JPS6048716B2 - How to prevent corrosion of reactor piping - Google Patents

How to prevent corrosion of reactor piping

Info

Publication number
JPS6048716B2
JPS6048716B2 JP51000876A JP87676A JPS6048716B2 JP S6048716 B2 JPS6048716 B2 JP S6048716B2 JP 51000876 A JP51000876 A JP 51000876A JP 87676 A JP87676 A JP 87676A JP S6048716 B2 JPS6048716 B2 JP S6048716B2
Authority
JP
Japan
Prior art keywords
water supply
reactor
condenser
condensate
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51000876A
Other languages
Japanese (ja)
Other versions
JPS5285696A (en
Inventor
幸造 土門
茂 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51000876A priority Critical patent/JPS6048716B2/en
Publication of JPS5285696A publication Critical patent/JPS5285696A/en
Publication of JPS6048716B2 publication Critical patent/JPS6048716B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉配管の腐食防止方法に係り、特に原
子炉の起動時における沸騰水形原子炉の給復水系配管の
腐食防止に好適な原子炉配管の腐食防止方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of nuclear reactor piping, and is particularly suitable for preventing corrosion of water supply and condensate system piping of a boiling water reactor during reactor startup. It is about the method.

沸騰水形原子炉の概要を第1図に基づいて説明する。 An overview of a boiling water reactor will be explained based on FIG.

ます、原子炉の起動前に復水ポンプ6を駆動し、給水ブ
ラッシング配管隔離弁15を開けて給水配管隔離弁17
を閉じ、給水ブラッシング配管16を通して給復水系配
管3のブラッシングが行われる。このブラッシングは復
水器5が常温・大気圧下のもとで実施されるためブラッ
シング水中の溶存酸素濃度は約8pμm存在する。これ
により給復水系配管3内の腐食生成物が機械的に除去さ
れると共に、配管内面に酸化被膜がある程度形成される
が非常に不安定てあり、剥離しやすいのて配管の腐食速
度は大きい。原子炉の起動時には所内ボイラ18で発生
した蒸気よりグランドスチーム配管22によつてタービ
ン4の軸受部に導かれる。タービン4の軸受部は、上記
の蒸気によつてシールされる。このため、真空ポンプ1
9およびエゼクタ20により、第2図に示すように復水
器5内の所要真空度として必要な約真空度700wrx
LHgが確保される。これにより、給復水系配管3内の
溶存酸素濃度が1〜2ppbと著しく低下し、前述のブ
ラッシング時に形成された配管内面の酸化被膜が破壊さ
れることになる。このような状態で原子炉の起動が進む
と、原子炉圧力容器層内に搬入するクラッド量がスパイ
ク状に増加する。 一方、原子炉が通常運転状態に入る
と原子炉圧力容器層内て発生した水蒸気は主蒸気管2を
通つてタービン4に送られる。タービン4を駆動した後
の水蒸気は復水器5て凝縮され再び水に戻る。この水は
復水器5より、復水ポンプ6、コンデンサ21、復水脱
塩器7、復水昇圧ポンプ9、給水加熱器10、給水ポン
プ11、給水制御弁14、給水配管隔離弁17を順次連
絡する給復水系配管3を通つて、原子炉圧力容器層内に
戻される。この給復水系配管3の腐食防止法として、原
子炉の運転時に給復水系配管3内の溶存酸素を0.02
〜0.2ppm(米国特許3、663、725号公報)
に維持することが望まれ、わが国ても復水脱塩器7の出
口より酸素注入を実施し良好な結果が得られている。し
かしながら、前述したように復水器5の真空度が高いた
め、復水器5と復水脱塩器7入口の間で鉄クラッド(イ
オンも含む)が多量に発生する。特に原子起動時におい
ては、復水脱塩器7の再生ひん度が多くなり廃棄物処理
系の負荷が増加する。本発明の目的は、上記した従来技
術の欠点をなくし、原子炉の起動時における管路の腐食
を防止することにある。
First, before starting the reactor, drive the condensate pump 6, open the water supply brushing pipe isolation valve 15, and close the water supply pipe isolation valve 17.
is closed, and the water supply and condensate system piping 3 is brushed through the water supply brushing piping 16. Since this brushing is performed with the condenser 5 at room temperature and atmospheric pressure, the dissolved oxygen concentration in the brushing water is about 8 pμm. As a result, the corrosion products inside the water supply and condensate system piping 3 are mechanically removed, and an oxide film is formed on the inner surface of the piping to some extent, but it is very unstable and easily peels off, so the corrosion rate of the piping is high. . When the nuclear reactor is started, steam generated in the station boiler 18 is guided to the bearing section of the turbine 4 through the ground steam pipe 22. The bearing portion of the turbine 4 is sealed by the above steam. For this reason, vacuum pump 1
9 and the ejector 20, the required vacuum level in the condenser 5 is approximately 700wrx, as shown in FIG.
LHg is ensured. As a result, the dissolved oxygen concentration in the water supply and condensate system piping 3 is significantly reduced to 1 to 2 ppb, and the oxide film formed on the inner surface of the piping during the above-mentioned brushing is destroyed. As the reactor is started up in such a state, the amount of crud carried into the reactor pressure vessel layer increases in a spike-like manner. On the other hand, when the nuclear reactor enters a normal operating state, steam generated within the reactor pressure vessel layer is sent to the turbine 4 through the main steam pipe 2. After driving the turbine 4, the steam is condensed in the condenser 5 and returned to water. This water is supplied from the condenser 5 to a condensate pump 6, a condenser 21, a condensate demineralizer 7, a condensate boost pump 9, a feed water heater 10, a feed water pump 11, a feed water control valve 14, and a feed water piping isolation valve 17. The water is returned to the reactor pressure vessel layer through the water supply and condensate system piping 3 that connects sequentially. As a method of preventing corrosion of the water supply and condensate system piping 3, dissolved oxygen in the water supply and condensate system piping 3 is reduced to 0.02% during reactor operation.
~0.2ppm (U.S. Pat. No. 3,663,725)
In Japan, good results have been obtained by injecting oxygen from the outlet of the condensate demineralizer 7. However, as described above, since the degree of vacuum in the condenser 5 is high, a large amount of iron cladding (including ions) is generated between the condenser 5 and the inlet of the condensate demineralizer 7. Particularly during atomic startup, the frequency of regeneration of the condensate demineralizer 7 increases, increasing the load on the waste treatment system. An object of the present invention is to eliminate the above-described drawbacks of the prior art and to prevent corrosion of pipelines during startup of a nuclear reactor.

J本発明の特徴は、上記の目的を達成するために、原子
炉を起動する前に、復水器と原子炉容器とを連通する給
復水系管路および前記給復水管路に取付けられて前記復
水器に接続される分岐管路とからなる閉ループ内に前記
給復水系管路内に存在する冷却材を循環させるとともに
前記復水器内を負圧にして前記冷却材中の溶存酸素濃度
を約50〜200ppbの範囲に制御し、前記復水器内
の負圧による溶存酸素濃度の調節が困難で前記冷却材中
の溶存酸素濃度が不足する時、前記溶存酸素濃度が約5
0〜200ppbの範囲になるように酸素を前記冷却材
中に注入することにある。
J The feature of the present invention is that, in order to achieve the above-mentioned object, before starting up the nuclear reactor, a water supply condensate system pipe connecting a condenser and a reactor vessel and a water supply condensate pipe installed in the water supply condensate pipe The coolant present in the water supply and condensate system pipe is circulated in a closed loop consisting of a branch pipe connected to the condenser, and the inside of the condenser is made to have a negative pressure, thereby dissolving oxygen in the coolant. When the concentration of dissolved oxygen is controlled in the range of about 50 to 200 ppb, and when the dissolved oxygen concentration in the coolant is insufficient because it is difficult to adjust the dissolved oxygen concentration by the negative pressure in the condenser, the dissolved oxygen concentration is about 5 ppb.
Oxygen is injected into the coolant in a range of 0 to 200 ppb.

原子炉の起動前において、復水器5の真空度を600〜
70077Z77ZHg)水温を35〜55゜Cに保ち
、水中の溶存酸素濃度を50〜200ppbにすれば炭
素鋼の腐食速度を最少に抑え得ることに着目するのであ
る(第3図および第4図参照)。
Before starting the reactor, the degree of vacuum in the condenser 5 is set to 600~
70077Z77ZHg) We note that the corrosion rate of carbon steel can be minimized by keeping the water temperature between 35 and 55°C and the dissolved oxygen concentration in the water between 50 and 200 ppb (see Figures 3 and 4). .

また、酸素注入に際して、主として過酸化水素と酸素ガ
スの2方法があるが、過酸化水素により形成された酸化
被膜の方が、流速および温度の影響をほとんどうけない
.という点で優れている。従つて、原子炉の起動が進む
につれて給復水系の温度上昇が伴う場合は、過酸化水素
の注入の効果か大きい。本発明の好適な一実施例を第1
図に基づいて説明する。
There are two main methods for oxygen injection: hydrogen peroxide and oxygen gas, but the oxide film formed by hydrogen peroxide is less affected by flow rate and temperature. It is excellent in that respect. Therefore, when the temperature of the water supply and condensate system increases as the reactor starts up, the effect of hydrogen peroxide injection is significant. A preferred embodiment of the present invention will be described in a first embodiment.
This will be explained based on the diagram.

原子炉起動前における給復水系配管3の.ブラッシング
後、まず所内ボイラ18よによりタービン4をシールす
る。所内ボイラ18で発生した蒸気は、さらに配管23
を通して工セクタ20に供給され、工セクタ20の駆動
源として用いられる。工セクタ20の駆動によつて、復
水器5の・真空度が上昇する。3に取付けられた酸素濃
度検出計27によつて、給復水系配管3内を流れる冷却
水中の溶存酸素濃度が測定される。
Water supply and condensate system piping 3 before reactor startup. After brushing, the turbine 4 is first sealed by the in-house boiler 18. The steam generated in the in-house boiler 18 is further transferred to the piping 23.
It is supplied to the engineering sector 20 through the engine, and is used as a driving source for the engineering sector 20. By driving the working sector 20, the degree of vacuum in the condenser 5 increases. The dissolved oxygen concentration in the cooling water flowing through the water supply and condensation system piping 3 is measured by the oxygen concentration detector 27 attached to the water supply and condensation system piping 3 .

測定された酸素濃度は、コントローラ28に伝えられる
。すなわち、その酸素濃度が200ppbよりも高い場
合は、配管23に設けられた制御弁24の開度が大きく
なつて復水器5の真空度が増大して真空度70−Hgに
調節される。このため、給復水系配管3および給水ブラ
ッシング配管16を経て復水器5に流入する冷却水中か
ら酸素が脱気されて溶存酸素濃度は低下する。溶存酸素
濃度が200ppb以下になつた冷却水が復水器5から
再び給復水系配管3内に戻される。一方、冷却水中の溶
存酸素濃度が50ppレ未満になると、コントローラ2
8の作用により制御弁24の開度が小さくなり、それに
伴なつて復水器5の真空度が低下して真空度600TW
LHg程度に調節される。このように復水器5内の真空
度を調節することによつて、冷却水中の溶存酸素濃度を
50〜200ppbに調節することができる。しかし、
工セクタ20によつて復水器5内の真空度を微調整する
ことが困難であるため、冷却水中の溶存酸素濃度の微調
整が困難となることがある。したがつて、このように溶
存酸素濃度を微調整することによつて、冷却水中のを所
定濃度50〜200ppb値に調整する場合には、冷却
水中に酸素を注入する。すなわち、コントローラの作用
によつて、給復水系配管3に接続される酸素注入管25
に設けられたバルブ26を開き、復水脱塩器7の出口側
に酸素ガスを注入する。上記のように復水器5の真空度
を検出された溶存酸素濃度に応じて調節することによつ
てまたは冷却水中への酸素の注入によつて、給復水系配
管3および給水ブラッシング配管16内を流れる冷却水
中の溶存酸素濃度が50〜200ppbの範囲に調節さ
れる。隔離弁12および29、さらに隔離弁17が閉じ
、給水制御弁14および隔離弁15は開いている。給復
水系配管3および給水ブラッシング配管16からなる閉
ループ内を溶存酸素濃度の調節たれた冷却水を2日間循
環させることによつて各配管の内面に安定な酸化被膜が
形成される。この安定な酸化被膜は、配管内面の腐食の
進行を抑制する作用がある。給復水系配管3内面に安定
な酸化被膜が形成された後、原子炉が起動される。
The measured oxygen concentration is communicated to controller 28. That is, when the oxygen concentration is higher than 200 ppb, the degree of opening of the control valve 24 provided in the pipe 23 is increased, and the degree of vacuum in the condenser 5 is increased, and the degree of vacuum is adjusted to 70-Hg. Therefore, oxygen is degassed from the cooling water flowing into the condenser 5 via the water supply and condensate system piping 3 and the water supply brushing piping 16, and the dissolved oxygen concentration decreases. The cooling water whose dissolved oxygen concentration has become 200 ppb or less is returned from the condenser 5 to the water supply and condensate system piping 3. On the other hand, when the dissolved oxygen concentration in the cooling water becomes less than 50pp, the controller 2
8, the opening degree of the control valve 24 becomes smaller, and the degree of vacuum in the condenser 5 decreases to 600TW.
It is adjusted to around LHg. By adjusting the degree of vacuum in the condenser 5 in this way, the dissolved oxygen concentration in the cooling water can be adjusted to 50 to 200 ppb. but,
Since it is difficult to finely adjust the degree of vacuum in the condenser 5 using the mechanical sector 20, it may be difficult to finely adjust the dissolved oxygen concentration in the cooling water. Therefore, when adjusting the dissolved oxygen concentration in the cooling water to a predetermined concentration of 50 to 200 ppb by finely adjusting the dissolved oxygen concentration in this way, oxygen is injected into the cooling water. That is, by the action of the controller, the oxygen injection pipe 25 connected to the water supply and condensation system piping 3
The valve 26 provided in the condensate demineralizer 7 is opened, and oxygen gas is injected into the outlet side of the condensate demineralizer 7. As described above, by adjusting the degree of vacuum in the condenser 5 according to the detected dissolved oxygen concentration or by injecting oxygen into the cooling water, The dissolved oxygen concentration in the cooling water flowing through the cooling water is adjusted to a range of 50 to 200 ppb. Isolation valves 12 and 29, as well as isolation valve 17, are closed, and feed water control valve 14 and isolation valve 15 are open. A stable oxide film is formed on the inner surface of each pipe by circulating cooling water with an adjusted dissolved oxygen concentration in a closed loop consisting of the water supply and condensate pipe 3 and the water supply brushing pipe 16 for two days. This stable oxide film has the effect of suppressing the progress of corrosion on the inner surface of the pipe. After a stable oxide film is formed on the inner surface of the water supply and condensate system piping 3, the reactor is started.

起動にあたつては、隔離弁15が閉じられ、隔離弁17
が開けられる。さらに、前述の酸素ガス注入を過酸化水
素注入に切換える。過酸化水素は、酸素濃度検出計27
の検出値に応じて酸素注入管25から給復水系配管3内
に注入される。冷却水中に注入された過酸化水素の作用
によつて、原子炉の起動前に形成された給復水系配管3
内の安定な酸化被膜がたとえ剥離したとしても速やかに
自然治瘉が生じて安定な酸化被膜が再生される(原子炉
の起動前から過酸化水素を注入する場合は、起動時にお
いてもその注入を続行する)。したがつて、原子炉起動
後の定格出力までの出力上昇時(原子炉の起動時)に経
験される給復水系配管3の通してのクラッドの原子炉圧
力容器1内への搬入が急激に減少する。また、同時に給
復水脱塩器7の再生ひん度が少なくなる。本発明によれ
ば、原子炉の運転前に給復水系管路の内面に安定な酸化
被膜を形成することができるので、原子炉の起動時にお
ける給復水系管路内面からの酸化被膜の剥離が少なくな
り、原子炉容器内に搬入されるクラッド量が著しく少な
くなる。
At startup, isolation valve 15 is closed and isolation valve 17 is closed.
can be opened. Furthermore, the aforementioned oxygen gas injection is switched to hydrogen peroxide injection. Hydrogen peroxide can be detected using an oxygen concentration detector 27.
Oxygen is injected from the oxygen injection pipe 25 into the water supply and condensate system piping 3 according to the detected value. Water supply and condensate system piping 3 formed before reactor startup due to the action of hydrogen peroxide injected into cooling water
Even if the stable oxide film inside the reactor peels off, spontaneous healing will occur quickly and the stable oxide film will be regenerated. ). Therefore, the crud is rapidly carried into the reactor pressure vessel 1 through the water supply and condensate system piping 3, which is experienced when the power increases to the rated power after reactor startup (at the time of reactor startup). Decrease. At the same time, the frequency of regeneration of the feed and condensate water demineralizer 7 is reduced. According to the present invention, a stable oxide film can be formed on the inner surface of the water supply and condensate system pipes before the reactor is operated, so that the oxide film can be peeled off from the inner surface of the water supply and condensate pipes at the time of reactor startup. The amount of crud carried into the reactor vessel is significantly reduced.

さらに、給復水管路に設けられる浄化手段の再生ひん度
を著しく減少できる。
Furthermore, the frequency of regeneration of the purifying means provided in the water supply and condensate pipes can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適な一実施例を適用した沸騰水形原
子炉プラントの概略系統図、第2図は原子炉の起動時に
おける復水器真空度と炉内圧力の経時変化を示す概略図
、第3図は、酸素の溶解度特性図、第4図は炭素鋼の腐
食速度を示した特性図である。 1 ・・・・・・原子炉容器、3 ・・・・・・給復水
系配管、5 ・・・・・・復水器、8 ・・・・・・復
水バイパス配管、13・・・・・・給水ミニマムフロー
配管、16・・・・・・給水ブラッシング配管、17・
・・・・・給水配管隔離弁、19・・・・・・真空ポン
プ、20・・・・・・工セクタ。
Fig. 1 is a schematic system diagram of a boiling water reactor plant to which a preferred embodiment of the present invention is applied, and Fig. 2 shows changes over time in condenser vacuum degree and reactor pressure at reactor startup. The schematic diagram, FIG. 3, is a solubility characteristic diagram of oxygen, and FIG. 4 is a characteristic diagram showing the corrosion rate of carbon steel. 1... Reactor vessel, 3... Water supply and condensate system piping, 5... Condenser, 8... Condensate bypass piping, 13... ...Water supply minimum flow piping, 16...Water supply brushing piping, 17.
... Water supply piping isolation valve, 19 ... Vacuum pump, 20 ... Engineering sector.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉を起動する前に、復水器と原子炉容器とを連
絡する給復水系管路および前記給復水管路に取付けられ
て前記復水器に接続される分岐管路とからなる閉ループ
内に前記給復水系管路内に存在する冷却材を循環させる
とともに前記復水器内を負圧にして前記冷却材中の溶存
酸素濃度を約50〜200ppbの範囲に制御し、前記
復水器内の負圧による溶存酸素濃度の調節が困難で前記
冷却材中の溶存酸素濃度が不足する時、前記溶存酸素濃
度が約50〜200ppbの範囲になるように酸素を前
記冷却材中に注入する原子炉配管の腐食防止方法。
1. Before starting the reactor, a closed loop consisting of a water supply and condensate system pipe connecting the condenser and the reactor vessel and a branch pipe that is attached to the water supply and condensate pipe and connected to the condenser. The coolant present in the water supply and condensate system pipes is circulated, and the pressure inside the condenser is set to negative pressure to control the dissolved oxygen concentration in the coolant to be in the range of about 50 to 200 ppb. When the dissolved oxygen concentration in the coolant is insufficient because it is difficult to adjust the dissolved oxygen concentration by the negative pressure inside the vessel, oxygen is injected into the coolant so that the dissolved oxygen concentration is in the range of about 50 to 200 ppb. A method for preventing corrosion of reactor piping.
JP51000876A 1976-01-07 1976-01-07 How to prevent corrosion of reactor piping Expired JPS6048716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51000876A JPS6048716B2 (en) 1976-01-07 1976-01-07 How to prevent corrosion of reactor piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51000876A JPS6048716B2 (en) 1976-01-07 1976-01-07 How to prevent corrosion of reactor piping

Publications (2)

Publication Number Publication Date
JPS5285696A JPS5285696A (en) 1977-07-16
JPS6048716B2 true JPS6048716B2 (en) 1985-10-29

Family

ID=11485863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51000876A Expired JPS6048716B2 (en) 1976-01-07 1976-01-07 How to prevent corrosion of reactor piping

Country Status (1)

Country Link
JP (1) JPS6048716B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439791A (en) * 1977-09-02 1979-03-27 Hitachi Ltd Operation method of reactor
JPS56112690A (en) * 1980-02-12 1981-09-05 Hitachi Ltd Nuclear reactor cooling device
JPS5754897A (en) * 1980-09-20 1982-04-01 Hitachi Ltd Atomic power plant
JPH0229364Y2 (en) * 1984-12-18 1990-08-07
JPS63271196A (en) * 1987-09-12 1988-11-09 Hitachi Ltd Method for preventing adhesion of radioactive ion to iron structural material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663725A (en) * 1970-04-23 1972-05-16 Gen Electric Corrosion inhibition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663725A (en) * 1970-04-23 1972-05-16 Gen Electric Corrosion inhibition

Also Published As

Publication number Publication date
JPS5285696A (en) 1977-07-16

Similar Documents

Publication Publication Date Title
JPS6048716B2 (en) How to prevent corrosion of reactor piping
US4293382A (en) Method of starting up a nuclear reactor
JP2550183B2 (en) How to clean up the water supply system
JP4434436B2 (en) Operation method of boiling water nuclear power plant
JPS6346397B2 (en)
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JPS6398597A (en) Condensate system
JP2003097801A (en) Water treating device and water treating method for power generating plant
JP3130095B2 (en) Method and apparatus for removing decay heat of boiling water reactor
JPS5827476B2 (en) Reactor shutdown cooling system
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS6048000B2 (en) How to operate a nuclear reactor
JPS6017079B2 (en) Dissolved oxygen conservation device in hotwell water of turbine main condenser in nuclear power plant
JPH01185492A (en) Feed water tubing circulating facility in nuclear power plant
JPH0776786A (en) Corrosion prevention method for once-through type boiler
JPS6154199B2 (en)
JPS6045396B2 (en) How to operate boiling water nuclear power generation equipment
JPH049277B2 (en)
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPH027440B2 (en)
JPS6124559B2 (en)
JPS61155798A (en) Feedwater heater for nuclear power plant
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JPS6120761B2 (en)
JPS6045399B2 (en) How to operate a nuclear reactor