JPS60152991A - Purifier for condensate from steam turbine plant - Google Patents

Purifier for condensate from steam turbine plant

Info

Publication number
JPS60152991A
JPS60152991A JP59008636A JP863684A JPS60152991A JP S60152991 A JPS60152991 A JP S60152991A JP 59008636 A JP59008636 A JP 59008636A JP 863684 A JP863684 A JP 863684A JP S60152991 A JPS60152991 A JP S60152991A
Authority
JP
Japan
Prior art keywords
condensate
steam turbine
turbine plant
oxygen
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008636A
Other languages
Japanese (ja)
Inventor
縄井 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59008636A priority Critical patent/JPS60152991A/en
Publication of JPS60152991A publication Critical patent/JPS60152991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は、例えば原子力発電プラント内におけプラント
においては、主に復水系の機器、配管内面に発生した鉄
酸化物を主成分とする腐食生成物の一部は、復水浄化シ
ステムで除去されるが、残部は原子炉に流入し、炉心で
中性子の照射により放射化され、原子炉系の系統内を循
環する炉水によりこれらの配管、機器の内表面に移行付
着し、経時的に付着量が増加し、プラントの放射線量率
が増大し、定期検査時の作業従来者の被曝線量が大きく
なっている。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is directed to the prevention and treatment of corrosion products mainly composed of iron oxides generated on the inner surface of condensate system equipment and piping in a nuclear power plant, for example. Some of the substances are removed by the condensate purification system, but the rest flows into the reactor and is activated by neutron irradiation in the reactor core, where these pipes are destroyed by the reactor water that circulates within the reactor system. It migrates and adheres to the inner surfaces of equipment, and the amount of adhesion increases over time, increasing the radiation dose rate of the plant and increasing the exposure dose of conventional workers during periodic inspections.

このため、復水系で発生した腐食生成物の原子炉内への
流入を抑えるため、従来復水脱塩器を主復水器下流に設
置したシステムが多くの沸騰水形原子力発電プラントに
採用されている。しかして従来の沸騰水形原子力発電プ
ラントのシステムにおいて、原子炉で発生した高温高圧
の蒸気は、主蒸気管により蒸気タービンに送られ、ター
ビンを駆動させたのち主復水器により復水され、空気抽
出器によって溶存空気が抽出されたのち復水管を経て浄
化部にイオン交換樹脂を充填した復水脱塩器に送られ、
上流で発生した鉄酸化物を主成分とした腐食生成物が除
去される。そして浄化された復水は、高圧復水ポンプ、
給水加熱器および給水ポンプを経て再度加熱加圧されて
原子炉にもどる。
For this reason, in order to suppress the inflow of corrosion products generated in the condensate system into the reactor, many boiling water nuclear power plants have conventionally installed a condensate demineralizer downstream of the main condenser. ing. However, in conventional boiling water nuclear power plant systems, high-temperature, high-pressure steam generated in the nuclear reactor is sent to the steam turbine through the main steam pipe, drives the turbine, and then is condensed in the main condenser. After dissolved air is extracted by an air extractor, it is sent through a condensate pipe to a condensate demineralizer whose purification section is filled with ion exchange resin.
Corrosion products mainly composed of iron oxides generated upstream are removed. The purified condensate is then pumped into a high pressure condensate pump.
The water is heated and pressurized again through the feedwater heater and feedwater pump, and then returned to the reactor.

一方、原子炉に流入する腐食生成物の約90%以上は、
復水浄化システムの上流で発生するものであることが、
実機調査で明らかにされている。後水浄化システム上流
で発生する腐食生成物の主たる発生源は、炭素鋼を材料
とした主復水器および復水管であり、発生した腐食生成
物は復水浄化システムで除去されるように構成されてい
る。しかしながら実際の覆水浄化システムにおいては、
腐食生成物の除去率は50〜70チ程度しか得られず、
残りの30〜50チの腐食生成物は原子炉に流入する。
On the other hand, more than 90% of the corrosion products that flow into the nuclear reactor are
This occurs upstream of the condensate purification system.
This has been revealed through actual machine testing. The main source of corrosion products generated upstream of the post-water purification system is the main condenser and condensate pipes made of carbon steel, and the structure is such that the generated corrosion products are removed by the condensate purification system. has been done. However, in actual covered water purification systems,
The removal rate of corrosion products is only about 50 to 70 inches,
The remaining 30-50 inches of corrosion products flow into the reactor.

このため、復水浄化システムに復水脱塩器を採用してい
るプラントでは、除去率の向上のために多くの試みがな
されているが、二次廃棄物の増大、操作員の運転時間の
増加などの要因にもなり、廃棄物の発生が少なく、腐食
生成物の除去効率の高い復水浄化システムが要求されて
いる。
For this reason, many attempts have been made to improve the removal rate in plants that employ condensate desalters in their condensate purification systems, but these efforts have resulted in an increase in secondary waste and a reduction in operator operating time. As a result, there is a need for a condensate purification system that generates less waste and is highly efficient in removing corrosion products.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、腐食生成物の発生を抑制し、復水浄化
システムへの負荷を低減するとともに、発生した腐食生
成物を効率よく除去し、また廃棄物の発生量を抑えて廃
棄物処理システムへの負荷を低域する蒸気タービンプラ
ントの復水浄化装置を提供するにある。
The purpose of the present invention is to suppress the generation of corrosion products, reduce the load on the condensate purification system, efficiently remove the generated corrosion products, and suppress the amount of waste generated for waste treatment. The present invention provides a condensate purification device for a steam turbine plant that reduces the load on the system.

し発明の概要〕 本発明暑こよる蒸気タービンプラントの復水浄化装置は
、主復水器ホットウェル内の系統水中の酸素濃度を一定
の濃度に供給する酸素注入機構を有し、主復水器下流に
復水浄化装置として高勾配電磁フィルタおよび復水脱塩
器を直列に備えたことを特徴とするものである。
[Summary of the Invention] The condensate purification device of the present invention for a hot steam turbine plant has an oxygen injection mechanism that supplies the oxygen concentration in the system water in the main condenser hotwell to a constant concentration, and It is characterized by having a high gradient electromagnetic filter and a condensate demineralizer connected in series as a condensate purification device downstream of the vessel.

し発明の実施例〕 以下本発明を図面に示す原子力発電プラント内における
蒸気タービンシステムに適用した場合について説明する
。図面において、原子炉1で発生した高温高圧の蒸気は
、主蒸気管2によりタービン3に送られ、タービン3を
駆動させたのちに主復水器4により復水され、復水管6
を経て低圧復水ポンプ7で復水脱塩器8に送られ、高圧
復水ポンプ9、給水加熱器10および給水ポンプ11を
経て再度加熱加圧されて原子炉1に戻る。
Embodiments of the Invention] Hereinafter, a case where the present invention is applied to a steam turbine system in a nuclear power plant shown in the drawings will be described. In the drawing, high-temperature, high-pressure steam generated in a nuclear reactor 1 is sent to a turbine 3 through a main steam pipe 2, drives the turbine 3, is condensed in a main condenser 4, and is sent to a condenser pipe 6.
The water is sent to the condensate demineralizer 8 by the low-pressure condensate pump 7, then heated and pressurized again through the high-pressure condensate pump 9, feed water heater 10, and feed water pump 11, and then returned to the reactor 1.

しかして後水系の上流に生じた鉄酸化物を主成分とした
腐食生成物は、イオン交換樹脂を充填した復水脱塩器8
で除去されるが、従来の復水脱塩器8での腐食生成物の
除去率は、50〜70%程度しか得られず、残りの30
〜50%の腐食生成物は原子炉に流入する。
Corrosion products mainly composed of iron oxides generated upstream of the post-water system are removed from the condensate demineralizer 8 filled with ion exchange resin.
However, the removal rate of corrosion products in the conventional condensate demineralizer 8 is only about 50 to 70%, and the remaining 30%
~50% of the corrosion products enter the reactor.

そこで本発明においては、主復水器4で復水された水は
、空気抽出器5で酸素を抽出されるので、溶存酸素の非
常に低濃度になるため、一連の溶存酸素制御機構13を
設けている。そしてその注入ノズル14を主復水器4の
ホットウェル12内の水中に設けられている。この注入
ノズル14は、低圧復水ポンプ7の吐出側より取水され
た復水に酸素流量調整弁15を介して酸素ボンベなどの
酸素供給源17から送られる酸素を溶解せしめ、これで
作られた高濃度溶存酸素水を連続的に供給できる酸素溶
解槽16に接続されている。
Therefore, in the present invention, since oxygen is extracted from the water condensed in the main condenser 4 in the air extractor 5, the concentration of dissolved oxygen becomes extremely low. It is set up. The injection nozzle 14 is provided underwater in the hot well 12 of the main condenser 4. This injection nozzle 14 dissolves oxygen sent from an oxygen supply source 17 such as an oxygen cylinder through an oxygen flow rate adjustment valve 15 into the condensate taken from the discharge side of the low-pressure condensate pump 7, It is connected to an oxygen dissolution tank 16 that can continuously supply high concentration dissolved oxygen water.

そして主復水器4のホットウェル12内の水中の溶存酸
素濃度は、酸素濃度制御機構13によって制御されるよ
う構成されている。ホットウェル12内の水中の溶存酸
素濃度は溶存酸素濃度測定器18で測定され、この測定
器18の出力信号は制御回路19に送られ、酸素流量調
整弁15に信号を送って酸素供給量を制御して復水中の
溶存酸素濃度を適正な範囲たとえば80〜15Qppb
の範囲に維持される。
The dissolved oxygen concentration in the water in the hot well 12 of the main condenser 4 is controlled by an oxygen concentration control mechanism 13. The dissolved oxygen concentration in the water in the hot well 12 is measured by a dissolved oxygen concentration measuring device 18, and the output signal of this measuring device 18 is sent to a control circuit 19, which sends a signal to the oxygen flow rate regulating valve 15 to control the oxygen supply amount. Control the dissolved oxygen concentration in condensate to an appropriate range, for example 80 to 15 Qppb.
maintained within the range.

一方、低圧復水ポンプ7の下流に高勾配電磁フィルタ2
0を設けている。高勾配電磁フィルタ20は例えば印加
磁場強度5KG、通水線流速300〜600r11/)
(程度のものを応用する。高勾配電磁フィルタ20には
、復水の全流量を通水せしめ、高勾配′峨磁フィルタ2
0の保守時又は故障時に備えてバイパス配管21を設け
てあり、この高勾配電磁フィルタ20の下流に直列して
従来の復水脱塩器8が設けられている。
On the other hand, a high gradient electromagnetic filter 2 is installed downstream of the low pressure condensate pump 7.
0 is set. For example, the high gradient electromagnetic filter 20 has an applied magnetic field strength of 5 KG and a water line flow velocity of 300 to 600 r11/).
(The high gradient electromagnetic filter 20 is made to pass the entire flow of condensate.
A bypass piping 21 is provided in preparation for maintenance or failure of the high gradient electromagnetic filter 20, and a conventional condensate demineralizer 8 is provided in series downstream of the high gradient electromagnetic filter 20.

このように構成された本発明による復水浄化装置におい
ては、蒸気タービン3の運転幅に酸素濃度制御機構13
の制御動作により、復水中の溶存酸素濃度が適正範囲に
調整される。復水系中で発生する腐食生成物のほとんど
は、炭素鋼を主要構成材料とする主復水器および復水配
管からである。
In the condensate purification device according to the present invention configured as described above, the oxygen concentration control mechanism 13 is adjusted to the operating width of the steam turbine 3.
Through the control operation, the dissolved oxygen concentration in the condensate is adjusted to an appropriate range. Most of the corrosion products generated in the condensate system are from the main condenser and condensate piping, which are mainly composed of carbon steel.

−1炭素鋼の腐食は、溶存酸素濃度に大きく依存してい
ることが多くの研究から明らかにされている。現在の主
復水器4のホットウェル12の水中の溶存酸素濃度は、
約20pI)b前後であり、主復水器のホットウェルの
水中の溶存酸素をより高い濃度に維持することは、腐食
抑制に効果がある。実機における試験では、30%以上
の腐食生成物の発生を抑制する効果を得た。
-1 Many studies have revealed that corrosion of carbon steel is highly dependent on dissolved oxygen concentration. The current concentration of dissolved oxygen in the water in the hot well 12 of the main condenser 4 is:
It is around 20 pI)b, and maintaining a higher concentration of dissolved oxygen in the water in the hot well of the main condenser is effective in suppressing corrosion. In tests using actual equipment, the effect of suppressing the generation of corrosion products by 30% or more was obtained.

−1主復水器ホットウエル12の水中の溶存酸素濃度が
高くなると、復水中の腐食生成物の大部分を占める鉄酸
化物の結晶形態の組成が下記の第1表に示すように変化
することが実機における試験から確認された。
-1 When the concentration of dissolved oxygen in the water in the main condenser hotwell 12 increases, the composition of the crystalline form of iron oxide, which accounts for most of the corrosion products in the condensate, changes as shown in Table 1 below. This was confirmed through tests using actual equipment.

第 1 表 この結晶形態の組成が変わることは、以下に述べる高勾
配電磁フィルタおよび復水脱塩器による鉄酸化物の除去
効果をもたらす。一般に高勾配電磁フィルタは、強磁性
の鉄酸化物の除去効率が極めて良好であることはよく知
られている。また常磁性の鉄酸化物においてもかなりの
除去効率を示す。高勾配電磁フィルタによる鉄酸化物の
結晶形態別の除去効率を実機において得られた結果を第
2表に示す。この第2表には、復水脱塩器による結果も
併せて掲載している。この第1表および第2表からも本
発明による復水浄化装置においては、第3表のように腐
食生成物の除去効果が大きいことを理解することができ
るであろう。
Table 1 This change in the composition of the crystal form results in the removal of iron oxides by the high gradient electromagnetic filter and condensate demineralizer described below. It is well known that high-gradient electromagnetic filters generally have extremely good removal efficiency for ferromagnetic iron oxides. It also shows considerable removal efficiency even for paramagnetic iron oxides. Table 2 shows the results obtained using an actual machine regarding the removal efficiency of each crystal form of iron oxide by the high gradient electromagnetic filter. Table 2 also includes the results from the condensate demineralizer. It can be understood from these Tables 1 and 2 that the condensate purification apparatus according to the present invention has a great effect of removing corrosion products as shown in Table 3.

第 2 表 第 3 表 従来の復水脱塩器8の単独設備の復水浄化装置において
は、復水脱塩器に腐食生成物の負荷量に応じた逆洗、再
生工程が必要であり、腐食生成物の除去率を向上させる
ためには、これらの工程の頻度を上げなければならない
。そのため逆洗、再生工程で生じる廃液量は大きく々す
、廃棄物処理システムへの負荷が増大する。これに対し
、本発明に使用する高勾配電磁フィルタから発生する廃
液量は、復水脱塩器から発生する量に比較して非常に少
ない。したがって本発明による復水浄化装置においては
、従来のシステムの約50%に半減することになる。
Table 2 Table 3 In the conventional condensate demineralizer 8 single-equipment condensate purification system, the condensate demineralizer requires backwashing and regeneration steps depending on the amount of corrosion products loaded. In order to improve the removal rate of corrosion products, the frequency of these steps must be increased. Therefore, the amount of waste liquid generated in the backwashing and regeneration processes increases, increasing the load on the waste treatment system. On the other hand, the amount of waste liquid generated from the high gradient electromagnetic filter used in the present invention is very small compared to the amount generated from the condensate demineralizer. Therefore, in the condensate purification apparatus according to the present invention, the amount is reduced to approximately 50% of that of the conventional system.

なお、図面に示す実施例は、原子力発電プラントの復水
系への適用について説明したが、図面の原子炉1をボイ
ラなどの蒸気発生器とする蒸気タービンプラントにも同
様lこ実施することができる。
Although the embodiment shown in the drawings has been described with reference to its application to a condensate system of a nuclear power plant, it can also be applied to a steam turbine plant in which the nuclear reactor 1 in the drawings is used as a steam generator such as a boiler. .

【発明の効果〕【Effect of the invention〕

以上のように本発明においては、主復水器ホットウェル
内の系統水中の酸素濃度を一定の濃度に制御する機構を
設け、かつ復水系統に高勾配電磁フィルタおよびゆ水脱
塩器を直列に設けたことにより、腐食生成物の低減なら
びに廃液発生量の低減に対して大きな効果を発揮するこ
とができる。
As described above, in the present invention, a mechanism is provided to control the oxygen concentration in the system water in the main condenser hotwell to a constant concentration, and a high gradient electromagnetic filter and a water demineralizer are connected in series to the condensate system. By providing this, it is possible to have a great effect on reducing corrosion products and reducing the amount of waste liquid generated.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による蒸気タービンプラントの復水浄化装
置の一実施例を示す系統図である。 1・・・蒸気発生器(原子炉) 3・・・蒸気タービン
4・・・主復水器 8・・・復水脱塩器10・・・給水
加熱器 ・、12・・・ホットウェル13・・・溶存酸
素制御機構 14・・・注入ノズル15・・・酸素流量
調整弁 16・・・酸素溶解槽17・・・酸素供給源 
18・・・溶存酸素濃度測定器工9・・・制御回路 2
0・・・高勾配電磁フィルタ21・・・バイパス管
The drawing is a system diagram showing an embodiment of a condensate purification device for a steam turbine plant according to the present invention. 1...Steam generator (nuclear reactor) 3...Steam turbine 4...Main condenser 8...Condensate demineralizer 10...Feed water heater ・, 12...Hot well 13 ... Dissolved oxygen control mechanism 14 ... Injection nozzle 15 ... Oxygen flow rate adjustment valve 16 ... Oxygen dissolution tank 17 ... Oxygen supply source
18...Dissolved oxygen concentration measuring equipment 9...Control circuit 2
0... High gradient electromagnetic filter 21... Bypass pipe

Claims (3)

【特許請求の範囲】[Claims] (1) 蒸気タービンプラントの復水系において、主復
水器のホットウェル内の系統水中の溶存酸素、濃度を一
定の濃度に制御する溶存酸素濃度制御機構を設け、さら
に復水器の下流に高勾配電磁フィルタおよび復水脱塩器
を直列に設けたことを特徴とする蒸気タービンプラント
の復水浄化装置。
(1) In the condensate system of a steam turbine plant, a dissolved oxygen concentration control mechanism is installed to control the dissolved oxygen concentration in the system water in the hot well of the main condenser to a constant concentration, and a A condensate purification device for a steam turbine plant, characterized in that a gradient electromagnetic filter and a condensate demineralizer are installed in series.
(2)溶存酸素濃度制御機構は復水の一部が導かれる酸
素溶解槽およびこの溶解槽内に酸素を供給する酸素供給
源を備え、復水流量の変動に応じて酸素溶解槽への酸素
供給量を制御し、その酸素溶解槽内の高濃度溶存酸素水
を主復水器ホットウェル内1こ注入するよう構成したこ
とを特徴とする特許請求の範囲第1項記載の蒸気タービ
ンプラントの復水浄化装置。
(2) The dissolved oxygen concentration control mechanism is equipped with an oxygen dissolving tank to which a portion of the condensate is introduced and an oxygen supply source that supplies oxygen into the dissolving tank. The steam turbine plant according to claim 1, characterized in that the supply amount is controlled and the high concentration dissolved oxygen water in the oxygen dissolving tank is injected into the main condenser hot well. Condensate purification equipment.
(3)蒸気タービンプラントは原子力発電プラント内の
設備であることを特徴とする特許請求の範囲第1項記載
の蒸気タービンプラントの復水浄化装置。
(3) The condensate purification device for a steam turbine plant according to claim 1, wherein the steam turbine plant is equipment within a nuclear power plant.
JP59008636A 1984-01-23 1984-01-23 Purifier for condensate from steam turbine plant Pending JPS60152991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008636A JPS60152991A (en) 1984-01-23 1984-01-23 Purifier for condensate from steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008636A JPS60152991A (en) 1984-01-23 1984-01-23 Purifier for condensate from steam turbine plant

Publications (1)

Publication Number Publication Date
JPS60152991A true JPS60152991A (en) 1985-08-12

Family

ID=11698430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008636A Pending JPS60152991A (en) 1984-01-23 1984-01-23 Purifier for condensate from steam turbine plant

Country Status (1)

Country Link
JP (1) JPS60152991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179984A (en) * 1984-09-26 1986-04-23 Tokyo Electric Power Co Inc:The Condensed water purifying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179984A (en) * 1984-09-26 1986-04-23 Tokyo Electric Power Co Inc:The Condensed water purifying system

Similar Documents

Publication Publication Date Title
EP0078499B1 (en) Method and apparatus for purifying liquid
US4043864A (en) Nuclear power plant having a pressurized-water reactor
JPS60152991A (en) Purifier for condensate from steam turbine plant
JPH11304992A (en) Turbine equipment for power generation
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JPS60201296A (en) Reducer for radiation dose
JPS6398597A (en) Condensate system
JPS642237B2 (en)
JP2815424B2 (en) Radioactive gas waste treatment equipment
JPH0631815B2 (en) Nuclear power plant water supply system
JPS60201295A (en) Reducer for radiation dose
JP2895267B2 (en) Reactor water purification system
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JPS5979193A (en) Cleaning device of feedwater heater
JPS6053896A (en) Oxygen injection control system
JPS61262509A (en) Flow controller for drain filter of feedwater heater
JPS6333680B2 (en)
JPS61104298A (en) Radioactivity accumulation reducer for nuclear reactor primary cooling system
JPS59112292A (en) Condensed water cleanup device
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPH0479439B2 (en)
JPS5882193A (en) Device for cleaning residual heat removal pipeline
JPS59216095A (en) System water recirculation circuit in atomic power plant
JPH03102297A (en) Controlling method for concentration of dissolved oxygen in feed water