第2ホツトウエ
ル21の上部よりオーバーフローして第1ホツト
ウエル2に戻される。
The difference between the flow rate of cooling water in the condensate purification system piping 22 and the flow rate of cooling water in the water supply piping 22 overflows from the upper part of the second hotwell 21 and is returned to the first hotwell 2 .

中間貯槽9は、復水浄化系配管22に、静水頭
によつて圧力印加を行い、水柱分離再結合を防止
する事を目的として設置されている。中間貯槽9
内の水位は水位制御弁11の操作によつて一定に
保たれる。
The intermediate storage tank 9 is installed for the purpose of applying pressure to the condensate purification system piping 22 by means of a static water head to prevent water column separation and recombination. Intermediate storage tank 9
The water level within is kept constant by operating the water level control valve 11.

従来、沸騰水型原子炉プラントの定期点検等に
よる運転停止中は、復水浄化系配管22および給
水配管24の内部に冷却水を充満させたままにし
ている。これは、これらの配管内の冷却水量が膨
大な量でその冷却水を引抜くことが放射性廃棄物
処理系統の著しい負荷増大となり、また、水抜き
に長時間を要するという不都合を生じることによ
る。
Conventionally, during operational shutdowns such as periodic inspections of boiling water nuclear reactor plants, the insides of the condensate purification system piping 22 and the water supply piping 24 are left filled with cooling water. This is because the amount of cooling water in these pipes is enormous, and drawing out the cooling water significantly increases the load on the radioactive waste treatment system, and also causes the inconvenience that it takes a long time to drain the water.

しかしながら、タービン56から排気された蒸
気の凝縮によつて得られる冷却水を復水器1から
原子炉圧力容器18に導く流路である復水浄化系
配管22および給水配管24等の配管、さらに給
水配管24に設けられる給水加熱器を、満水、停
滞流のまま、保管することは配管および機器の腐
食を進行させ、ひいては、沸騰水型原子炉プラン
トが負荷運転に入ると、原子炉圧力容器18内に
腐食生成物が持ち込まれ、放射化し、放射線量が
増加してしまう。
However, piping such as the condensate purification system piping 22 and the water supply piping 24, which are flow paths for guiding cooling water obtained by condensing steam exhausted from the turbine 56 from the condenser 1 to the reactor pressure vessel 18, Storing the feedwater heater installed in the water supply piping 24 with full water and stagnant flow will advance corrosion of the piping and equipment, and eventually, when the boiling water reactor plant enters load operation, the reactor pressure vessel Corrosion products are brought into the 18 and become radioactive, increasing the radiation dose.

本発明の目的は、蒸気発生プラントの給水系の
腐食を抑制制御することにある。
An object of the present invention is to suppress and control corrosion of a water supply system of a steam generation plant.

沸騰水型原子炉プラントの運転停止中、復水浄
化系配管22および給水配管24は、その中に冷
却水が充満された状態で保持される。このような
条件下では、純水である冷却水の水質は悪化し
(例えば導電率は1μs/cm程度)、溶存酸素濃度も
大気(復水器に真空度低下のために大気が注入さ
れる)中の酸素が飽和濃度まで溶解するので、炭
素鋼(復水浄化系配管22および給水配管24
等)の腐食は加速される。鉄の腐食生成物として
クラツド(Fe2O3,Fe3O4,FeOOH等)が多量に
発生し、保管中の冷却水の水質の悪化と同時に、
これらの鉄クラツドが、プラント起動時に原子炉
圧力容器に持込まれる。このため、誘導放射能と
しての腐食生成物核種(Co-60,Mn-54,Fe-59
等が原子炉圧力容器内で生成され、原子炉一次系
の機器にこれらの核種が付着してプラントの表面
線量率を高め、プラントの点検作業に長時間を要
するようになる。
During the shutdown of the boiling water reactor plant, the condensate purification system piping 22 and the water supply piping 24 are kept filled with cooling water. Under these conditions, the quality of the cooling water, which is pure water, deteriorates (for example, the conductivity is about 1 μs/cm), and the dissolved oxygen concentration decreases to the atmosphere (atmospheric air is injected into the condenser to reduce the vacuum level). ) in carbon steel (condensate purification system piping 22 and water supply piping 24).
etc.) corrosion is accelerated. A large amount of crud (Fe 2 O 3 , Fe 3 O 4 , FeOOH, etc.) is generated as a corrosion product of iron, and at the same time, the quality of cooling water during storage deteriorates.
These iron claddings are brought into the reactor pressure vessel during plant start-up. For this reason, corrosion product nuclides (Co -60 , Mn -54 , Fe -59 ) as induced radioactivity
These nuclides are generated in the reactor pressure vessel, and these nuclides adhere to equipment in the reactor primary system, increasing the surface dose rate of the plant and making plant inspections take longer.

本発明は、上記した沸騰水型原子炉プラントの
給水系の腐食を抑制するために種々の検討を行な
つた上でなされたものである。
The present invention was developed after various studies were carried out in order to suppress the corrosion of the water supply system of the boiling water reactor plant mentioned above.

炭素鋼は、室温水中で大気開放条件であれば、
著しい腐食をもたらすことは、よく知られてい
る。しかし、なんらかの形で、炭素鋼表面に、酸
化皮膜を形成すれば、その皮膜の性能に応じた腐
食が可能となる。従来室温条件での防食機構は、
明確にされていなかつた。発明者等は、実験に基
づいて超純水条件(導電率で0.3μs/cm以下〜
0.055μs/cm)では、鉄の腐食化学反応が抑制さ
れるため、大気中の溶存酸素濃度がこの反応を助
け、鉄表面に良好な不働態酸化皮膜を形成するこ
とを見つけた。更に、安定した酸化皮膜を維持し
つづけるには、配管内に満されている純水を適切
な流動条件下におくことが必要であることが判明
した。
If carbon steel is exposed to the atmosphere in water at room temperature,
It is well known that it causes severe corrosion. However, if an oxide film is formed on the surface of carbon steel in some way, corrosion will be possible depending on the performance of the film. The corrosion protection mechanism under conventional room temperature conditions is
It wasn't made clear. Based on experiments, the inventors determined that ultrapure water conditions (conductivity of 0.3 μs/cm or less)
At 0.055 μs/cm), the corrosion chemical reaction of iron is suppressed, and the dissolved oxygen concentration in the atmosphere helps this reaction, forming a good passive oxide film on the iron surface. Furthermore, it has been found that in order to continue to maintain a stable oxide film, it is necessary to subject the pure water filling the piping to appropriate flow conditions.

これらの実験結果を以下に説明する。 The results of these experiments will be explained below.

第2図は、沸騰水型原子炉プラントの運転停止
中における配管内に保管される冷却水の導電率と
配管(炭素鋼製)の腐食速度の関係を示すもの
で、導電率が0.3μs/cmを超えると炭素鋼の腐食
速度は著しく大きくなることから、0.3μs/cm以
下にすることが必要である。また下限は、純水の
理論導電率が0.055μs/cmであるから、これ以下
にはならない。したがつてタービン56から排気
された蒸気の凝縮によつて得られる冷却水を復水
器1から原子炉圧力容器18に導く流路、すなわ
ち、復水浄化系配管22、第2ホツトウエル21
および給水配管24等にプラントの停止時に滞在
している冷却水の導電率の好適な範囲としては
0.055μs/cmから、0.3μs/cmである。
Figure 2 shows the relationship between the conductivity of the cooling water stored in the piping and the corrosion rate of the piping (made of carbon steel) during the shutdown of a boiling water reactor plant. If the corrosion rate exceeds cm, the corrosion rate of carbon steel increases significantly, so it is necessary to keep the corrosion rate to 0.3 μs/cm or less. Furthermore, since the theoretical conductivity of pure water is 0.055 μs/cm, the lower limit cannot be lower than this. Therefore, a flow path that guides the cooling water obtained by condensing the steam exhausted from the turbine 56 from the condenser 1 to the reactor pressure vessel 18, that is, the condensate purification system piping 22 and the second hot well 21
And the preferred range for the conductivity of the cooling water that remains in the water supply piping 24 etc. when the plant is stopped is as follows:
From 0.055 μs/cm to 0.3 μs/cm.

一方、溶存酸素濃度が高い冷却水中ではもし冷
却水の第3図は、冷却水の流速と炭素鋼の腐食速
度の関係を示すものである。流動条件の主要支配
因子として冷却水の流速があり、その流速は、鉄
の酸化皮膜境界面の酸素拡散層を均一に保持でき
る条件を満足しなければならない。室温条件で
は、冷却水の流速を0.2cm/sec以上確保すれば、
炭素鋼の腐食速度を低く押えることができる。し
たがつて、復水器1で蒸気の凝縮によつて生じる
冷却水を原子炉圧力容器18内に導く流路、すな
わち給復水系の配管(復水浄化系配管22および
給水配管24等)のプラント停止中における腐食
抑制のために、給復水系配管内の冷却水の導電率
を0.055〜0.3μs/cmの範囲にし、冷却水の流速を
0.2cm/sec以上にすることが望ましい。
On the other hand, if cooling water has a high concentration of dissolved oxygen, then Figure 3 shows the relationship between the flow rate of cooling water and the corrosion rate of carbon steel. The main controlling factor for the flow conditions is the flow rate of the cooling water, and the flow rate must satisfy conditions that can maintain a uniform oxygen diffusion layer at the interface of the iron oxide film. Under room temperature conditions, if the flow rate of cooling water is maintained at 0.2cm/sec or more,
The corrosion rate of carbon steel can be kept low. Therefore, the flow path for guiding cooling water generated by condensation of steam in the condenser 1 into the reactor pressure vessel 18, that is, the piping of the water supply and condensate system (condensate purification system piping 22, water supply piping 24, etc.) To suppress corrosion during plant shutdown, the conductivity of the cooling water in the water supply and condensate piping is set to a range of 0.055 to 0.3μs/cm, and the flow rate of the cooling water is reduced.
It is desirable to set it to 0.2 cm/sec or more.

沸騰水型原子炉プラントに適用した本発明の好
適な一実施例を第4図により説明する。第1図と
同一の構成は同一符号で示す。沸騰水型原子炉プ
ラントの通常運転時の動作は、前述した通りであ
る。プラント停止中における本実施例の作用を以
下に説明する。プラント停止中には、バルブ4
1、水位制御弁11、バルブ44,48および5
8が閉鎖され、バルブ59,60,47,26お
よび17が開いている。さらに、復水浄化ポンプ
4、復水ポンプ13および給水ポンプ15は停止
しており、復水循環保管ポンプ27が起動され
る。
A preferred embodiment of the present invention applied to a boiling water reactor plant will be described with reference to FIG. Components that are the same as those in FIG. 1 are designated by the same reference numerals. The operation of a boiling water reactor plant during normal operation is as described above. The operation of this embodiment during plant shutdown will be explained below. During plant shutdown, valve 4
1, water level control valve 11, valves 44, 48 and 5
8 is closed and valves 59, 60, 47, 26 and 17 are open. Furthermore, the condensate purification pump 4, the condensate pump 13, and the water supply pump 15 are stopped, and the condensate circulation storage pump 27 is activated.

第1ホツトウエル2内の冷却水は、ヘツダ3を
介して復水循環保管ポンプ27により汲出されて
昇圧され、過脱塩装置5の上流に送られる。こ
の冷却水は、過脱塩装置5、復水脱塩装置6に
より、浄化されて導電率が0.3μs/cm以下に低下
されグランド蒸気復水器7、空気抽出器8を通つ
て降水配管29に流入する。28は流量調節弁で
ある。復水浄化ポンプ4出口には、逆止弁42が
有るので、復水浄化ポンプ4への冷却水の逆流は
ない。冷却水は、中間貯槽9の静水頭の作用によ
りヘツダ10から降水配管29を通り給水配管2
4に流入する。さらに冷却水は、給水配管24を
流れて低圧給水加熱器14を通り。給水ポンプ1
5をバイパスしてバルブ26を通り、高圧給水加
熱器16を通つて戻り配管57に流入する。冷却
水は、戻り配管57を通つて復水器1内の第1ホ
ツトウエル2に戻る。このように循環する冷却水
の流速は、0.5cm/sである。復水ポンプ13お
よび給水ポンプ15の吐出側には、それぞれ、逆
止弁45および49があるため各々のポンプへの
冷却水の逆流はない。復水循環保管ポンプ27の
容量は、復水浄化ポンプ4復水ポンプ13および
給水ポンプ15の容量よりも極めて小さく、後者
の3つのポンプは吐出量約3500t/hであり、前
者のポンプ吐出量は約200t/hにすぎない。この
ように復水循環保管ポンプ27の容量が小さくで
きるのは、循環させる冷却水の流速を0.2cm/s
と著しく遅くできることによる。
The cooling water in the first hot well 2 is pumped out via the header 3 by the condensate circulation storage pump 27, pressurized, and sent upstream of the over-desalination device 5. This cooling water is purified by an over-desalination device 5 and a condensate desalination device 6 to reduce its conductivity to 0.3 μs/cm or less, and then passes through a ground steam condenser 7 and an air extractor 8 to a precipitation pipe 29. flows into. 28 is a flow control valve. Since there is a check valve 42 at the outlet of the condensate purification pump 4, there is no backflow of cooling water to the condensate purification pump 4. Cooling water flows from the header 10 through the precipitation pipe 29 to the water supply pipe 2 due to the action of the static water head of the intermediate storage tank 9.
4. Further, the cooling water flows through the water supply pipe 24 and passes through the low pressure feed water heater 14 . Water pump 1
5, passes through valve 26, passes through high pressure feed water heater 16, and flows into return line 57. The cooling water returns to the first hot well 2 in the condenser 1 through the return pipe 57. The flow rate of the cooling water circulating in this way is 0.5 cm/s. Since there are check valves 45 and 49 on the discharge sides of the condensate pump 13 and the feedwater pump 15, respectively, there is no backflow of cooling water to each pump. The capacity of the condensate circulation storage pump 27 is extremely smaller than the capacity of the condensate purification pump 4, the condensate pump 13, and the water supply pump 15, with the latter three pumps having a discharge rate of approximately 3500 t/h, and the former pump having a discharge rate of approximately 3500 t/h. It is only about 200t/h. The capacity of the condensate circulation storage pump 27 can be reduced in this way by reducing the flow rate of the circulating cooling water to 0.2 cm/s.
and can be significantly slower.

以上により、過脱塩装置5、脱塩装置6に通
水することにより導電率を0.3μs/cm以下する事
ができ、容量の小さな復水循環保管ポンプを設置
する事により、腐食防止の為の流速0.2cm/s以
上が確保できる。
As described above, conductivity can be reduced to 0.3μs/cm or less by passing water through the over-desalination equipment 5 and desalination equipment 6, and by installing a small-capacity condensate circulation storage pump, corrosion prevention can be achieved. A flow velocity of 0.2cm/s or higher can be ensured.

従来方式では、復水浄化ポンプ4(2200kW)
と、復水ポンプ13(4200kW)を運転する必要
があつたが、本実施例によれば、復水循環保管ポ
ンプ27(20kW)を運転するだけで、循環保管
運転が可能となる。
In the conventional method, condensate purification pump 4 (2200kW)
In this case, it was necessary to operate the condensate pump 13 (4200kW), but according to this embodiment, the circulation storage operation can be performed simply by operating the condensate circulation storage pump 27 (20kW).

さらに、復水浄化ポンプ4、復水ポンプ13お
よび給水ポンプ15の保守点検は、バルブ41,
43,44,46,48および50を閉鎖するこ
とにより、冷却水の循環保管運転中も可能とな
る。
Furthermore, maintenance and inspection of the condensate purification pump 4, the condensate pump 13, and the water supply pump 15 are performed using the valve 41,
By closing 43, 44, 46, 48 and 50, it is possible to circulate the cooling water even during storage operation.

また、給復水系配管内の冷却水を廃棄物処理系
で処理する必要もない。
Furthermore, there is no need to treat the cooling water in the water supply and condensate system piping with the waste treatment system.

本実施例によれば、復水給水系の配管及び機器
の腐食防止に効果があり、被爆低減、及び、廃棄
物低減に効果がある。
According to this embodiment, it is effective in preventing corrosion of the piping and equipment of the condensate water supply system, and is effective in reducing radiation exposure and waste.

更に、もう一つの効果として、従来は、復水浄
化ポンプ4の運転停止中において、原子炉圧力容
器18に設けられる制御棒を駆動する制御棒駆動
装置(図示せず)の駆動水は、復水貯蔵タンク2
0内の溶存酸素の多い冷却水を用いていたが、本
実施例によれば、復水循環保管ポンプ27を運転
することにより、復水過装置5、復水脱塩装置
6にて浄化されたクリーンな冷却水を、CRDポ
ンプ32を有する配管59を通して制御棒駆動装
置に供給できる。
Furthermore, as another effect, conventionally, when the operation of the condensate purification pump 4 is stopped, the driving water of the control rod drive device (not shown) that drives the control rods provided in the reactor pressure vessel 18 is water storage tank 2
However, according to this embodiment, by operating the condensate circulation storage pump 27, the cooling water is purified in the condensate filtration device 5 and the condensate desalination device 6. Clean cooling water can be supplied to the control rod drives through piping 59 with CRD pumps 32.

沸騰水型原子炉プラントの通常運転時には、バ
ルブ59,60,47,26および17が閉鎖さ
れ、バルブ41,43,水位制御弁11,バルブ
44,46,48,50および58が開かれる。
復水循環保管ポンプ27は停止され、他のポンプ
は駆動される。
During normal operation of a boiling water reactor plant, valves 59, 60, 47, 26 and 17 are closed and valves 41, 43, water level control valve 11, valves 44, 46, 48, 50 and 58 are opened.
The condensate circulation storage pump 27 is stopped and the other pumps are driven.

なお、沸騰水型原子炉プラント停止中も復水浄
化ポンプ4および復水ポンプ13を運転し、バル
ブ47を閉じてバルブ17を開き、冷却水を復水
浄化系配管22、給水配管24および戻り配管5
7を循環させることが考えられる。これによつ
て、冷却水が配管内に停滞することがないので、
腐食進行をおさえることができるが、この様に大
きなポンプを約100日にもおよぶ定検期間中に運
転することは、プラント停止中における所内動力
の増加となる。さらに、これらのポンプのモータ
等の冷却用の冷却水系も運転が必要となる。さら
に、復水浄化ポンプ4および復水ポンプ13も定
期点検が必要であるのでこの方法の実施は困難で
ある。
Note that even when the boiling water reactor plant is stopped, the condensate purification pump 4 and the condensate pump 13 are operated, the valve 47 is closed and the valve 17 is opened, and the cooling water is sent to the condensate purification system piping 22, the water supply piping 24, and the return water. Piping 5
It is possible to circulate 7. This prevents cooling water from stagnating in the pipes.
Although the progress of corrosion can be suppressed, operating such a large pump during the regular inspection period, which lasts about 100 days, increases the amount of power within the plant while the plant is shut down. Furthermore, the cooling water system for cooling the motors of these pumps must also be operated. Furthermore, since the condensate purification pump 4 and the condensate pump 13 also require periodic inspection, it is difficult to implement this method.

第4図に示す実施例では、このような問題は生
じない。
In the embodiment shown in FIG. 4, such a problem does not occur.

次に本発明の他の実施例を第5図によつて説明
する。
Next, another embodiment of the present invention will be described with reference to FIG.

第5図は、第4図におけるヘツダ3とヘツダ1
2とを連結するサクシヨンヘツダ30を設置した
ものである。サクシヨンヘツダ30にはバルブ6
0が設けられる。
Figure 5 shows header 3 and header 1 in Figure 4.
A suction header 30 is installed to connect the two. Valve 6 is in the suction header 30.
0 is set.

第1ホツトウエル2および、第2ホツトウエル
21内の冷却水は、復水循環保管ポンプ27によ
つて汲出され、過脱塩装置5、復水脱塩装置6
により浄化された後、スピルオーバ弁19を通
り、復水貯蔵タンク20に回収される。
The cooling water in the first hot well 2 and the second hot well 21 is pumped out by a condensate circulation storage pump 27, and is pumped out by a super desalination device 5 and a condensate desalination device 6.
After being purified, it passes through a spillover valve 19 and is collected in a condensate storage tank 20.

従来は、復水器1のホツトウエル内の冷却水
は、復水浄化ポンプ4等の大きいポンプでは
NPSH上、全て抜きさる事はできず、ドレン弁
31より抜き、廃棄物処理設備にて処理していた
が、本実施例によれば、第1ホツトウエル2、第
2ホツトウエル21の清掃を行う場合にホツトウ
エルの復水を、廃棄物処理設備に送らなくてすむ
ので、廃棄物処理系の負荷低減となる。
Conventionally, the cooling water in the hot well of the condenser 1 was collected by a large pump such as the condensate purification pump 4.
Due to NPSH, it was not possible to remove all of the water, so it was removed from the drain valve 31 and disposed of in a waste treatment facility. However, according to this embodiment, when cleaning the first hot well 2 and the second hot well 21, Since there is no need to send hotwell condensate to the waste treatment facility, the load on the waste treatment system is reduced.

以上により、復水器ホツトウエル内の復水を抜
く場合において、約700m3の復水が、廃棄物処理
系の負荷低減となる。
As a result of the above, when removing condensate from the condenser hot well, approximately 700 m 3 of condensate reduces the load on the waste treatment system.

前述した各々の実施例は蒸気発生器である沸騰
水型原子炉プラントの原子炉圧力容器の給復水系
配管に適用したものであるが、本発明は他の蒸気
発生プラントへも適用できる。すなわち、加圧水
型原子炉プラントおよび高速増殖炉プラントの蒸
気発生器に連絡される給復水系配管、火力発電プ
ラント等に用いられる蒸気発生器であるボイラに
連絡される給復水系配管に本発明を適用すること
ができる。
Although each of the embodiments described above is applied to water supply and condensation system piping of a reactor pressure vessel of a boiling water reactor plant, which is a steam generator, the present invention can also be applied to other steam generation plants. That is, the present invention can be applied to water supply and condensate system piping connected to steam generators in pressurized water reactor plants and fast breeder reactor plants, and water supply and condensate system piping connected to boilers that are steam generators used in thermal power plants, etc. Can be applied.

本発明によれば、プラント停止中における給復
水系配管および機器の腐食を防止できるので、被
爆低減、廃棄物低減の効果が有る。
According to the present invention, it is possible to prevent corrosion of water supply and condensate system piping and equipment during plant shutdown, so there is an effect of reducing radiation exposure and reducing waste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉プラントの系統図、第
2図は冷却水の導電率と炭素鋼の腐食速度比との
関係を示す特性図、第3図は冷却水の流速と炭素
鋼の腐食速度比との関係を示す、第4図は沸騰水
型原子炉プラントに適用した本発明の好適な一実
施例の系統図、第5図は沸騰水型原子炉プラント
に適用した本発明の他の実施例の系統図である。 1……復水器、2……第1ホツトウエル、4…
…復水浄化ポンプ、5……過脱塩装置、6……
脱塩装置、11……水位制御弁、13……復水ポ
ンプ、15……給水ポンプ、18……原子炉圧力
容器、21……第2ホツトウエル、22……復水
浄化系配管、24……給水系配管、27……復水
循環保管ポンプ、29……降水配管。
Figure 1 is a system diagram of a boiling water reactor plant, Figure 2 is a characteristic diagram showing the relationship between the conductivity of cooling water and the corrosion rate ratio of carbon steel, and Figure 3 is a diagram showing the relationship between the flow rate of cooling water and the corrosion rate ratio of carbon steel. Fig. 4 shows a system diagram of a preferred embodiment of the present invention applied to a boiling water reactor plant, and Fig. 5 shows a system diagram of a preferred embodiment of the present invention applied to a boiling water reactor plant. FIG. 3 is a system diagram of another embodiment. 1... Condenser, 2... First hot well, 4...
...Condensate purification pump, 5... Over desalination device, 6...
Desalination equipment, 11...Water level control valve, 13...Condensate pump, 15...Water pump, 18...Reactor pressure vessel, 21...Second hot well, 22...Condensate purification system piping, 24... ...Water supply system piping, 27...Condensate circulation storage pump, 29...Precipitation piping.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気発生器と、前記蒸気発生器で発生した蒸
気を供給されるタービンと、前記タービンから排
気される蒸気を凝縮して液体にする復水器と、前
記液体を前記蒸気発生器に導く復水浄化系配管及
び給水配管を含む第1流路と、前記第1流路に設
けられる復水浄化ポンプおよび浄水装置と、前記
浄化装置から吐出された前記液体を前記蒸気発生
器の運転停止時に前記第1流路より前記復水器に
導く戻り配管とを有する蒸気発生プラントにおい
て、前記復水浄化ポンプより小容量の復水循環保
管ポンプを前記復水浄化ポンプと並列に配置し、
前記蒸気発生器の運転が停止されている時に前記
復水器内の液体を前記復水循環保管ポンプおよび
前記浄化装置を通して前記戻り配管に導く制御手
段を設けたことを特徴とする蒸気発生プラント。
1 a steam generator, a turbine supplied with steam generated by the steam generator, a condenser that condenses the steam exhausted from the turbine into a liquid, and a condenser that guides the liquid to the steam generator. A first flow path including a water purification system piping and a water supply pipe, a condensate purification pump and a water purification device provided in the first flow path, and a liquid discharged from the purification device when the steam generator is stopped. In a steam generation plant having a return pipe leading from the first flow path to the condenser, a condensate circulation storage pump having a smaller capacity than the condensate purification pump is arranged in parallel with the condensate purification pump,
A steam generation plant, comprising control means for guiding liquid in the condenser to the return piping through the condensate circulation storage pump and the purification device when the operation of the steam generator is stopped.
JP56113457A 1981-07-22 1981-07-22 Steam generating plant Granted JPS5815196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113457A JPS5815196A (en) 1981-07-22 1981-07-22 Steam generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113457A JPS5815196A (en) 1981-07-22 1981-07-22 Steam generating plant

Publications (2)

Publication Number Publication Date
JPS5815196A JPS5815196A (en) 1983-01-28
JPS6324207B2 true JPS6324207B2 (en) 1988-05-19

Family

ID=14612718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113457A Granted JPS5815196A (en) 1981-07-22 1981-07-22 Steam generating plant

Country Status (1)

Country Link
JP (1) JPS5815196A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284100B2 (en) 2003-05-12 2007-10-16 International Business Machines Corporation Invalidating storage, clearing buffer entries, and an instruction therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462404A (en) * 1977-10-24 1979-05-19 Daburiyuu Riido Chiyaarusu Water purifying method and apparatus of steam driven plant
JPS54141903A (en) * 1978-04-25 1979-11-05 Toshiba Corp Condensing equipment
JPS55164081A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Method for protection of metal in contact with water from corrosion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462404A (en) * 1977-10-24 1979-05-19 Daburiyuu Riido Chiyaarusu Water purifying method and apparatus of steam driven plant
JPS54141903A (en) * 1978-04-25 1979-11-05 Toshiba Corp Condensing equipment
JPS55164081A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Method for protection of metal in contact with water from corrosion

Also Published As

Publication number Publication date
JPS5815196A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
EP0150981B1 (en) Method of vacuum degassing and refilling a reactor coolant system
JP3048270B2 (en) Method and apparatus for chemical decontamination of primary reactor system
JPS6324207B2 (en)
US5517539A (en) Method of decontaminating a PWR primary loop
US4533514A (en) Nuclear reactor degassing method and degassing system
US20200312471A1 (en) Corrosion Mitigation Method for Carbon Steel Pipe
US20010021238A1 (en) Method and apparatus for separating a neutron absorber from a coolant
JPS6398597A (en) Condensate system
JP3524116B2 (en) Reactor containment cooling system
JPS6048716B2 (en) How to prevent corrosion of reactor piping
JPS6257240B2 (en)
JP2895267B2 (en) Reactor water purification system
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
JPS6154199B2 (en)
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS642919B2 (en)
JPS621239B2 (en)
JPS6257960B2 (en)
JPS59112292A (en) Condensed water cleanup device
JPS59112293A (en) Leaked sea water decontaminating device
JPH07325193A (en) Radioactive gas waste processing system
JPS63307393A (en) Turbine system for nuclear power plant
JPH05203789A (en) Low load purification system
JPS58143298A (en) Method of protecting corrosion of feedwater pipe for reactor water
JPH0679073B2 (en) Reactor coolant purification system